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Introduction

Definition

A phylogenetic tree is a rooted, unordered tree whose leaves are uniquely
labeled and in which every internal node has ≥ 2 children.

Can describe divergent evolutionary history for a set of objects, where:

“objects” = Biological species, categories of species, populations, proteins,
nucleic acids, natural languages, chain letters, medieval manuscripts, or ...

Arachnida

Mammalia

Reptilia Aves

Amphibia

Main idea:

Represent objects by leaves in the tree.

Select branching structure so that
internal nodes correspond to common
ancestors.
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Example

(Figure from http://biology.unm.edu/ccouncil/Biology 203)
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Inferring phylogenetic trees

Important problem:
How can we build a phylogenetic tree?

(Not a new problem!)

During the last 150 years, numerous methods for reconstructing
phylogenetic trees have been proposed.

For various reasons, inferring an accurate phylogenetic tree can be a
difficult problem.

For example, small changes in the input data may produce trees with
very different structures.

Furthermore, many of the underlying computational problems are
NP-hard optimization problems.
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Inferring phylogenetic trees, cont.

Different types of data available. ⇒ Different methods may be appropriate.

This talk is focused on one particular method:
The phylogenetic supertree approach
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Phylogenetic supertree

Goal:
Merge a given set of (possibly conflicting) phylogenetic trees with
overlapping leaf label sets into one tree. This is called a supertree.
Keep as much branching information as possible!

Motivation:

Combine many trees constructed from different data sets.
⇒ More reliable answers.

Most individual studies investigate relatively few species.
Supertrees allow us to deduce new, hypothetical evolutionary
relationships.

Computationally expensive methods can yield highly accurate
phylogenetic trees for small, overlapping subsets of the objects.
⇒ A “divide-and-conquer”-based technique for inferring large trees.
Has become popular in recent years.
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Phylogenetic supertree, example

(From O. R. P. Bininda-Emonds et al.: “The delayed rise of present-day

mammals”, Nature, Vol. 446, pp. 507–512, 2007).
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From here on, “tree” = “phylogenetic tree” (i.e., rooted, unordered
tree with uniquely labeled leaves in which every internal node has
≥ 2 children.).

Also, every leaf is identified with its label.
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Notation

A tree with exactly three leaves is called a rooted triplet.

Let {x , y , z} be a leaf label set of cardinality 3.
There are four different possible trees leaf-labeled by {x , y , z}:

y | zx |x z y |y z x

z

yx

y

zx

x

zy

x y z

y| | zx

Two types of rooted triplets:

• Fan triplet = One internal node (x |y |z)

• Resolved triplet = Two internal nodes (xy |z , xz |y , and yz |x)
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Notation, cont.

Let x , y , z be three leaves in a tree T .

If lca(x , y) is a proper descendant of
lca(x , z) = lca(y , z) in T then we say
that T and the resolved triplet xy |z
are consistent.

x

z y

lca(x,y)

lca(x,z) = lca(y,z)

On the other hand, if lca(x , y) = lca(x , z) = lca(y , z) in T then
T and the fan triplet x |y |z are consistent.
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Combining a set of rooted triplets

Example:

d

d e

b

a b

c

a c
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Combining a set of rooted triplets

Example:

c d e

a

a b

c

a c

d

d e

b

b
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Combining a set of rooted triplets

Example:

d

c e

b

a b

c

d

b

ea c

CONFLICT!!!
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Problem definitions

Notation:

For any tree T , define Λ(T ) = the set of all leaf labels in T .

For any tree T and any set X of rooted triplets with⋃
t∈X

Λ(t) ⊆ Λ(T ), define T (X ) = {t ∈ X : t is consistent with T}.

The Maximum Rooted Triplets Consistency Problem (MTC)

Input: Two sets G and B of rooted triplets.

Output: Tree T with Λ(T ) =
⋃

t∈G∪B
Λ(t) maximizing |T (G)|+ |B \T (B)| .

The input rooted triplets can be interpreted as constraints:

Resolved triplets in G = “constraints of type 1”

Fan triplets in G = “constraints of type 2”

Resolved triplets in B = “constraints of type 3” = “forbidden
resolved triplets”

Fan triplets in B = “constraints of type 4” = “forbidden fan triplets”
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Previous work

Aho, Sagiv, Szymanski, Ullman (1981):
Polynomial-time algorithm to determine if there is a tree consistent with
all of the resolved triplets in a set, and if so, to output such a tree.

He, Huynh, Jansson, Sung (2006):
Extension of the above to the case of forbidden resolved triplets.

Bryant (1997):
MTC (i.e., the optimization version of rooted triplets consistency) is
NP-hard, even if restricted to resolved triplets.

Byrka, Gawrychowski, Huber, Kelk (2010):
MTC is APX-hard, even if restricted to resolved triplets.

Ga̧sieniec, Jansson, Lingas, Östlin (1999):
Polynomial-time 1

3 -approximation for MTC restricted to resolved triplets.

Wu (2004):
Exact O(3n(m + n2))-time algorithm for MTC restricted to resolved triplets,
where n = number of leaf labels and m = number of input triplets.
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Our new results

1 Polynomial-time 1
4 -approximation algorithm for MTC.

2 Extension of Wu’s exact exponential-time algorithm for MTC restricted to
resolved triplets to also allow fan triplets, forbidden resolved triplets, and
forbidden fan triplets.

It takes an additional parameter k ≥ 2 as input and forces the output to be
a tree in which every internal node has at most k children.

⇒ Running time: O((k + 1)n+1(m + n))

3 Exponential-time approximation scheme (ETAS) for MTC:

For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

4 Polynomial-time approximation scheme (PTAS) for dense MTC, where an
instance is called dense if it contains Ω(n3) constraints:

For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in polyn. time.
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1. A 1/4-approximation algorithm for MTC

Algorithm 1

Input: Leaf label set S , set R of rooted triplet constraints over S .

1: Write m = |R|. Let R1, R2, R3, R4 be the resolved triplets, fan triplets,
forbidden resolved triplets, and forbidden fan triplets in R, respectively.

2: if |R2| + |R3| ≥ m
4 then output a tree consisting of a root node with

n children labeled by S .

3: else
Apply the polynomial-time 1

3 -approximation algorithm for MTC restricted
to resolved triplets by [Ga̧sieniec et al. (1999)] to R1.
Output the resulting tree.

Theorem: Algorithm 1 is a polynomial-time 1
4 -approximation for MTC.

Proof: Let T be the output of the algorithm. There are two cases.
|R2|+ |R3| ≥ m

4 : Then T satisfies at least m
4 input constraints.

|R1|+ |R4| > 3m
4 : The output of [Ga̧sieniec et al. (1999)] is a binary tree

consistent with at least 1
3 of the input resolved triplets.

⇒ T satisfies ≥ 1
3 |R1|+ |R4| ≥ 1

3 (|R1|+ |R4|) > 1
3 ·

3m
4 = m

4 constraints.
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2. An exact algorithm for MTC

Based on:

Wu (2004):
Exact exponential-time algorithm for MTC restricted to resolved triplets.

Wu’s algorithm:

Uses dynamic programming.

Considers all subsets of the leaf label set S , in order of increasing cardinality.

More precisely: For each such U ⊆ S , consider all bipartitions of U.

For each bipartition (U1,U2), count how many input resolved triplets are of
the form ab|c , where a ∈ Ui , b ∈ U3−i , c 6∈ U. Call this w(U1,U2).

Compute score(U) = max
bipartition (U1,U2) of U

{
score(U1) + score(U2) + w(U1,U2)

}
.

Traceback to recover an optimal tree.

⇒ O(3n(m + n2)) time, where n = |S | and m = number of input triplets.
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2. An exact algorithm for MTC, cont.

The new algorithm:

Notation: For any U ⊆ S and any partition P of U with |P| ≥ 2, let
• w2(P) = the number of input resolved triplets ab|c such that a and b

belong to two different parts in P and c 6∈ U.
• w3(P) = the number of input fan triplets a|b|c such that a, b, c

belong to three different parts in P.
• wf 2(P) = the number of input forbidden resolved triplets ¬(ab|c) such

that a and c belong to two different parts in P and b 6∈ U,
or b and c belong to two different parts in P and a 6∈ U, or
a, b, c belong to three different parts in P.

• wf 3(P) = the number of input forbidden fan triplets ¬(a|b|c) such that
two elements in {a, b, c} belong to two different parts in P
and the remaining one does not belong to U.

Let I (T ) be the set of internal nodes in a tree T . For v ∈ I (T ), denote:
Tv = the subtree of T rooted at v , {v1, . . . , vl} = the set of children of v ,
and πv = the partition of Λ(Tv ) into Λ(Tv1), . . . ,Λ(Tvl

).

Lemma: For any T with Λ(T ) = S , the # of input constraints satisfied by T is:∑
v∈I (T )(w2(πv ) + w3(πv ) + wf 2(πv ) + wf 3(πv )).
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2. An exact algorithm for MTC, cont.

Let k ≥ 2 be a parameter.

The new algorithm forces the output to be a k-ary tree, i.e., a tree in which
every internal node has at most k children.

Proceed as in Wu’s algorithm, but for each U ⊆ S , define
score(U) = maxk

`=2{score`(U)}, where score`(U) =

max
`−partition U1,...,U` of U

{∑̀
i=1

score(Ui )+
3∑

j=2

(wj(U1, . . . ,U`)+wfj(U1, . . . ,U`))
}
.

By the Lemma, score(U) = the maximum number of input constraints that
can be consistent with a k-ary tree leaf-labeled by U.

Total # of partitions considered ≤
n∑

q=1

(
n
q

) k∑̀
=2

`q ≤
k∑̀
=2

(`+1)n ≤ (k +1)n+1.

O(m+n) time to compute w2(P),w3(P),wf 2(P),wf 3(P) for each partition P.

⇒ O((k + 1)n+1(m + n)) time to solve MTC exactly over all k-ary trees.
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3. An ETAS for MTC

Exponential-time approximation scheme (ETAS) for MTC:
For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

Obtained by selecting k := d 12
ε e and applying the exact algorithm for optimal

k-ary trees above. The correctness follows from:

Theorem: For any tree T , there exists a k-ary tree T ′ with Λ(T ′) = Λ(T ) that
is consistent with at least a fraction of (1− 12/k) of the input constraints
consistent with T .

Proof sketch: Use a probabilistic argument to show that there exists such a k-ary
tree obtained from T by replacing each node with degree > k by a k-ary subtree.

Suppose deg(v) = ` > k. For any fan triplet a|b|c contributing to w3(πv ),
if a, b, c are distributed among k groups uniformly at random then Pr [any
two elements in {a, b, c} end up in the same group] ≤ 1/k + 2/k = 3/k.

⇒ There exists some partition of v1, . . . , v` into k subtrees that satisfies
≥ 1− 3/k of the fan triplets contributing to w3(πv ).

etc.

CPM 2015 The Approximability of MTC 18 / 25



3. An ETAS for MTC

Exponential-time approximation scheme (ETAS) for MTC:
For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

Obtained by selecting k := d 12
ε e and applying the exact algorithm for optimal

k-ary trees above. The correctness follows from:

Theorem: For any tree T , there exists a k-ary tree T ′ with Λ(T ′) = Λ(T ) that
is consistent with at least a fraction of (1− 12/k) of the input constraints
consistent with T .

Proof sketch: Use a probabilistic argument to show that there exists such a k-ary
tree obtained from T by replacing each node with degree > k by a k-ary subtree.

Suppose deg(v) = ` > k. For any fan triplet a|b|c contributing to w3(πv ),
if a, b, c are distributed among k groups uniformly at random then Pr [any
two elements in {a, b, c} end up in the same group] ≤ 1/k + 2/k = 3/k.

⇒ There exists some partition of v1, . . . , v` into k subtrees that satisfies
≥ 1− 3/k of the fan triplets contributing to w3(πv ).

etc.

CPM 2015 The Approximability of MTC 18 / 25



3. An ETAS for MTC

Exponential-time approximation scheme (ETAS) for MTC:
For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

Obtained by selecting k := d 12
ε e and applying the exact algorithm for optimal

k-ary trees above. The correctness follows from:

Theorem: For any tree T , there exists a k-ary tree T ′ with Λ(T ′) = Λ(T ) that
is consistent with at least a fraction of (1− 12/k) of the input constraints
consistent with T .

Proof sketch: Use a probabilistic argument to show that there exists such a k-ary
tree obtained from T by replacing each node with degree > k by a k-ary subtree.

Suppose deg(v) = ` > k. For any fan triplet a|b|c contributing to w3(πv ),
if a, b, c are distributed among k groups uniformly at random then Pr [any
two elements in {a, b, c} end up in the same group] ≤ 1/k + 2/k = 3/k.

⇒ There exists some partition of v1, . . . , v` into k subtrees that satisfies
≥ 1− 3/k of the fan triplets contributing to w3(πv ).

etc.

CPM 2015 The Approximability of MTC 18 / 25



3. An ETAS for MTC

Exponential-time approximation scheme (ETAS) for MTC:
For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

Obtained by selecting k := d 12
ε e and applying the exact algorithm for optimal

k-ary trees above. The correctness follows from:

Theorem: For any tree T , there exists a k-ary tree T ′ with Λ(T ′) = Λ(T ) that
is consistent with at least a fraction of (1− 12/k) of the input constraints
consistent with T .

Proof sketch: Use a probabilistic argument to show that there exists such a k-ary
tree obtained from T by replacing each node with degree > k by a k-ary subtree.

Suppose deg(v) = ` > k. For any fan triplet a|b|c contributing to w3(πv ),
if a, b, c are distributed among k groups uniformly at random then Pr [any
two elements in {a, b, c} end up in the same group] ≤ 1/k + 2/k = 3/k.

⇒ There exists some partition of v1, . . . , v` into k subtrees that satisfies
≥ 1− 3/k of the fan triplets contributing to w3(πv ).

etc.

CPM 2015 The Approximability of MTC 18 / 25



3. An ETAS for MTC

Exponential-time approximation scheme (ETAS) for MTC:
For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

Obtained by selecting k := d 12
ε e and applying the exact algorithm for optimal

k-ary trees above. The correctness follows from:

Theorem: For any tree T , there exists a k-ary tree T ′ with Λ(T ′) = Λ(T ) that
is consistent with at least a fraction of (1− 12/k) of the input constraints
consistent with T .

Proof sketch: Use a probabilistic argument to show that there exists such a k-ary
tree obtained from T by replacing each node with degree > k by a k-ary subtree.

Suppose deg(v) = ` > k. For any fan triplet a|b|c contributing to w3(πv ),
if a, b, c are distributed among k groups uniformly at random then Pr [any
two elements in {a, b, c} end up in the same group] ≤ 1/k + 2/k = 3/k.

⇒ There exists some partition of v1, . . . , v` into k subtrees that satisfies
≥ 1− 3/k of the fan triplets contributing to w3(πv ).

etc.
CPM 2015 The Approximability of MTC 18 / 25



4. A PTAS for dense MTC

Byrka, Gawrychowski, Huber, Kelk (2010): MTC is APX-hard in the general case.
⇒ Unlikely that a polynomial-time approximation scheme (PTAS) exists.

However, we can get a PTAS for dense MTC, where an instance is called dense if
it contains Ω(n3) constraints:
For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in polyn. time.

Relies on the technique introduced by [Jiang, Kearney, Li (2001)] for maximizing
unrooted quartet consistency (MQC).

Unrooted quartet: w

x

y

z

Jiang et al. (2001) developed a PTAS for dense MQC, where the input consists
of Ω(n4) unrooted quartets.

We cannot apply their PTAS directly to our problem because of the fan triplets
and the forbidden rooted triplets, but we can adapt their technique to our setting.
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4. A PTAS for dense MTC, cont.

The resulting algorithm:

Given ε > 0, let k be some constant that depends on 1/ε.

(A suitable value for k will be derived later.)

Generate all unlabeled, unordered rooted trees with k leaves and no degree-1
nodes.

For each such tree K : Every leaf of K is called a bin.

Approximately solve the Label-to-Bin Assignment Problem (LBA) on K :
Attach the n leaf labels to the k bins of K so that each bin gets ≤ 6n

k leaves
and the resulting tree is consistent with the maximum # of input constraints.

K:

−→

g jd lkc ibh e

a f

Output the best solution to MTC found.
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4. A PTAS for dense MTC, cont.

To approximately solve the Label-to-Bin Assignment Problem (LBA) on K , we
follow the approach of Jiang et al. (2001) and formulate it as an integer program:

Let I be the set of input triplet constraints and let RK be the set of all
rooted triplets over the bins consistent with K .

Variable x`i = 1 if leaf label ` is assigned to bin i , and = 0 otherwise.

For every resolved triplet ab|c ∈ I , define the polynomial:

pab|c(x) =
∑

ij|k∈RK

xaixbjxck + xbixajxck

For every fan triplet a|b|c ∈ I , define:

pa|b|c(x) =
∑

i|j|k∈RK

xaixbjxck + xaixcjxbk + . . . + xcixbjxak

For every forbidden resolved triplet ¬(ab|c) ∈ I , define:

p¬(ab|c)(x) = pac|b(x) + pbc|a(x) + pa|b|c(x)

For every forbidden fan triplet ¬(a|b|c) ∈ I , define:

p¬(a|b|c)(x) = pab|c(x) + pac|b(x) + pbc|a(x)
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4. A PTAS for dense MTC, cont.

Finally, define:

p(x) =
∑

ab|c∈I

pab|c(x) +
∑

a|b|c∈I

pa|b|c(x) +
∑

¬(ab|c)∈I

p¬(ab|c)(x) +
∑

¬(a|b|c)∈I

p¬(a|b|c)(x)

LBA becomes:

Maximize p(x) subject to
k∑

i=1

x`i = 1 for each leaf label `,
n∑̀
=1

x`i ≤ 6n
k for each bin i ,

and x`i ∈ {0, 1} for all `, i .

Arora, Karger, Karpinski (1999):
A degree-d polynomial integer program is c-smooth if the absolute value of each
coefficient of each degree-i term is ≤ c · nd−i .

⇒ The above is a c-smooth degree-3 polynomial integer program, where c = O(1).

As in Jiang et al. (2001), apply the general-purpose PTAS of Arora et al. (1999)
for c-smooth integer programs to get a PTAS for our variant of LBA.
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4. A PTAS for dense MTC, cont.

Time complexity analysis:

k is a constant, so the number of unlabeled, unordered rooted trees with
k leaves and no degree-1 nodes is a constant.

For each such tree, the algorithm constructs an LBA instance and applies
the PTAS of Arora et al. (1999) to approximately solve it.

⇒ The time complexity is polynomial.
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4. A PTAS for dense MTC, cont.

Approximation ratio analysis:

Lemma: Let T be a tree consistent with the maximum number of constraints
in I . There exists a tree T ′ obtained by attaching the n leaf labels to an
unlabeled tree with k bins such that |RT ′ ∩ I | ≥ |RT ∩ I | − 96

k · n3.

The PTAS of Arora et al. finds an (1− ε′′) approximation T ′′ of such a T ′, so:

|RT ′′ ∩ I | ≥ (1− ε′′) · |RT ′ ∩ I | ≥ (1− ε′′) · (|RT ∩ I | − 96

k
· n3)

Next, note that |I | ≥ γ · n3 for some constant γ by the definition of dense.

The 1
4 -approximation algorithm from before ⇒ |RT ∩ I | ≥ |I |

4 ⇒ n3 ≤ 4·|RT∩I |
γ

Combine the inequalities:

|RT ′′ ∩ I | ≥ (1− ε′′) · |RT ∩ I | · (1− 96

k
· 4

γ
)

Finally, for any specified ε > 0, choosing k ≥ 96·4·2
γ·ε and ε′′ ≤ ε

2 gives:

|RT ′′ ∩ I | ≥ |RT ∩ I | · (1− ε

2
) · (1− ε

2
) ≥ |RT ∩ I | · (1− ε)
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Summary

1 Polynomial-time 1
4 -approximation algorithm for MTC.

2 Extension of Wu’s exact exponential-time algorithm for MTC restricted to
resolved triplets to also allow fan triplets, forbidden resolved triplets, and
forbidden fan triplets.

It takes an additional parameter k ≥ 2 as input and forces the output to be
a tree in which every internal node has at most k children.

⇒ Running time: O((k + 1)n+1(m + n))

3 Exponential-time approximation scheme (ETAS) for MTC:

For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in

O((d 12
ε e+ 1)n+1(m + n)) time.

4 Polynomial-time approximation scheme (PTAS) for dense MTC, where an
instance is called dense if it contains Ω(n3) constraints:

For any constant ε > 0, we can build a tree consistent with ≥ (1− ε) of the
maximum number of input constraints consistent with any tree in polyn. time.
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