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RNA Secondary Structures
Our Results

Open Problems

RNA Structures

Composed of four bases: adenine (A), guanine (G), cytosine (C)
and uracil (U)

Source: http://www.mpi-inf.mpg.de/departments/d1/projects/CompBio/align.html
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RNA Secondary Structures
Our Results

Open Problems

Representations of Secondary Structures

Structure is a pair (n,P), where n is the number of bases and P is a set of pairs (i , j)
with 1 ≤ i < j ≤ n representing a base pair between the i-th base and the j-the base.
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Pseudoknot-Free Secondary Structures

pseudoknotted structure pseudoknot-free structure

Let Sn denote all pseudoknot-free structures with n bases.
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RNA Secondary Structures
Our Results

Open Problems

RNA Folding

Let M be an energy model.
RNA Folding problem looks from the MFE structure(s).

Problem

RNA-FOLDM problem
Input: RNA sequence w
Output: set of PKF structures arg minS∈S|w| EM(w ,S) .

Assuming an additive energy model which adds up local
contributions, finding one structure in RNA-FOLDM(w) can be
done in time O(n3/ log(n)) using Dynamic Programming
[Nussinov, Jacobson (1980),Frid et al. (2010),etc.].
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Open Problems

Energy Models

Turner model: free energy is
the sum of loop energies

Source: [Lorenz, Clote (2011)]

Simplified models:
Base-pair maximization (Watson-Crick model) W: Count
the number of Watson-Crick base pairs (C · G and A · U)
Base-pair sum: Sum of energy contributions of base pairs
(δB(x , x ′)) — usually includes weak base pairs G · U
Stacked base-pairs: Sum of energy contributions of
consecutively nested pairs (δS(x , x ′, y , y ′))
Nearest neighbor
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Open Problems

RNA Design Problem

Let M be an energy model.

Problem

RNA-DESIGNM,Σ.∆ problem
Input: Secondary structure S + Energy distance ∆ > 0
Output: RNA sequence w ∈ Σ? — called a design for S — such
that:

∀S ′ ∈ S|w | \ {S} : EM(w ,S ′) ≥ EM(w ,S) + ∆

or ∅ if no such sequence exists.
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Open Problems

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model W and ∆ = 1:

Problem

RNA-DESIGNΣ problem
Input: Secondary structure S
Output: RNA sequence w ∈ Σ? — called a design for S — such
that:

RNA-FOLDW(w) = {S}
or ∅ if no such sequence exists.

Let Designable(Σ) be the set of all structures for there exists a
design.
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Open Problems

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model W and ∆ = 1:

Problem

RNA-DESIGNΣ problem
Input: Secondary structure S
Output: RNA sequence w ∈ Σ? — called a design for S — such that:

RNA-FOLDW(w) = {S}

or ∅ if no such sequence exists.

Example

( ( . ) ( . . ) ) G G A C A G G U C A C A G G U U C U

a. Target sec. str. S b. Invalid sequence for S c. Design for S

Let Designable(Σ) be the set of all structures for there exists a design.
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Open Problems

Our Results: Definitions and notations

Given a secondary structure S .

Let UnpairedS be the set of all unpaired positions of S .

Example

UnpairedS = {4, 8}

S is saturated if UnpairedS = ∅.
Let Saturated be the set of all saturated structures.
Let D(S) be the maximal paired degree of nodes in the tree
representation of S . The paired degree is the number of nodes
representing base pairs.
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Our Results: Definitions and notations

Given a secondary structure S .

Let UnpairedS be the set of all unpaired positions of S .
S is saturated if UnpairedS = ∅.
Let Saturated be the set of all saturated structures.

Example

not saturated saturated

Let D(S) be the maximal paired degree of nodes in the tree
representation of S . The paired degree is the number of nodes
representing base pairs.
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Our Results: Definitions and notations

Given a secondary structure S .

Let UnpairedS be the set of all unpaired positions of S .
S is saturated if UnpairedS = ∅.
Let Saturated be the set of all saturated structures.
Let D(S) be the maximal paired degree of nodes in the tree
representation of S . The paired degree is the number of nodes
representing base pairs.

Example

[0, 12]

[1, 1] [2, 11]

[3, 6]

[4, 5]

[7, 7] [8, 9] [10, 10]

1

32

1 1

D(S) = 3

CPM 2015 Ján Maňuch Combinatorial RNA Design:Designability and Structure-Approximating Algorithm



RNA Secondary Structures
Our Results

Open Problems

Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
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R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};

Example
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

Example

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
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Example
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.

In the root:

? ... ? ? ... ? ? ... ? — we can only use C · G or G · C
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.

In the root:

C ... G G ... C C ... G — one of them has to repeat
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Open Problems

Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.

In the root:

C . . . G G . . . C C . . . G — there is an alternative fold
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.

In an internal node:

... ? ? ... ? ? ... ? ? ...
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.

In an internal node:

. . . ? C . . . G C . . . G ? . . . — either we get a repeat, or. . .
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Open Problems

Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.
Question: Why not degree 3?

Proof.

In an internal node:

. . . C C . . . G G . . . C G . . . — . . . or, the parent has the reversed

base pair of a child
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Our Results: Designability over Restricted Alphabets

Let Σc,u be an alphabet with c pairs of complementary bases and
u bases without a complementary base.

R1 For every u ∈ N+, Designable(Σ0,u) = {(n, ∅) | ∀n ∈ N};
R2 Designable(Σ1,0) = (Saturated ∩ {S | D(S) ≤ 2}) ∪ {(n, ∅) |
∀n ∈ N};

R3 Designable(Σ1,1) = {S | D(S) ≤ 2}.

This can be easily generalized to:

Lemma

For any structure S in Designable(Σc,u), D(S) ≤ 2c.
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Our Results: Designability over the Complete Alphabet

Let Σ2,0 = {A,U,C,G}.

R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

R5 (Necessary) If S ∈ Designable(Σ2,0), then S does not contain
“a node having degree more than four” (motif m5) and “a
node having one or more unpaired children, and degree
greater than two” (motif m3 ◦).

R6 (Sufficient) Let Separated be the set of structures for which
there exists a separated (proper) coloring of the tree
representation, then Separated ⊂ Designable(Σ2,0)
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Our Results: Designability over the Complete Alphabet

Let Σ2,0 = {A,U,C,G}.
R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

Idea.

Lemma: C A U A U G C C G A U A U G

Use this lemma to prove that the structure is unique by a
bottom-up tree induction.

R5 (Necessary) If S ∈ Designable(Σ2,0), then S does not contain
“a node having degree more than four” (motif m5) and “a
node having one or more unpaired children, and degree
greater than two” (motif m3 ◦).

R6 (Sufficient) Let Separated be the set of structures for which
there exists a separated (proper) coloring of the tree
representation, then Separated ⊂ Designable(Σ2,0)
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Our Results: Designability over the Complete Alphabet

Let Σ2,0 = {A,U,C,G}.
R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

When unpaired positions are allowed in the target structure, our
characterization is only partial:

R5 (Necessary) If S ∈ Designable(Σ2,0), then S does not contain
“a node having degree more than four” (motif m5) and “a
node having one or more unpaired children, and degree
greater than two” (motif m3 ◦).

R6 (Sufficient) Let Separated be the set of structures for which
there exists a separated (proper) coloring of the tree
representation, then Separated ⊂ Designable(Σ2,0)
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Our Results: Designability over the Complete Alphabet

Let Σ2,0 = {A,U,C,G}.
R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

When unpaired positions are allowed in the target structure, our
characterization is only partial:

R5 (Necessary) If S ∈ Designable(Σ2,0), then S does not contain
“a node having degree more than four” (motif m5) and “a
node having one or more unpaired children, and degree
greater than two” (motif m3 ◦).

R6 (Sufficient) Let Separated be the set of structures for which
there exists a separated (proper) coloring of the tree
representation, then Separated ⊂ Designable(Σ2,0)

CPM 2015 Ján Maňuch Combinatorial RNA Design:Designability and Structure-Approximating Algorithm



RNA Secondary Structures
Our Results

Open Problems

Our Results: Separated Coloring

Consider the tree representation TS of structure S . Color every
paired node of TS different from the root by black (G · C), white
(C · G) or grey color (A · U or U · A). This coloring is called proper
if:

1 every node has at most one black, at most one white and at
most two grey children;

2 a grey node has at most one grey child;
3 a black node does not have a white child; and
4 a white node does not have a black child.

Given a proper coloring of TS , let the level of each node be the
number of black nodes minus the number of white nodes on the
path from this node to the root.
A proper coloring is called separated if the two sets of levels,
associated with grey and unpaired nodes respectively, do not
intersect.
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Consider the tree representation TS of structure S . Color every
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if:
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2 a grey node has at most one grey child;
3 a black node does not have a white child; and
4 a white node does not have a black child.

Given a proper coloring of TS , let the level of each node be the
number of black nodes minus the number of white nodes on the
path from this node to the root.

A proper coloring is called separated if the two sets of levels,
associated with grey and unpaired nodes respectively, do not
intersect.
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Our Results: Separated Coloring (example)

Root

Levels of grey nodes: 0,1
Levels of leaves: 2,4
This is a separated coloring

Design: → GC → CG → AU|UA → U

GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC
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Our Results: Separated Coloring (sketch of the proof)

Let w be the sequence obtained from the separated coloring.
Let S ′ be an MFE fold for w .

In S , every C, G and A is paired.
Hence, in S ′, every C, G and A must be paired.

Lemma

Any A · U base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance
in the number of C and G, hence, not all of them are base-paired,
a contradiction.

All U’s unpaired in S , must be also unpaired in S ′.
The claim follows by the result R4 (for saturated structures).
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Our Results: Designability over the complete alphabet

Let Σ2,0 = {A,U,C,G}.
R4 Designable(Σ2,0) ∩ Saturated = {S | D(S) ≤ 4} ∩ Saturated.

When unpaired positions are allowed in the target structure, our
characterization is only partial:

R5 (Necessary) If S ∈ Designable(Σ2,0), then S does not contain
“a node having degree more than four” (motif m5) and “a
node having one or more unpaired children, and degree
greater than two” (motif m3 ◦).

R6 (Sufficient) Let Separated be the set of structures for which
there exists a separated (proper) coloring of the tree
representation, then Separated ⊂ Designable(Σ2,0)

R7 If S ∈ Designable(Σ2,0), then k-stutter
S [k] ∈ Designable(Σ2,0).
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Our Results: k-Stutter (example)

Designable structure: ( ( . ) ( . . ) )

Then 2-stutter is designable as well:

Proof idea: Use König’s Theorem (size of max. matching = size
of min. vertex cover) to show that an MFE structure of the stutter
sequence can’t connect a region to two different regions.
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Our Results: Structure-Approximating Algorithm

R8 Any structure S without m5 and m3 ◦ can be transformed in
Θ(n) time into a Σ2,0-designable structure S ′, by inflating a
subset of its base pairs (at most one per band) so that the
greedy coloring of the resulting structure is separated.

( . . ) ( . . ) ( . . ) ( . . ) ( . . ) ( ( . . ) )
G U U C C U U G A G U U C U

Root RootGreedy
Coloring

Band
Inflation Design

→ GC
→ CG
→ AU|UA
→ U

The main idea: Use inflating to separate grey vertices and leaves
to odd/even levels.

Remark: Arcs could be added to remove motifs m5 and m3 ◦
(after which the algorithm could be applied).
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Open Problems and Future Work

1 What’s the complexity of RNA-DESIGN problem? Could it be
polynomial?

2 What’s the complexity of RNA-DESIGN problem restricted to
designs that use only one base for all unpaired position?

3 What’s the complexity of determining if a structure has a
separated coloring?

4 Extend the results to more complex energy models.
Our results hold for the Base-pair sum model, as long as
−δB(G ,U) is smaller than −δB(C ,G ) and −δB(A,U).

5 Find a better bound on the number of arcs that need to be
inflated in our approximation algorithm.
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