Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

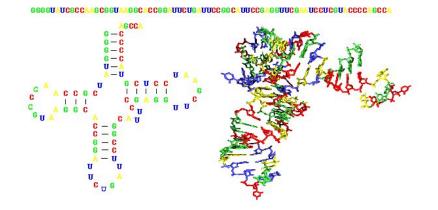
Jozef Haleš¹ <u>Ján Maňuch^{1,3}</u> Yann Ponty^{1,2} Ladislav Stacho¹

¹Simon Fraser University, Canada ²Pacific Institute for Mathematical Sciences, Canada ³University of British Columbia, Canada

CPM 2015

RNA Structures

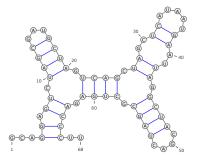
Composed of four bases: adenine (A), guanine (G), cytosine (C) and uracil (U) $% \left(U\right) =0$



Source: http://www.mpi-inf.mpg.de/departments/d1/projects/CompBio/align.html

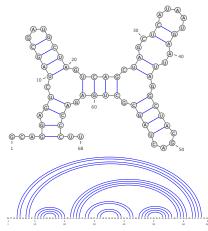
Representations of Secondary Structures

Structure is a pair (n, P), where n is the number of bases and P is a set of pairs (i, j) with $1 \le i < j \le n$ representing a base pair between the *i*-th base and the *j*-the base.



Representations of Secondary Structures

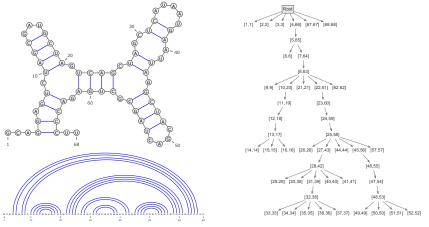
Structure is a pair (n, P), where n is the number of bases and P is a set of pairs (i, j) with $1 \le i < j \le n$ representing a base pair between the *i*-th base and the *j*-the base.



arc diagram

Representations of Secondary Structures

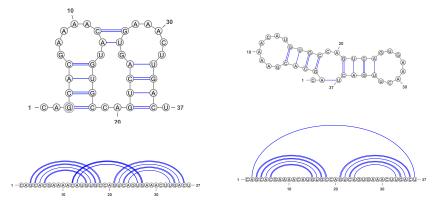
Structure is a pair (n, P), where n is the number of bases and P is a set of pairs (i, j) with $1 \le i < j \le n$ representing a base pair between the *i*-th base and the *j*-the base.



arc diagram

tree representation

Pseudoknot-Free Secondary Structures

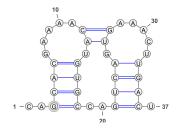


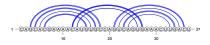
pseudoknotted structure

pseudoknot-free structure

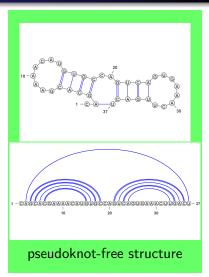
CPM 2015 Ján Maňuch Combinatorial RNA Design:Designability and Structure-Approxim

Pseudoknot-Free Secondary Structures





pseudoknotted structure



Let S_{-} denote all pseudoknot-free structures with n bases

CPM 2015 Ján Maňuch

Combinatorial RNA Design:Designability and Structure-Approxim

RNA Folding

Let \mathcal{M} be an energy model.

RNA Folding problem looks from the MFE structure(s).

Problem

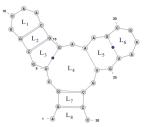
 $\begin{aligned} & \mathsf{RNA-FOLD}_{\mathcal{M}} \ \text{problem} \\ & \mathsf{Input:} \ \textit{RNA sequence } w \\ & \mathsf{Output:} \ \textit{set of PKF structures} \ \mathrm{arg\,min}_{S\in\mathcal{S}_{|w|}} \ \textit{E}_{\mathcal{M}}(w,S) \,. \end{aligned}$

Assuming an *additive energy model* which adds up local contributions, finding one structure in RNA-FOLD_{\mathcal{M}}(*w*) can be done in time $O(n^3/\log(n))$ using Dynamic Programming [Nussinov, Jacobson (1980),Frid et al. (2010),etc.].

Energy Models

۲

Turner model: free energy is the sum of loop energies

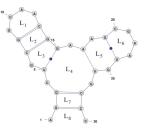


Source: [Lorenz, Clote (2011)]

Energy Models

۲

Turner model: free energy is the sum of loop energies



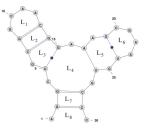
Source: [Lorenz, Clote (2011)]

- Simplified models:
 - Base-pair maximization (Watson-Crick model) W: Count the number of Watson-Crick base pairs (C · G and A · U)
 - **Base-pair sum**: Sum of energy contributions of base pairs $(\delta_B(x, x'))$ usually includes weak base pairs $G \cdot U$
 - Stacked base-pairs: Sum of energy contributions of consecutively nested pairs (δ_S(x, x', y, y'))
 - Nearest neighbor

Energy Models

۲

Turner model: free energy is the sum of loop energies



Source: [Lorenz, Clote (2011)]

- Simplified models:
 - Base-pair maximization (Watson-Crick model) W: Count the number of Watson-Crick base pairs ($C \cdot G$ and $A \cdot U$)
 - **Base-pair sum**: Sum of energy contributions of base pairs $(\delta_B(x, x'))$ usually includes weak base pairs $G \cdot U$
 - Stacked base-pairs: Sum of energy contributions of consecutively nested pairs (δ_S(x, x', y, y'))
 - Nearest neighbor

RNA Design Problem

Let \mathcal{M} be an energy model.

Problem

RNA-DESIGN_{M,Σ,Δ} problem Input: Secondary structure S + Energy distance $\Delta > 0$ Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

 $\forall S' \in \mathcal{S}_{|w|} \setminus \{S\} : E_{\mathcal{M}}(w,S') \geq E_{\mathcal{M}}(w,S) + \Delta$

or \varnothing if no such sequence exists.

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model ${\cal W}$ and $\Delta=1:$

Problem

RNA-DESIGN $_{\Sigma}$ problem

Input: Secondary structure S

Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

 RNA - $\mathsf{FOLD}_{\mathcal{W}}(w) = \{S\}$

or \varnothing if no such sequence exists.

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model ${\cal W}$ and $\Delta=1{:}$

Problem

RNA-DESIGN_{Σ} problem Input: Secondary structure S Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

 RNA - $\mathsf{FOLD}_{\mathcal{W}}(w) = \{S\}$

or \varnothing if no such sequence exists.

Example

a. Target sec. str. S **b.** Invalid sequence for S **c.** Design for S ((,), (.,)) GGACAGGUC ACAGGUUCU

CPM 2015 Ján Maňuch Combinatorial RNA Design:Designability and Structure-Approxim

RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model ${\cal W}$ and $\Delta=1:$

Problem

 $RNA-DESIGN_{\Sigma}$ problem

Input: Secondary structure S

Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

 RNA - $\mathsf{FOLD}_{\mathcal{W}}(w) = \{S\}$

or \varnothing if no such sequence exists.

Let $\text{Designable}(\Sigma)$ be the set of all structures for there exists a design.

Our Results: Definitions and notations

Given a secondary structure S.

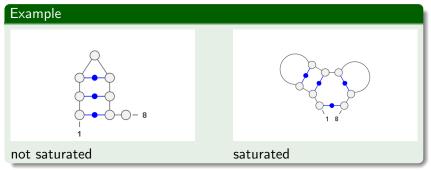
• Let Unpaired_S be the set of all unpaired positions of S.

Our Results: Definitions and notations

Given a secondary structure S.

- Let Unpaired_S be the set of all unpaired positions of S.
- *S* is *saturated* if Unpaired_{*S*} = \emptyset .

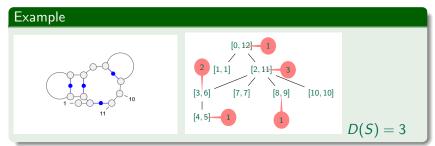
Let Saturated be the set of all saturated structures.



Our Results: Definitions and notations

Given a secondary structure S.

- Let Unpaired_S be the set of all unpaired positions of S.
- S is saturated if Unpaired_S = Ø.
 Let Saturated be the set of all saturated structures.
- Let D(S) be the maximal *paired degree* of nodes in the tree representation of *S*. The *paired degree* is the number of nodes representing base pairs.



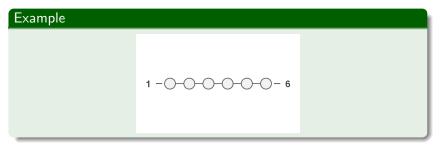
CPM 2015 Ján Maňuch Combinatorial RNA Design:Designability and Structure-Approxim

Our Results: Designability over Restricted Alphabets

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

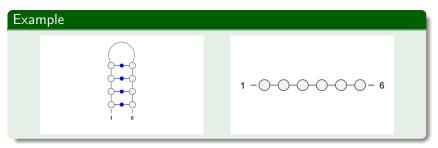
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$



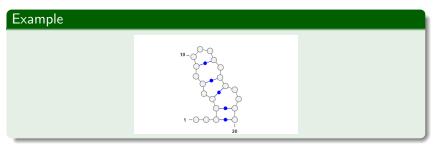
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$ **R2** Designable $(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \le 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$



Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable $(\Sigma_{1,1}) = \{S \mid D(S) \le 2\}.$

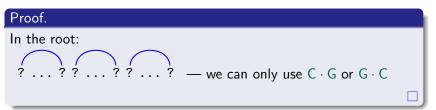


Let $\Sigma_{c,u}$ be an alphabet with *c* pairs of complementary bases and *u* bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

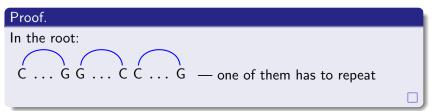
Let $\Sigma_{c,u}$ be an alphabet with *c* pairs of complementary bases and *u* bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.



Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.



Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

Question: Why not degree 3?

Proof.

In the root:

 $G G \dots C C \dots G -$ there is an alternative fold

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

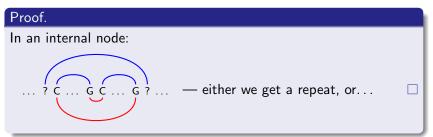
Question: Why not degree 3?

Proof.

In an internal node:

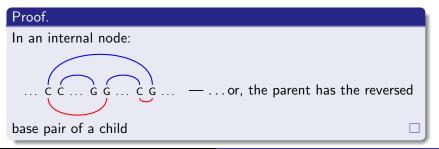
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.



Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.



Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, Designable $(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$
- **R2** Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}$) $\cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;
- **R3** Designable($\Sigma_{1,1}$) = { $S \mid D(S) \leq 2$ }.

This can be easily generalized to:

Lemma

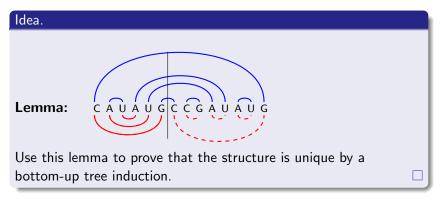
For any structure S in Designable($\Sigma_{c,u}$), $D(S) \leq 2c$.

Our Results: Designability over the Complete Alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}.$

Our Results: Designability over the Complete Alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}$. **R4** Designable $(\Sigma_{2,0}) \cap$ Saturated = $\{S \mid D(S) \leq 4\} \cap$ Saturated.



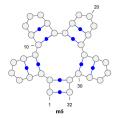
Our Results: Designability over the Complete Alphabet

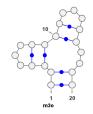
Let $\Sigma_{2,0}=\{\mathsf{A},\mathsf{U},\mathsf{C},\mathsf{G}\}.$

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

When unpaired positions are allowed in the target structure, our characterization is only partial:

R5 (Necessary) If $S \in \text{Designable}(\Sigma_{2,0})$, then S does not contain "a node having degree more than four" (motif m_5) and "a node having one or more unpaired children, and degree greater than two" (motif $m_{3\circ}$).





Our Results: Designability over the Complete Alphabet

Let $\Sigma_{2,0}=\{A,U,C,G\}.$

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

When unpaired positions are allowed in the target structure, our characterization is only partial:

- **R5** (Necessary) If $S \in \text{Designable}(\Sigma_{2,0})$, then S does not contain "a node having degree more than four" (motif m_5) and "a node having one or more unpaired children, and degree greater than two" (motif $m_{3\circ}$).
- **R6** (Sufficient) Let Separated be the set of structures for which there exists a separated (proper) coloring of the tree representation, then Separated \subset Designable($\Sigma_{2,0}$)

Our Results: Separated Coloring

Consider the tree representation T_S of structure S. Color every paired node of T_S different from the root by black (G · C), white (C · G) or grey color (A · U or U · A). This coloring is called *proper* if:

- every node has at most one black, at most one white and at most two grey children;
- a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Our Results: Separated Coloring

Consider the tree representation T_S of structure S. Color every paired node of T_S different from the root by black (G · C), white (C · G) or grey color (A · U or U · A). This coloring is called *proper* if:

- every node has at most one black, at most one white and at most two grey children;
- a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

Given a proper coloring of T_S , let the *level* of each node be the number of black nodes minus the number of white nodes on the path from this node to the root.

Our Results: Separated Coloring

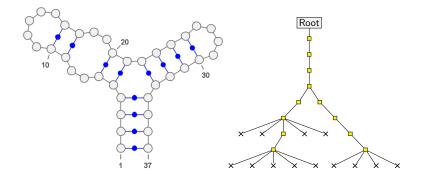
Consider the tree representation T_S of structure S. Color every paired node of T_S different from the root by black (G · C), white (C · G) or grey color (A · U or U · A). This coloring is called *proper* if:

- every node has at most one black, at most one white and at most two grey children;
- a grey node has at most one grey child;
- a black node does not have a white child; and
- a white node does not have a black child.

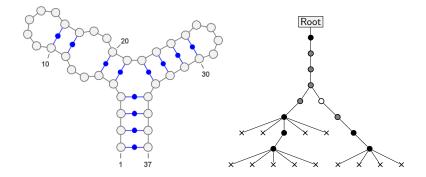
Given a proper coloring of T_S , let the *level* of each node be the number of black nodes minus the number of white nodes on the path from this node to the root.

A proper coloring is called *separated* if the two sets of levels, associated with grey and unpaired nodes respectively, do not intersect.

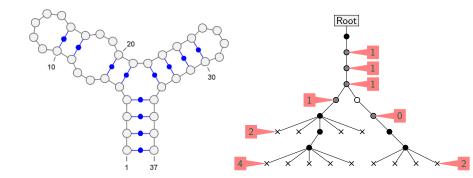
Our Results: Separated Coloring (example)



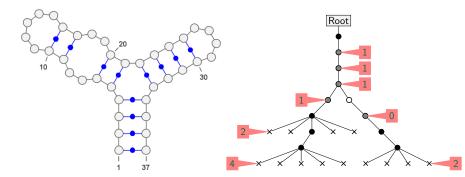
Our Results: Separated Coloring (example)



Our Results: Separated Coloring (example)

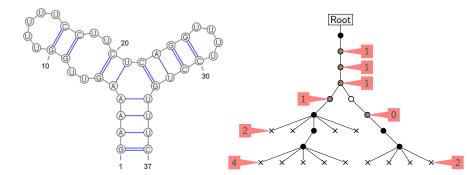


Our Results: Separated Coloring (example)



Levels of grey nodes: 0,1 Levels of leaves: 2,4 This is a separated coloring

Our Results: Separated Coloring (example)



Levels of grey nodes: 0,1 Levels of leaves: 2,4 This is a separated coloring Design: $\bullet \rightarrow GC \quad o \rightarrow CG \quad \bullet \rightarrow AU|UA \quad x \rightarrow U$ GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC

CPM 2015 Ján Maňuch

Combinatorial RNA Design:Designability and Structure-Approxim

Our Results: Separated Coloring (sketch of the proof)

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

۲

Lemma

Any $A \cdot U$ base pair must be between positions on the same level.

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

۲

Lemma

Any $A \cdot U$ base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction. $\hfill \Box$

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

۲

Lemma

Any $A \cdot U$ base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction. $\hfill \Box$

• All U's unpaired in S, must be also unpaired in S'.

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

۲

Lemma

Any $A \cdot U$ base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction. $\hfill \Box$

- All U's unpaired in S, must be also unpaired in S'.
- The claim follows by the result R4 (for saturated structures).

Our Results: Designability over the complete alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}.$

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

When unpaired positions are allowed in the target structure, our characterization is only partial:

- **R5** (Necessary) If $S \in \text{Designable}(\Sigma_{2,0})$, then S does not contain "a node having degree more than four" (motif m_5) and "a node having one or more unpaired children, and degree greater than two" (motif $m_{3\circ}$).
- **R6** (Sufficient) Let Separated be the set of structures for which there exists a separated (proper) coloring of the tree representation, then Separated \subset Designable($\Sigma_{2,0}$)

Our Results: Designability over the complete alphabet

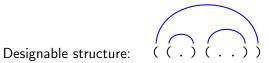
Let $\Sigma_{2,0}=\{\mathsf{A},\mathsf{U},\mathsf{C},\mathsf{G}\}.$

R4 Designable($\Sigma_{2,0}$) \cap Saturated = { $S \mid D(S) \leq 4$ } \cap Saturated.

- **R5** (Necessary) If $S \in \text{Designable}(\Sigma_{2,0})$, then S does not contain "a node having degree more than four" (motif m_5) and "a node having one or more unpaired children, and degree greater than two" (motif $m_{3\circ}$).
- **R6** (Sufficient) Let Separated be the set of structures for which there exists a separated (proper) coloring of the tree representation, then Separated \subset Designable($\Sigma_{2,0}$)
- **R7** If $S \in \text{Designable}(\Sigma_{2,0})$, then *k*-stutter $S^{[k]} \in \text{Designable}(\Sigma_{2,0})$.

Our Results **Open Problems**

Our Results: -Stutter (example)



Our Results: -Stutter (example)

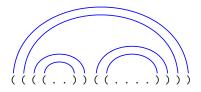
Designable structure:

Then 2-stutter is designable as well:

Our Results: -Stutter (example)

Designable structure:

Then 2-stutter is designable as well:



Our Results: -Stutter (example)

Designable structure:

Then 2-stutter is designable as well:

Our Results: -Stutter (example)

Designable structure:

Then 2-stutter is designable as well:

Proof idea: Use König's Theorem (size of max. matching = size of min. vertex cover) to show that an MFE structure of the stutter sequence can't connect a region to two different regions.

CPM 2015 Ján Maňuch

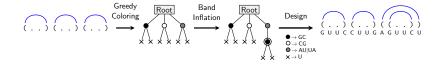
Combinatorial RNA Design:Designability and Structure-Approxim

Our Results: Structure-Approximating Algorithm

R8 Any structure S without m_5 and $m_{3\circ}$ can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$ -designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.

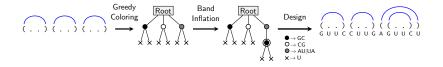
Our Results: Structure-Approximating Algorithm

R8 Any structure S without m_5 and $m_{3\circ}$ can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$ -designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.



Our Results: Structure-Approximating Algorithm

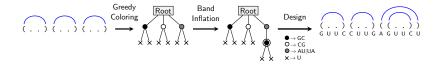
R8 Any structure S without m_5 and $m_{3\circ}$ can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$ -designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.



The main idea: Use inflating to separate grey vertices and leaves to odd/even levels.

Our Results: Structure-Approximating Algorithm

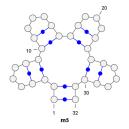
R8 Any structure S without m_5 and $m_{3\circ}$ can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$ -designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.



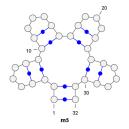
The main idea: Use inflating to separate grey vertices and leaves to odd/even levels.

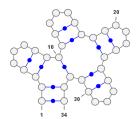
Remark: Arcs could be added to remove motifs m_5 and $m_{3\circ}$ (after which the algorithm could be applied).

Remark: Breaking motifs



Remark: Breaking motifs





Open Problems and Future Work

What's the complexity of RNA-DESIGN problem? Could it be polynomial?

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?
- Extend the results to more complex energy models. Our results hold for the Base-pair sum model, as long as -δ_B(G, U) is smaller than -δ_B(C, G) and -δ_B(A, U).

- What's the complexity of RNA-DESIGN problem? Could it be polynomial?
- What's the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
- What's the complexity of determining if a structure has a separated coloring?
- Extend the results to more complex energy models. Our results hold for the Base-pair sum model, as long as -δ_B(G, U) is smaller than -δ_B(C, G) and -δ_B(A, U).
- Find a better bound on the number of arcs that need to be inflated in our approximation algorithm.