On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction problem

Paola Bonizzoni, Riccardo Dondi, Gunnar W. Klau, Yuri Pirola, Nadia Pisanti and **Simone Zaccaria**

DISCo, computer science department of the University of Milano-Bicocca

*simone.zaccaria@disco.unimib.it

CPM 2015

26th Annual Symposium on Combinatorial Pattern Matching Ischia Island, Italy, June 29-July 1, 2015

Haplotypes

Paternal

Maternal

- 0 major allele
- 1 minor allele

Haplotypes are fundamental in the study of genetic variations (Browning and Browning, NAR, 2011)

Haplotype Assembly

Haplotypes are fundamental in the study of genetic variations (Browning and Browning, NAR, 2011)

- Haplotype: difficult and expensive to obtain
- Aligned Fragments: Easy and cost-effective to obtain

Minimum Error Correction

- (sequencing/mapping) errors lead to an optimization problem
- Several formulations have been proposed in literature (Lippert et al., Brief. In Bioinformatics, 2002): Minimum Error Correction (MEC) is one of the most prominent

Fragment Matrix

 \leftarrow Genome positions \rightarrow

- Fragment matrix, on *n* fragments and *m* SNP positions:
 - Each row corresponds to a fragment
 - Each column correspond to a genome position

Interesting Parameters

• Interesting and (practical) parameters:

– Fragment length ℓ

Interesting Parameters

- Interesting and (practical) parameters:
 - Fragment length ℓ
 - Coverage

Minimum Error Correction (MEC) problem

\leftarrow Genome positions \rightarrow

- Input: Fragment matrix
- **Output**: Minimum number of error corrections that allow to bipartition the fragments without internal conflict (**conflict free**)

Minimum Error Correction (MEC) problem

- **Input**: Fragment matrix
- **Output**: Minimum number of error corrections that allow to bipartition the fragments without internal conflict (**conflict free**)

Minimum Error Correction (MEC) problem

- Input: Fragment matrix
- **Output**: Minimum number of error corrections that allow to bipartition the fragments without internal conflict (conflict free)

Variants: Holes and Gaps

(Cilibrasi et al., Algorithmica, 2007)

Variant Motivations

(Cilibrasi et al., Algorithmica, 2007)

MEC (holes, gaps)	 Represent any instance for the Haplotype Assembly Fit for both paired-end and single-end reads
Gapless MEC (holes, no gaps)	 Represent single-end reads without gaps
Binary MEC (no holes, no gaps)	 Unrealistic for the Haplotype Assembly Interesting from a mathematical point of view: variant of the well-known Hamming 2-Median Clustering Problem

Contributions

*(Cilibrasi et al., Algorithmica, 2007)

	NP	АРХ	FPT by ℓ	Other FPT			
MEC (holes, gaps)	NP-hard *	APX-hard *	With restrictive assumptions (He et al., Bioinformatics, 2013)	With restrictive assumptions (He et al., Bioinformatics, 2013)	With restrictive assumptions (He et al., Bioinformatics, 2013)	• EPT by coverage	
Gapless MEC (holes, no gaps)	NP-hard *	?		(Patterson et al., RECOMB, 2014)			
Binary MEC (no holes, no gaps)	?	PTAS *					

Contributions of this paper

	NP	АРХ	FPT by ℓ	Other FPT	
MEC (holes, gaps)	NP-hard	APX-hard not in APX log-apx	With restrictive assumptions (He et al., Bioinformatics, 2013)	• FPT by coverage	
Gapless MEC (holes, no gaps)	NP-hard	?	Without any assumption	 (Patterson et al., RECOMB, 2014) FPT by total number of corrections 	
Binary MEC (no holes, no gaps)	?	PTAS (More direct) 2-apx algo.			

Heterozygous and Homozygous

\leftarrow SNP positions \rightarrow

- Columns = vectors belonging to {0, 1, -}ⁿ:
 - Heterozygous columns contain both 0's and 1's
 => encode a bipartition of the covered fragments
 - Homozygous columns belong to {0, -}ⁿ or {1, -}ⁿ
 => no information on the bipartition

Heterozygous Columns

 \leftarrow SNP positions \rightarrow

- Columns = vectors belonging to {0, 1, -}ⁿ:
 - Heterozygous columns contain both 0's and 1's
 => encode a bipartition of the covered fragments
 - Homozygous columns belong to {0, -}ⁿ or {1, -}ⁿ
 => no information on the bipartition

Heterozygous Columns

- Columns = vectors belonging to {0, 1, -}ⁿ:
 - Heterozygous columns contain both 0's and 1's
 => encode a bipartition of the covered fragments
 - Homozygous columns belong to {0, -}ⁿ or {1, -}ⁿ
 => no information on the bipartition

Heterozygous and Homozygous

\uparrow ← fragments

\leftarrow SNP positions \rightarrow

- Columns = vectors belonging to {0, 1, -}ⁿ:
 - Heterozygous columns contain both 0's and 1's
 => encode a bipartition of the covered fragments
 - Homozygous columns belong to {0, -}ⁿ or {1, -}ⁿ
 => no information on the bipartition

- Two columns are in accordance if and only if:
 - At least one is homozygous
 - They are all equal/complementary on common fragments

- Two columns are in accordance if and only if:
 - At least one is homozygous
 - They are all equal/complementary on common fragments

- Two columns are in accordance if and only if:
 - At least one is homozygous
 - They are all equal/complementary on common fragments

- Two columns are in accordance if and only if:
 - At least one is homozygous
 - They are all equal/complementary on common fragments

Lemma of Accordance

0	1	-		
-	0	1		
1	1	0		

A gapless fragment matrix is conflict free

if and only if

each pair of columns is in accordance

Lemma 1: counter-example

0	1	_		
-	0	1		
1	-	0		

A gapless fragment matrix is conflict free

it and only if

each pair of columns is in accordance

Results

- Contributions:
 - 1. Inapproximability of MEC (plus approximation and FPT results)
 - 2. Gapless MEC is in FPT when parameterized by the fragment length
 - 3. A 2-approximation algorithm for Binary MEC

Edge Bipartization (EB)

- **Input:** an undirected graph G = (V, E)
- **Output:** $E' \subseteq E$ of minimum size such that $G' = (V, E \setminus E')$ is bipartite

From EB to MEC

- The resulting fragment matrix has: |V| rows and |E| columns
- row = vertex / column = edge assigning 0/1 to the extremities
- At most 1 correction per column => correction = removal

Inapproximability of MEC

Khot proved that, under the Unique Games Conjecture, EB is not in APX
 => Under the Unique Games Conjecture, MEC is not in APX

Novel Fragment Graph

- Variation of the reduction used by (Fouilhoux *et al.,* 2012) to reduce MEC to the Maximum Induced Bipartite Subgraph problem (MIBS)
- Novel version of the fragment graph:
 - Entry-nodes
 - Fragment-nodes (with *mn+1* duplicates)

From MEC to GB

 v_1

 $v_{2,4}$

 $v_{3,4}$

 v_{2}^{12}

 $v_{3,3}$

- Results from reducing MEC to the well-known Graph Bipartization (GB):
 - MEC is in FPT when parameterized by total number of corrections
 - MEC can be approximated in polynomial time within factor O(log *nm*)

Results

- Contributions:
 - 1. Inapproximability of MEC (plus approximation and FPT results)
 - 2. Gapless MEC is in FPT when parameterized by the fragment length
 - 3. A 2-approximation algorithm for Binary MEC

Lemma 2

A gapless fragment matrix is conflict free If and only if

Columns can be tripartited (L, H, R) such that H are homozygous, L/R are complementary and R/R or L/L are equal

Lemma 2

M is conflict free

If and only if

Columns can be tripartited (L, H, R) such that H are homozygous, L/R are complementary and R/R or L/L are equal

Main Idea

- Goal: build the tripartition in an optimal way
- 2 basic ideas:
 - 1. Any tripartition can be built row-wise adding a subset of columns at each step
 - 2. The subset of columns (active columns) has a size less or equal to maximum fragment length ℓ

Main Idea

- Goal: build the tripartition in an optimal way
- 2 basic ideas:
 - 1. Any tripartition can be built row-wise adding a subset of columns at each step
 - 2. The subset of columns (active columns) has a size less or equal to maximum fragment length ℓ

Active Columns

- Assume that reads are sorted by starting positions
- Active columns for f_i : covered by f_i + covered by both previous and next fragments
- The size is less than ℓ

Dynamic Programming

 $D[i,T] = \Delta(i,T) + \min_{T' \text{ extended by } T} D[i-1,T']$

• The algorithm is based on a dynamic programming approach

Recursive Step

$$D[i,T] = \Delta(i,T) + \min_{T' \text{ extended by } T} D[i-1,T']$$

- Search for the best T' for A(i 1) extended by T for A(i 1)
- Extending = equivalent partitioning
- The algorithm is based on a dynamic programming approach

Local Contribution

$$D[i,T] = \Delta(i,T) + \min_{T' \text{ extended by } T} D[i-1,T']$$

The minimum number of corrections on f_i to build T:

- Transform columns in H into homozygous
- Choose the best combination 0/1 for L/R
- The algorithm is based on a dynamic programming approach:

Time Complexity

$$D[i T] = \Delta(i, T) + \min_{\substack{T' \text{ extended by } T}} D[i - 1, T']$$

$$O(3^{\ell}) \qquad O(3^{\ell})$$

- The algorithm is based on a dynamic programming approach:
- Time complexity: $O(3^{2\ell} \cdot \ell \cdot n)$ ($O(3^\ell \cdot \ell \cdot n)$ storing partial info.)

Results

- Contributions:
 - 1. Inapproximability of MEC (plus approximation and FPT results)
 - 2. Gapless MEC is in FPT when parameterized by the fragment length
 - **3.** A 2-approximation algorithm for Binary MEC

Basic Observation

1	1	0	0	1	0
1	0	0	1	0	1
0	1	1	1	1	0
0	1	0	0	1	0
1	0	0	0	0	0

• Notice: In this variant, each column encodes a feasible solution, that is a bipartition for all the fragments

Iteration

		p _o			
1	1	0	0	1	0
1	0	0	1	0	1
0	1	1	1	1	0
0	1	0	0	1	0
1	0	0	0	0	0

• Iteratively choose a column and assume that it is the closest to the optimal bipartition

- Assume that p_o is the closest column to optimal bipartition
- Correct each other column with minimum number of corrections in accordance to p_o:
 - Correct into column equal/complementary to po
 - Correct into homozygous column

- Assume that p_o is the closest column to optimal bipartition
- Correct each other column with minimum number of corrections in accordance to p_o:
 - Correct into column equal/complementary to po
 - Correct into homozygous column

- Assume that p_o is the closest column to optimal bipartition
- Correct each other column with minimum number of corrections in accordance to p_o:
 - Correct into column equal/complementary to p_o
 - Correct into homozygous column

- Assume that p_o is the closest column to optimal bipartition
- Correct each other column with minimum number of corrections in accordance to p_o:
 - Correct into column equal/complementary to po
 - Correct into homozygous column

n-

				P0	
0	1	0	0	1	0
1	0	0	1	0	0
0	1	0	0	1	0
0	1	0	0	1	0
1	0	0	1	0	0

- Assume that p_o is the closest column to optimal bipartition
- Correct each other column with minimum number of corrections in accordance to p_o:
 - Correct into column equal/complementary to p_o
 - Correct into homozygous column

2-approximation

- Using the triangle inequality in a proper way, the algorithm can be easily proved to be a 2-approximation
- Return the solution with minimum cost OPT' in ${\it O}(m^2n)$ time

Future Directions

- Gaps can be modelled as zero-weight elements
 => FPT result for gapless variant holds even for general MEC
- Many NGS data from genomes with many chromosomes (plants, fishes, tumors. ...)
 => Fixed Parameter Tractability of k-ploid MEC by using novel combinatorial properties, here introduced?
- Novel variants of MEC in order to:
 - exploit the novel characteristics of future-generation sequencing technoliges (such as uniform distribution of sequencing errors)
 - extend haplotype assembly on structured populations (such as trios)

Thanks for the attention! Questions?

Correspondence to: <u>simone.zaccaria@disco.unimib.it</u> Personal page: <u>http://algolab.eu/simone-zaccaria</u>