
Most Recent Match Queries
in On-Line Suffix Trees

N. Jesper Larsson

y a d a d a y a d y a

y a d a d a y a d y a

?

y a d a d a y a d y a

?

y a d a d a y a d y a

?

!

y a d a d a y a d y a

?

Most recent!
match

On-Line
Ukkonen 1995

t0 t1 t2 … ti–1 ti

ST(t0… ti–1) ST(t0… ti)

Amortized
constant time

Sliding Window
Fiala & Greene 1989 (+ Larsson 1996)

t0 t1 t2 … ti–1 ti

ST(t0… ti) ST(t1… ti)

Amortized
constant time

Previous results
• Amir, Landau, Ukkonen 2002: O(N log N), when

pattern is suffix of currently indexed string

• Ferragina, Nitto, Venturini 2009: O(N) for off-line
special case LZ factorization

• Chochmore, Langiu, Mignosi 2013: O(N) for equal-
cost problem (not guaranteeing most recent
match), under certain assumptions of entropy
coding

active point

longest suffix
also appearing
elsewhere

y a d a d a y a d y a

y a d a d a y a d y a y

y

y

y

yy

y

y

yy

y

Follow!
suffix!
link

new
active
point

Suffix links

a
b

c

a

b

d

a

d

a

c

a

b

d

a

d

a

b

c

a

b

d

a

d

a

⊥

Update all:!
superlinear

Update here: ok

⊥

active point

next active point

Traverse after!
matching P: |P|!
ok

43

8

Link Tree

a
b

c

a

b

d

a

d

a

c

a

b

d

a

d

a

b

c

a

b

d

a

d

a

⊥
1 = ⊢

2

5

76 9

1

3

2

4 5

8 9

6 7

⊢

Property 1

• When active point reaches end of edge, pos-
update that edge

• For every link tree node e, maintain repr(e), that
points to a descendent

• Every node g has an ancestor a such that repr(a) is
the most recently pos-updated descendent of g

Find most recent
match of pattern P

• Find point of P on edge g in suffix tree

• Track back to root via suffix links  
= traverse the upward path to root in link tree

• For each e on the path, if f=repr(e) is descendent
of g, and f is more recently updated than any
previous encountered, then keep f ’s position

Maintaining property 1

• When pos-updating e, repr(⊢) := e

• Recursively push the previous (overwritten) repr
value f down the tree to just below LCA(e, f)

• Worst case: # pushes = height

• Lemma: # pushes in N iterations is O(N log N)

• Proof: ∃ corresponding balanced binary tree with O(N) nodes,
where # pushes would be at least as many as in the link tree

• (Adversarial string exists, which produces worst case)

e

Link tree

Complication: active point is below P on the same edge,
⇒ pos-update is pending

⊥

P

PB: a suffix

Solution from Breslauer & Italiano 2012: maintain implicit suffix
nodes, detect and handle this case

Sliding window
of size W ≤ N

• All data structures can be deconstructed from
behind in amortized constant time per iteration
(using Fiala & Greene 1989 for suffix tree)

• Main result: MRM queries for pattern P in time  
O(|P|) maintained in time O(N log W)

Optimization for LZ
factorization

• Delay pos-updates until a whole factor is added to
tree, and then execute backwards

• Can skip pos-updates that would be superseded
by later ones in the same factor

• Effects: 
Known adversarial string is cyclic: O(N) 
New worst case: ?

Conclusion
• Showed data structure for general optimal MRM

queries can be maintained in O(N log N) time  
(O(N log W) for sliding window size W)

Some interesting remaining questions:!

• Is there an o(N log N) algorithm?

• More practical data structure

