Most Recent Match Queries
IN On-Line Suffix Trees

N. Jesper Larsson

yadadalyla Er@

:\: -

&aﬂada&aﬂya

dya

o

d

y

@dada

Most recent
match

On-Line
Ukkonen 1995

Amortized
constant time

N

fotitz... i)y

Sliding Window
Flala & Greene 1989 (+ Larsson 1996)

Amortized
constant time

Previous results

 Amir, Landau, Ukkonen 2002: O(N log N), when

pattern Is

* Ferragina

suffix of currently indexed string

- Nitto, Venturini 2009: O(N) for oft-line

special case LZ factorization

« Chochmo
cost prob

e, Langiu, Mignosi 2013: O(N) for equal-
em (not guaranteeing most recent

match), u
coding

nder certain assumptions of entropy

active point

A\ longest suffix
also appearing
elsewhere

AE pEII-)'»
pe

[\8

o

L

4
~..
v,
....
Ny
L] {

new
active
point

vadadayadyay

Suffix links

1
I 4
e AN
A NN
2 b . A
....... » d
4
c C S\ O
“/ \d “/ \d
-------------- a
a8 P

active point

Update here: ok

Update all:
superlinear

Traverse after
matching P: |PI
(0] ¢

next active point

Link Tree

Property 1

* When active point reaches end of edge, pos-
update that edge

* For every link tree node e, maintain repr(e), that
points to a descendent

 Every node g has an ancestor a such that repr(a) is
the most recently pos-updated descendent of g

FINd Most recent
match of pattern P

* Find point of Pon edge g in suffix tree

* [Jrack back to root via suffix links
= traverse the upward path to root in link tree

* For each e on the path, if f=repr(e) is descendent
of g, and fis more recently updated than any
previous encountered, then keep f's position

Maintaining property 1

 \When pos-updating e, repr() .= e

* Recursively push the previous (overwritten) repr
value fdown the tree to just below LCA(e, 1)

Link tree

Worst case: # pushes = height
Lemma: # pushes in Niterations is O(N log N)

Proot: 3 corresponding balanced binary tree with O(N) nodes,
where # pushes would be at least as many as in the link tree

(Adversarial string exists, which produces worst case)

Complication: active point is below P on the same edge,
= pOs-update Is pending

PB: a suffix

Solution from Breslauer & ltaliano 2012: maintain implicit suffix
nodes, detect and handle this case

Sliding window
of size W< N

* All data structures can be deconstructed from
behind In amortized constant time per iteration
(using Fiala & Greene 1989 tor suffix tree)

 Main result: MBRM queries for pattern Pin time
O(|A) maintained in time O(N log W)

Optimization for LZ
factorization

* Delay pos-updates until a whole factor is added to
tree, and then execute backwards

e Can skip pos-updates that would be superseded
by later ones in the same factor

 Effects:
Known adversarial string is cyclic: O(N)
New worst case: ?

Conclusion

 Showed data structure for general optimal MRM
gueries can be maintained in O(N log N) time
(O(N log W) tor sliding window size W)

Some interesting remaining questions:

* |sthere an o(/N log N) algorithm?

 More practical data structure

