
Approximate String Matching using Bidirectional
Index

Gregory Kucherov
CNRS/Université Paris-Est, Marne-la-Vallée, France

Kamil Salikhov
Université Paris-Est, Marne-la-Vallée, France
Lomonosov Moscow State University, Russia

Dekel Tsur
Department of Computer Science, Ben-Gurion University of the

Negev, Israel

CPM, June 17th 2014

Problem

Approximate matching of pattern P

Hamming distance

maximum k mismatches

Assumptions: text T is

static

given before queries are made

available for preprocessing and storing in a data structure

Approximate matching in bioinformatics

Problem: mapping of Next Generation Sequencing reads

reference genome sequence: long sequence on alphabet
{A,C,G,T}
large collections of reads: short strings

Goal: fast and accurate approximate matching of reads to the
reference sequence

Indexing for approximate string matching: previous work

1 mismatch: [Myers 94], [Cobbs 95], [Amir et al. 99],
[Buchsbaum et al. 00], [Navarro et al. 01], [Cole et al. 04], [Huynh
et al. 04], [Lam et al. 05], [Maaß et al. 05], [Chan et al. 06]

k mismatches: [Cobbs 95], [Cole et al. 04], [Huynh et al. 04],
[Lam et al. 05], [Maaß et al. 05], [Chan et al. 06], [Coelho et al.
06]

existing algorithms require exponential on k space or search time

FM-index [Ferragina & Manzini, 2000]

based on Burrows-Wheeler transform & Compressed Suffix
array

supports Count (return number of pattern occurrences) and
Locate (find all positions) operations

performs backward search: given occurrences of string S,
return occurrences of cS

memory usage O(n) bits (2− 4 bits per character for DNA
sequences)

Bidirectional search

backward search (P → cP)

Bidirectional search

backward search (P → cP)

forward search (P → Pc)

Bidirectional search

backward search (P → cP)

forward search (P → Pc)

bidirectional search (P → cP or P → Pc)

Bidirectional search

backward search (P → cP)

forward search (P → Pc)

bidirectional search (P → cP or P → Pc)

[Lam et al. 09] showed how FM-index can be made bidirectional

Search with k mismatches using backtracking

(i) start with empty string

(ii) extend the current string with the corresponding letter of P ,
and with all other letters increasing the number of
mismatches by 1

(iii) proceed until

number of mismatches > k , or
no occurrences of the current string are found

then backtrack

(iiii) complexity can be measured in terms of number of
enumerated strings during the search

Bidirectional search with 1 mismatch

Key observation: if P is partitioned into two parts P = P1P2, then
one of them has no mismatches

Two independent searches instead of one:

(i) Forward search with no mismatches in P1, then up to 1
mismatch in P2

(ii) Backward search with no mismatches in P2, then up to 1
mismatch in P1

[Lam et al. 09] scheme for 2 mismatches

Three searches: Pattern P = P1P2P3

Forward Sf

0 ≤ 2 ≤ 2

[Lam et al. 09] scheme for 2 mismatches

Three searches: Pattern P = P1P2P3

Forward Sf

0 ≤ 2 ≤ 2

Backward Sb

≤ 2 ≤ 1 0

[Lam et al. 09] scheme for 2 mismatches

Three searches: Pattern P = P1P2P3

Forward Sf

0 ≤ 2 ≤ 2

Backward Sb

≤ 2 ≤ 1 0

Bidirectional Sbid

≤ 2 0 1

Enumeration tree for Sf for P = 011000 and k = 2

0

1

P1

Enumeration tree for Sf for P = 011000 and k = 2

0

1

P1

1
0

0
1

0
1

P2

Enumeration tree for Sf for P = 011000 and k = 2

0

1

P1

1
0

0
1

0
1

P2

0
1

0 1 0
1

0

0 1 0 1 0 1 0 0 1 0 0

P3

Our contribution

General framework for approximate search on a bidirectional
index

Improved search schemes (generating smaller enumeration
trees)

Search scheme: formal definition

A search is a triplet (π, L,U):

π : order in which parts are processed

L[j] and U[j] : lower and upper bounds for number of
accumulated mismatches when processing j-th part

Search scheme: formal definition

A search is a triplet (π, L,U):

π : order in which parts are processed

L[j] and U[j] : lower and upper bounds for number of
accumulated mismatches when processing j-th part

Search scheme S : collection of searches that covers every possible
distribution of errors among parts

Search scheme: formal definition

A search is a triplet (π, L,U):

π : order in which parts are processed

L[j] and U[j] : lower and upper bounds for number of
accumulated mismatches when processing j-th part

Search scheme S : collection of searches that covers every possible
distribution of errors among parts

Example for [Lam et al. 09] search scheme for 2 mismatches:

Sf : π = (1, 2, 3),U = (0, 2, 2), L = (0, 0, 0)

Sb: π = (3, 2, 1),U = (0, 1, 2), L = (0, 0, 0)

Sbid : π = (2, 3, 1),U = (0, 1, 2), L = (0, 1, 1)

Efficiency of search scheme: random text and pattern

#str(S ,X , σ, n) – number of strings enumerated by search S for
partition X

Efficiency of search scheme: random text and pattern

#str(S ,X , σ, n) – number of strings enumerated by search S for
partition X

#str(S ,X , σ, n) =
∑

l≥1

∑

A∈Al

Pr [A is a substring of T], where Al

contains all possible enumerated strings of length l

Efficiency of search scheme: random text and pattern

#str(S ,X , σ, n) – number of strings enumerated by search S for
partition X

#str(S ,X , σ, n) =
∑

l≥1

∑

A∈Al

Pr [A is a substring of T], where Al

contains all possible enumerated strings of length l

Estimate with #str ′ =
�logσ n�+c∑

l=1

|Al |(1− e−n/σl
)

Efficiency of search scheme: random text and pattern

#str(S ,X , σ, n) – number of strings enumerated by search S for
partition X

#str(S ,X , σ, n) =
∑

l≥1

∑

A∈Al

Pr [A is a substring of T], where Al

contains all possible enumerated strings of length l

Estimate with #str ′ =
�logσ n�+c∑

l=1

|Al |(1− e−n/σl
)

|Al | can be computed using a recurrence relation (depending on
the partition)

Two improvements

Uneven partition:
Partition the pattern into parts of unequal size

Two improvements

Uneven partition:
Partition the pattern into parts of unequal size

More parts:
Partition the pattern into k + 2 (or more) parts instead of
k + 1

Uneven partition: intuition

Forward Sf :
0 ≤ 2 ≤ 2

Backward Sb:
≤ 2 ≤ 1 0

Bidirectional Sbid :
≤ 2 0 1

Sf allows 2 mismatches in the second part

Sb and Sbid allow only 1 mismatch in the second part

⇒ increasing |P1| may lead to a better performance

Properties of optimal schemes

Critical string of a search scheme : lexicographically maximal
U-string among all searches

α(k , p): lexicographically minimal critical string among all search
schemes for k mismatches and p parts

Lemma:

α(k , k + 1) = 013355...kk for odd k

α(k , k + 1) = 02244...kk for even k

α(k , k + 2) = 0123...(k − 1)kk

Properties of optimal schemes

Critical string of a search scheme : lexicographically maximal
U-string among all searches

α(k , p): lexicographically minimal critical string among all search
schemes for k mismatches and p parts

Lemma:

α(k , k + 1) = 013355...kk for odd k

α(k , k + 1) = 02244...kk for even k

α(k , k + 2) = 0123...(k − 1)kk

Critical string for k + 2 parts is lexicographically smaller than for
k + 1 ⇒ smaller enumeration trees

Computing a search scheme and an optimal partition

Optimal Search scheme is computed using a greedy algorithm

Computing a search scheme and an optimal partition

Optimal Search scheme is computed using a greedy algorithm

Optimal partition may be computed using

Naive way:

count #str for all possible partitions (works well for small
values of m and k)

Improved algorithm based on dynamic programming:

time complexity O(m2 + (|S |Nk +mp)
p∑

i=1

C i−1
N−1) for a

partition with p parts, N = �logσ n�

Experiments on genomic data

Text: human chromosome 14

Patterns for search: 1000000 substrings of the text with random
mismatches

Experiments on genomic data: 2 mismatches

Table : Total time (in seconds) of searching for one million patterns in
human chromosome 14

m 3 equal 3 unequal 4 equal 4 unequal

24 142 120 (85%) 117 (82%) 107 (75%)
30 101 84 (83%) 66 (65%) 68 (67%)
36 68 66 (97%) 49 (72%) 50 (74%)
42 45 45 (100%) 44 (98%) 38 (84%)

Experiments on genomic data: 2 mismatches

Table : Average number of enumerated strings

m 3 equal 3 unequal 4 equal 4 unequal

24 1049 882 (84%) 927 (88%) 816 (78%)
30 767 642 (84%) 523 (68%) 550 (71%)
36 538 529 (98%) 415 (77%) 432 (80%)
42 349 349 (100%) 359 (102%) 319 (91%)

Experiments on genomic data: 3 mismatches

Table : Total time (in seconds) of searching

m 4 equal 5 equal 5 unequal

12 1442 1328 (92%) 1388 (96%) 1,2,6,1,2
15 2208 2061 (93%) 2095 (95%) 2,2,6,1,4
18 1698 1587 (93%) 1535 (90%) 4,2,6,1,5
21 1131 1006 (89%) 1033 (91%) 3,6,4,1,7

Experiments on genomic data: 3 mismatches

Table : Average number of enumerated strings

m 4 equal 5 equal 5 unequal

12 16463 15616 (95%) 15927 (97%)
15 31918 29288 (92%) 28658 (90%)
18 33141 27513 (83%) 26799 (81%)
21 27610 20488 (74%) 21442 (78%)

Summary of the results

formalization of bidirectional search schemes

two improvements confirmed by both analytical estimations
and computational experiments:

partitioning the pattern into unequal-size parts; dynamic
programming algorithm for designing partitions
using more than k + 1 parts

Future directions

extend to the search to the edit distance

simultaneous design of a search scheme and a partition

The end

Thank you!

Questions?

