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Compression and grammars

Compression
Increasingly popular

Grammars based compression
CFG defining unique word
Straight Line Programs (SLP)
easy to work on
related to block compression
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Smallest grammar

Problem
Given w return smallest CFG Gw such that L(Gw ) = w .

NP-hard.

Best approximation ratio
O(log(n/g)), where g is the size of the optimal grammar.

This talk
A really simple linear algorithm with this bound.
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LZ77

Represent w as w = f1f2f3 . . . f`.
Each f = w [i . . i + |f |) is

free letter a letter or
factor equal to w [j . . j + |f |) for some j < i .

size of factorisation f1f2f3 . . . f` is `

a b a a c c d a a c c a a c c d ab b d

smallest can be found in O(|w |)
smaller than smallest grammar
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Grammar = iterated pairing

grammar = iterated pairing
size = different pairs (in total)
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Properties

no two consecutive letters are unpaired
factor is paired as its definition
first two (last two) letters of a factor are paired

After replacing: factorisation with the same number of factors.
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Pairing

1: while i ≤ |t | do

2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5: else if j is not a first letter in a pair then
6: shorten the factor (from left)
7: else
8: copy the pairing for the whole factor (move i)
9: while j is not a second in a pair do

10: shorten the factor (from the right)
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1: while i ≤ |t | do
2: . . .
3: if i is a free letter then

4: if previous letter unpaired then
5: pair them . New pair!

Invariants are preserved
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Pair replacement

replace pairs with new letters
leave unpaired letters as they are

we ‘inherit’ the factorisation
– factors well-defined: factor and definition paired the same

identify old and new
– free letters: old ones or pairs of old ones
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Analysis

Recall: number of nonterminals = number of different pairs

pairs inside a factor are not new

a pair of free letters creates one new

compressed into a single free letter: decrease count by 1
need to count number of introduced free letters
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Analysis continued

Fix a factor and phase.
How many free letters?

when replaced with a letter: one in total
two from the left (pop until a first in a pair is found: at most 2)
two from the right (symmetric)

Factor f is present in O(log |f |) rounds∑`
i=1 log |fi | when

∑`
i=1 |fi | = n

O(` log(n/`)) ≤ O(g log(n/g))
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Open problems

Lower bound
– only constant lower bound for approximation ratio
– already for (very simple) strings

What is the approximation bound?
Hardness?
simplifications (subclasses)
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