A really simple approximation of smallest grammar

Artur Jeż
Max Planck Institute for Informatics

Moscow, 18.06.2014

Compression and grammars

Compression

- Increasingly popular

Compression and grammars

Compression

- Increasingly popular

Grammars based compression

- CFG defining unique word
- Straight Line Programs (SLP)

Compression and grammars

Compression

- Increasingly popular

Grammars based compression

- CFG defining unique word
- Straight Line Programs (SLP)
- easy to work on
- related to block compression

Smallest grammar

Problem

Given w return smallest CFG G_{w} such that $L\left(G_{w}\right)=w$.

Smallest grammar

Problem

Given w return smallest CFG G_{w} such that $L\left(G_{w}\right)=w$.

NP-hard.

Best approximation ratio

$\mathcal{O}(\log (n / g))$, where g is the size of the optimal grammar.

Smallest grammar

Problem

Given w return smallest CFG G_{w} such that $L\left(G_{w}\right)=w$.

NP-hard.

Best approximation ratio

$\mathcal{O}(\log (n / g))$, where g is the size of the optimal grammar.

This talk

A really simple linear algorithm with this bound.

LZ77

- Represent w as $w=f_{1} f_{2} f_{3} \ldots f_{\ell}$.
- Each $f=w[i . . i+|f|)$ is
free letter a letter or factor equal to $w[j \ldots j+|f|)$ for some $j<i$.
- size of factorisation $f_{1} f_{2} f_{3} \ldots f_{\ell}$ is ℓ

LZ77

- Represent w as $w=f_{1} f_{2} f_{3} \ldots f_{\ell}$.
- Each $f=w[i \ldots i+|f|)$ is
free letter a letter or factor equal to $w[j \ldots j+|f|)$ for some $j<i$.
- size of factorisation $f_{1} f_{2} f_{3} \ldots f_{\ell}$ is ℓ

- smallest can be found in $\mathcal{O}(|w|)$
- smaller than smallest grammar

Grammar = iterated pairing

- grammar = iterated pairing
- size = different pairs (in total)

Pairing

Pairing

Pairing

Pairing

Pairing

Properties

- no two consecutive letters are unpaired
- factor is paired as its definition
- first two (last two) letters of a factor are paired

Properties

- no two consecutive letters are unpaired
- factor is paired as its definition
- first two (last two) letters of a factor are paired

After replacing: factorisation with the same number of factors.

Pairing

1: while $i \leq|t|$ do

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5 else if j is not a first letter in a pair then

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5: \quad else if j is not a first letter in a pair then
6: \quad shorten the factor (from left)

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5: \quad else if j is not a first letter in a pair then shorten the factor (from left) else
copy the pairing for the whole factor (move i)

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5: \quad else if j is not a first letter in a pair then shorten the factor (from left) else
copy the pairing for the whole factor (move i)

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5: \quad else if j is not a first letter in a pair then shorten the factor (from left) else
copy the pairing for the whole factor (move i) while j is not a second in a pair do shorten the factor (from the right)

Pairing

1: while $i \leq|t|$ do
2: if i is the first letter of a factor then
3: if factor has one letter then
4: replace it with a free letter
5: \quad else if j is not a first letter in a pair then shorten the factor (from left) else
copy the pairing for the whole factor (move i) while j is not a second in a pair do shorten the factor (from the right)

1: while $i \leq|t|$ do
2:
3: if i is a free letter then

1: while $i \leq|t|$ do
2:
3: if i is a free letter then
4: if previous letter unpaired then

1: while $i \leq|t|$ do
2:
3: if i is a free letter then
4: if previous letter unpaired then
5: pair them
\triangleright New pair!

1: while $i \leq|t|$ do
2:
3: if i is a free letter then
4: if previous letter unpaired then
5: pair them \triangleright New pair!

- Invariants are preserved

Pair replacement

- replace pairs with new letters
- leave unpaired letters as they are

Pair replacement

- replace pairs with new letters
- leave unpaired letters as they are

Pair replacement

- replace pairs with new letters
- leave unpaired letters as they are

- we 'inherit' the factorisation
- factors well-defined: factor and definition paired the same identify old and new
- free letters: old ones or pairs of old ones

Analysis

Recall: number of nonterminals = number of different pairs

Analysis

Recall: number of nonterminals = number of different pairs

- pairs inside a factor are not new

Analysis

Recall: number of nonterminals = number of different pairs

- pairs inside a factor are not new

- a pair of free letters creates one new

Analysis

Recall: number of nonterminals = number of different pairs

- pairs inside a factor are not new

- a pair of free letters creates one new

- compressed into a single free letter: decrease count by 1
- need to count number of introduced free letters

Analysis continued

Fix a factor and phase.

How many free letters?

- when replaced with a letter: one in total
- two from the left (pop until a first in a pair is found: at most 2)
- two from the right (symmetric)

Analysis continued

Fix a factor and phase.

How many free letters?

- when replaced with a letter: one in total
- two from the left (pop until a first in a pair is found: at most 2)
- two from the right (symmetric)

Factor f is present in $\mathcal{O}(\log |f|)$ rounds

$$
\begin{gathered}
\sum_{i=1}^{\ell} \log \left|f_{i}\right| \text { when } \sum_{i=1}^{\ell}\left|f_{i}\right|=n \\
\mathcal{O}(\ell \log (n / \ell)) \leq \mathcal{O}(g \log (n / g))
\end{gathered}
$$

Open problems

- Lower bound
- only constant lower bound for approximation ratio
- already for (very simple) strings
- What is the approximation bound?
- Hardness?
- simplifications (subclasses)

