Compactness-Preserving Mapping on Trees

Jan Baumbach, Jiong Guo, Rashid Ibragimov

Network Alignment

Comparison of networks/graphs

Motivation

- Protein-Protein Interaction networks
 - nodes represent proteins
 - 0.1-10K nodes
 - edges are interactions between proteins
 - 1-100K edges
 - noisy and incomplete

Motivation

- find corresponding proteins between two networks
 - evolutionary conservation of many interactions
 - for every node, images of the neighboring nodes should be "close"

Network Alignment

Graph isomorphism → perfect match
Graph edit distance

Compactness-Preserving Mapping (CPM)

- Neighbors of a node *v* within distance *l*
- Closeness:
 - $-L_{v}$ is the total distance to neighbors of v
 - $-L'_{v}$ is the total distance to the corresponding nodes
 - the difference $L'_v L_v$ should be small ($\leq d$)

Example: CPM on Trees, l = 2, d = 2

- with larger L there are more neighbors to take into account
- some neighbors can be mapped closer, such that others very far away (greater than d)

Related problem: NPM

- Neighborhood-Preserving Mapping
 - neighbors of a node within distance
 - images of the neighbors within distance from

Result: CPM on Trees

L d	0	1	2	>2
1	Р	Р	NP	NP
2	Р	Р	NP	NP
3	NP	NP	NP	NP
>3	NP	NP	NP	NP

CPM on Trees: $l \leq 2, d = 0$

- Case *l=1, d=0*
 - Tree Isomorphism
- Case *l=2, d=0*
 - Tree Isomorphism if diameter at least 3

CPM on Trees: NP-Complete Cases

- Cases:
 - l = 1, d = 2
 - l = 2, d = 2
 - l = 3, d = 0
- All reductions from 3-PARTITION
 - case dependent subtree gadgets

3-Partition

- 3-PARTITION
 - Given:
 - a set of integers $A \coloneqq \{a_1, \dots, a_{3n}\}$ and
 - *B* with $a_1 + \cdots + a_{3n} = nB$.
 - Question:

• Is there a 3-partition
$$A_1, \dots, A_n$$
 of A
- i.e. $\bigcup A_j = A$, $|A_j| = 3$, $\sum_{a \in A_j} a = B$, $j \coloneqq 1, \dots, n$?

• For example,

$$-A := \{1, 2, 2, 3, 3, 4, 4, 6, 8\}, B \coloneqq 11$$

$$-A_1 = \{3, 4, 4\}, A_2 = \{2, 3, 6\}, A_3 = \{1, 2, 8\}$$

NP-Case:
$$l=1, d=2$$

CPM on Trees l = 1, d = 1

- 2-phase polynomial-time algorithm
- Phase 1: labeling
 - compute configurations
 - Can a node potentially be mapped to node?
 - distinguish several cases
 - reduce to a variant of 2-Path Packing in bipartite graphs
- Phase 2: resolving labels
 - bottom-up

Conclusion

- Optimization versions:
 - minimize max error over every node
 - minimize total error over all nodes
- Network Alignment
 - CPM-based models
 - heuristics
 - evaluation

Thank you for your attention!

