From Indexing Data Structures to de Bruijn Graphs

Bastien Cazaux, Thierry Lecroq, Eric Rivals
LIRMM & IBC, Montpellier - LITIS Rouen

June 15, 2014

J"“*.z;E

@ v fz%“ Its

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 1/35

Motivation

@ De Bruijn Graph is largely used in de novo assembly. [Pevzner et al.,
2001]

@ One builds a suffix tree before the assembly for some applications, for
instance for the error correction. [Salmela, 2010]

@ There exist algorithms to build directly the De Bruijn Graph.
[Onodera et al., 2013] [Rgdland, 2013]

@ None is able to build the Contracted De Bruijn Graph directly.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 2 /35

Indexing data structures

@ Numerous data structures: suffix tree, affix tree, suffix array, etc.
@ to index one or several texts (generalized index)
o functionally equivalent to

@ compressed versions (CSA, FM-index, CST, etc)

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 3/35

Relation between indexing structures and assembly graphs

o Generalised Suffix Tree (GST)
@ indexes all factors of a set of texts

e is functionally equivalent to other indexes (SA, CSA, FM-index)

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 4/35

Relation between indexing structures and assembly graphs

o Generalised Suffix Tree (GST)
@ indexes all factors of a set of texts

e is functionally equivalent to other indexes (SA, CSA, FM-index)

Question: How to directly build, e.g., the assembly De Bruijn graph?

in classical or contracted form?

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 4/35

© Generalized Suffix Tree (GST)

© De Bruijn Graphs

© From the Generalized Suffix Tree to the DBG
@ Contracted De Bruijn Graph

© Conclusion and Future works

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

Generalized Suffix Tree (GST)

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

B < B 1 .
Example

S = {bbachaa, cbaac, bacbab, cbabcaa, bcaacb}
IS1] = XgesIsil

IS|[=7+5+6+7+6=31

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

00000 Generalized SuffixTree(6SH) |
Suffix Tree

ababeca$
1234567

o = £ DA
Cazaux, Lecrog, Rivals (LIRMM)

Feature
© take in input a set of words

@ no use an end marking special symbol
i.e. no hypothesis requiring that a suffix is not the prefix of another

suffix
—
O
Theorem
The GST of a set of words S takes linear space in ||S]]|. J

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 8 /35

. Generalized Suffix Tree (GST) |
Generalized Suffix Tree (GST)

S = {bbachaa, cbaac, bacbab, cbabcaa, bcaacb}

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 9 /35

De Bruijn Graphs

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

N LU
De Bruijn Graph

The assembly De Bruijn Graph (DBG,")
Let k be a positive integer satisfying k > 2 and
S={s1,...,sn} be a set of n words.
The De Bruijn graph of order k of S, denoted by DBG,", is a graph such
that
@ the nodes are the k-mers of S and

@ an arc links two k-mers of S if there exists an integer i such that
these k-mers start at successive positions in s;.

Remark: the arc definition implies that the two k-mers overlap by kK — 1
positions.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 11 /35

De Bruijn Graph for assembly

Cazaux, Lecrog, Rivals (LIRMM)

S = {bbachaa, cbaac, bacbab, cbabcaa, bcaacb}

From the Generalized Suffix Tree to the DBG

o = £ DA
Cazaux, Lecrog, Rivals (LIRMM)

= From the Generalized Suffix Tree to the DBG |
One defines 3 specific types of nodes in the GST (in Vs):

lu| < E
v initial node

vl > &
@ [v/=F v initial exact node

@ |v|=k—1 v subinitial node

Some properties

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 14 / 35

|
Generalized Suffix Tree (GST)

q
5

[=]
H’E’BDH

S = {bbachaa, chaac, bacbab, chabcaa, bcaacb} and k = 2

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 15 / 35

|
Generalized Suffix Tree (GST)

subinitial node

O\ initial node

S = {bbachaa, cbaac, bacbab, cbabcaa, bcaacb} and k = 2

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 15 / 35

S G e e R R DD
Nodes of the de Bruijn Graph

Notation: /nits

Let Inits denote the set of initial nodes of the GST of S. J
Property: node correspondence
The set of k-mers of DBG,;F of S is isomorphic to Inits. J

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 16 / 35

S G e e R R DD
Arcs of the de Bruijn Graph

Idea
© Take an initial node v
@ follow its suffix link to node z (lose the first letter of its k-mer)
© if needed, go the children of z to find its extensions

@ check whether the extensions are valid

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 17 / 35

Let v be an initial node, u its father, and z the node pointed at by the
suffix link of v.

Property 2

Let v be a node of suffix tree. If it exists, the suffix link of v belongs to
the sub-tree of the suffix link of par(v).

w .";/’ “:;')-Q SL(U)

/,———-—»C:) z = SL(v)

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 18 / 35

s R S e R SR e e
Arcs of DBG,": case figure

v starting initial node: green
z := SL(v) node pointed at by its suffix link: orange
black straight arrows : arcs of ST
dotted arrows: suffix links

colored plain arrows: created arcs of the DBG;r

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 19 / 35

1 e)
Arcs of DBG,": Type 1

v is initial not exact &
Z is initial

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

Arcs of DBG, : Type 2

v is initial not exact &

z is not initial

i.e. zis deeper than word
depth k

Cazaux, Lecrog, Rivals (LIRMM)

Arcs of DBG, : Type 3

77

v is initial exact

with a single child

o = £ DA
Cazaux, Lecrog, Rivals (LIRMM)

1 e)
Arcs of DBG,": Type 4

v is initial exact

with a several children

o = = £ DA
Cazaux, Lecrog, Rivals (LIRMM)

__ Fromthe Generalized Suffix Tree to theDBG |
DBG construction

Theorem
Given the GST of a set of words S.

The construction of the De Bruijn Graph takes linear time in ||S||.

o = £ DA
Cazaux, Lecrog, Rivals (LIRMM)

DBG construction

Theorem

Given the GST of a set of words S.
The construction of the De Bruijn Graph takes linear time in ||S||.

Proof

All four cases of the typology are processed in constant time.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 21 /35

Contracted De Bruijn Graph

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

NS es TR
Example

not contracted

contracted

[bac[~acb [cba[~bab|

[bbac [acb[~|cba

[bba] |aaclIbaal |abc]

S = {bbachaa, cbaac, bacbab, cbabcaa, bcaacb}

o = £ DA
Cazaux, Lecrog, Rivals (LIRMM)

S e s D Ll
Left and right extensible nodes

Left or right extensible node

Let v be a node of the De Bruijn graph; we say that
o v is left extensible if and only if d(v) = 1.
@ v is right extensible if and only if d°“f(v) = 1.

AT (u) = 2
dout(u) =1

v O
dZMO

dout<v) -3

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 24 / 35

S e s D Ll
Contracted De Bruijn Graph

Contracted De Bruijn Graph

Let G := (Vg, Eg) be the De Bruijn graph of order k of S. We call

K := (Vk, Ex) the Contracted De Bruijn Graph (CDBG}!) of order k of
S, the graph obtained from G by contracting iteratively the arcs (u, v)
where u is right extensible and v is left extensible.

=g

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 25/ 35

Find right extensible nodes

Property 4: right extensible
@ Initial nodes of type 1, 2 or 3 are right-extensible.

@ Initial nodes of type 4 are not right-extensible.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 26 / 35

Find right extensible nodes

Property 4: right extensible
@ Initial nodes of type 1, 2 or 3 are right-extensible.

@ Initial nodes of type 4 are not right-extensible.

Proof
@ Types 1,2 or 3: word of node v has only one extension in S.

@ Types 4 nodes have several extensions in S.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 26 / 35

Case of right extensible nodes ex. for k = 2

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 27 / 35

Find left extensible nodes

Let v be a right extensible k-mer/node and (v, u) an arc of DBG}} .
Question: is u left extensible?

Property 5: left extensible
u is left extensible if and only if VS (y) — VT (y) = Vsui(y) J

O

Ve (u) = {5,2,4,2,2,1}
Ve () = (1)

VEer(u) = {1}

I TR | o [T

vier(l) = {1}

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 28 / 35

Find left extensible nodes

Let v be a right extensible k-mer/node and (v, u) an arc of DBG}} .
Question: is u left extensible?

Property 5: left extensible
u is left extensible if and only if VS (y) — VT (y) = Vsui(y)

Idea

@ determine how many nodes in sub-tree of u have Suffix Links pointing
to them coming from the sub-tree of v

@ do not account for nodes representing the first suffix of words in S
which we call terminal nodes

@ compare the cardinalities of non terminal suffixes in u sub-tree with
suffixes in v sub-tree.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 28 / 35

Cazaux, Lecrog, Rivals (LIRMM)

Cazaux, Lecrog, Rivals (LIRMM)

_ === ContractedDeBrijnGraph |
uis

left extensible

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

Cazaux, Lecrog, Rivals (LIRMM)

u is not left extensible

Cazaux, Lecrog, Rivals (LIRMM)

Case of left extensible nodes ex. for k = 2

Cazaux, Lecroq, Rivals (LIRMM) June 15, 2014 30/ 35

Contracted DBG construction

Theorem

Given the GST of a set of words S.
The construction of the Contracted DBG, takes linear time in ||S||.

Idea of proof.

Detection of right extensible nodes is obtained from the 4 types.

To get left and right extensible nodes in constant time preprocess:

e VS (y) and V**(u) for each node u of GST, and

o for each node w of ST such that |w| > k
a pointer to its ancestral initial node.

Ol

V.

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 31/35

Conclusion and Future works

o & = E DA
Cazaux, Lecrog, Rivals (LIRMM)

Conclusion

A linear time algorithm that
builds the Contracted De Bruijn Graph

from a Generalized Suffix Tree or a Suffix Array

Cazaux, Lecroq, Rivals (LIRMM) June 15, 2014 33 /35

Future works

@ Use only a slice of the suffix tree

o Update the order of the DBG: dynamically changing k

@ Go for compressed indexes instead of a Suffix Tree

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014 34 /35

Funding and acknowledgments

17
Colio'recd

Thanks for your attention

Questions?

Cazaux, Lecrog, Rivals (LIRMM) June 15, 2014

35/ 35

	Generalized Suffix Tree (GST)
	De Bruijn Graphs
	From the Generalized Suffix Tree to the DBG
	Contracted De Bruijn Graph
	Conclusion and Future works

