
What’s Behind BLAST

Gene Myers, Director

MPI for Cell Biology and Genetics

Dresden, DE

 δ here = Simple Levenstein
 (unit cost mismatch, insert, & delete)

...xxxxxxxxaacgt-gcattacxxxxxxxx...!
aatgtggc-ttac

Approximate String Search

A 3-match (absolute)

Given a string A of length n, a query Q of length p ⪻ n,
 an alignment scoring function δ, and a threshold d:

 Find all substrings of A, say M, s.t. δ(Q,M) ≤ d?

A 25%-match (relative)

Edit Graphs
 a b b a a

a

a

b

a

a

Dynamic
Programming

Matrix

0 1 2 3 4 5

 a b b a a

1 0 1 2 3 4
a

2 1 1 2 2 3
a

3 2 1 1 2 3
b

4 3 2 2 1 2
a

5 4 3 3 2 1
a

1 0

 a - b
 a a b

Alignments

aacgtgcatta

Corresponds to a path
in the edit graph of
the two sequences.

A

B

N

M

0
0

a
t
t
c
g
g
t
g
t
a
a

aacgtg-catta
aatgtggc-tta

• March ’88: The Lister Hill Meeting & Galil’s 2 questions

The Story

S. Altschul W. Fitch Z. Galil
W. Goad T. Hunkapillar S. Karlin
G. Landau E. Lander D. Lipman
J. Maisel H. Martinez C. Sanders
T. Smith R. Staden J. Turner
M. Zuker A. Mukherjee M. Waterman
D. Sankoff P. Sellers E. Ukkonen
W. Miller G. Myers

The Beginning
  

“Workshop for Algorithms in Molecular Genetics”

March 26-28, 1988

Zvi gave a talk about suffix trees:

Q1: Can one get rid of the annoying
 dependence on alphabet size Σ?
!

 ⇒ Manber & Myers, “Suffix Arrays” 1990

Q2: Can one use an index to get faster
 approximate search?

Galil’s 2 Questions
  

“Workshop for Algorithms in Molecular Genetics”

March 26-28, 1988

Suffix Arrays
• Given subject string of size n over alphabet of size Σ, build an

“index” that determines if a query string of length p occurs in
the subject efficiently	

 Suffix tree: Index is O(nΣ) space, then O(p) time	

 Index is O(n) space, then O(plogΣ) time	

• Galil: Remove annoying dependence on Σ.	

• Manber & Myers:	

 Suffix array: Index is O(n) space, O(p + logn/logΣ) time.	

• Galil says we misunderstood his challenge, sigh. But suffix
trees enabled Burroughs-Wheeler Transform that are a sparse
index commonly in use today for NGS.

A Simple Index
Φ(“cacgt”) = 101234 = 283(10) ∈ [0, Σk-1] for any fixed k-mer size.

Occurences of k-mers with code c,
 Occ(c) = { p : Φ(A[p..p+k-1]) = c }
 = { Pos[j] : j ∈ [Idx[c],Idx[c+1]-1] }

c
c+1

0
1

0
1
2

Σk-1
Σk

n-1
n

Idx Pos
Scan 1: Count how big each set Occ(c) will be (in Idx[c+1]),

then set Idx[c] += Idx[c-1] to point to proper Pos index. !
Scan 2: Fill in each set using Idx[c] as a finger to place the

next position, then readjust indices (Idx[c] = Idx[c-1]).

Performance:
• O(n+ Σk) time and exactly n+ Σk integers.
• If choose k ~ logΣ n then O(n).
• O(p+h) expected-time to find any string of

length p with h hits.

• March ’88: The Lister Hill Meeting & Galil’s 2 questions

The Story

• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ’88: Seed & Extend

The Story

APM Filters

 100% Sn < 100% Sn
 100% Sp Exact

< 100% Sp Filter Heuristic

A filter is an algorithm that eliminates a lot of that which isn’t desired.

Filter Exact

If fast & specific then can improve speed of an exact algorithm.

Approximate match filter ideas:

|Nd(k)| ≲ ()(2Σ)dk	

d

!
• Look for exact matches to k-mers of the query (in an index)	

 (Pearson & Lipman FASTA, Chang & Lawler, O(dn/lg p))
!
• Instead look for k-mers that are a small distance away, e.g. 1 or 2 diff ’s,	

 from a k-mer of the query, i.e. the neighborhood

 Nd(w) = { v : v and w are ≤ d differences apart }

The Power of Neighborhoods

Consider looking for a 9%-match of 40 symbols (⇒ ≤ 3 differences or 3-match):

If divide “query” into 4 10-mers then at least one must match exactly:
!

 ⇒ Get a hit every Σ10 / 4 symbols (e.g. 2.5 ⋅ 105 for DNA)

If divide into 2 20-mers then at least one of the N1 strings must match exactly:
!

 ⇒ Get a hit every Σ20 / 2N1(20) symbols (e.g. 1012 / 2 ⋅ 160 = 3.12 ⋅ 109 for
DNA) !

10,000 times more specific ! (but 80x more lookups)

“Seed & Extend”
The “seed” matches (either exact or from a neighborhood) are in effect defining

areas within the edit graph of Q vs A where the alignment of an ε-match could
be:

Q

A
s1

s2

s3

s4

13 22 4

Q = s1s2s3s4

“Seed & Extend”

Q

A
s1

s2

s3

s4

13 22 4

±d/4

The “seed” matches (either exact or from a neighborhood) are in effect defining
areas within the edit graph of Q vs A where the alignment of an ε-match could
be:

Q = s1s2s3s4

Q

A
s1

s2

s3

s4

13 22 4

“Seed & Extend”

±d
Spend O(pdh + pz) time where
!
 h(k) = the number of seed “k-hits” vs. z(k) = neighborhood size “k-words”
!
Both z and h are functions of k and the optimal k is “slightly bigger” than logΣ n

The “seed” matches (either exact or from a neighborhood) are in effect defining
areas within the edit graph of Q vs A where the alignment of an ε-match could
be:

• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ’88: Seed & Extend

The Story

• May ’89: The TRW Chip & The Cigarette Break

The 1st Conversation

X

• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ’88: Seed & Extend

The Story

• Fall ’89: Blast is Born
• May ’89: The TRW Chip & The Cigarette Break

Blast = Seed & Extend

Seeds are neighborhoods of all k-mers of query
under weighted Levenstein (e.g. PAM120)

Find seeds with a deterministic finite automaton
accepting all neighborhood words (⇒O(n))

Extend is just weighted Hamming
but stop when score drops too much

A heuristic

“blast” was inspired by
“slam” = sublinear approximate match

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ’88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

!

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ’88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

!

The Splitting Lemma
Lemma: If w ε-matches v then either

 (a) w0 has an ε-match to a prefix (call it v0) of v, or
 (b) w1 has an ε-match to a suffix (call it v1) of v.

k errors

w

v

≤⎣k/2⎦ errors?≤⎣k/2⎦ errors?

w0

v

w1

≤⎣k/2⎦ errors

w0

v1

w1

Proof:

By Pigeon
Hole

Principle

k =⎣ε|w|⎦

⎣k/4⎦?

w0

v10

w1

⎣k/4⎦?

w10 w11

w

≤⎣k/2⎦ errors

w0

v1

w1

⎣k/8⎦

w0

v101

w1

w10 w11

w

w100 w101

The Splitting Lemma

Lemma: If w ε-matches v then ∃ α s.t. ∀ prefixes β of α,
(1) wβ has an ε-match to a substring (call it vβ) of v, and
(2) vβ0 is a prefix of vβ (if β0 is a prefix of α), and
(3) vβ1 is a suffix of vβ (if β1 is a prefix of α).

Let wε = w

 wβa = wβ[1..|wβ|/2] if a = 0
 wβ[|wβ|/2+1.. |wβ|] if a = 1

⎣k/8⎦

w0

v101

w1

w10 w11

w

w100 w101

e.g. α=101...

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ’88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

!

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ‘88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

• Fall ’89: Seed & Extend by Doubling

Doubling Extension

✘
✘

✘
✘

Time for each extension telescopes hyper-geometrically and so is
dominated by the first term:

 O(p/logΣn · h · logΣn · εlogΣn) = O(dhlogΣn)

✓

✘

Use logΣ n as the seed size !

Lemma: Any ε-match of Q has an ε-match to at
 least one seed segment of size logΣ n

Use the splitting lemma to split Q to seeds of size logΣ n, and instead of
extending all at once, extend by doubling using the splitting lemma.

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ‘88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

• Fall ’89: Seed & Extend by Doubling

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ‘88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

• Fall ’89: Seed & Extend by Doubling

• Spr ’90: Generating Condensed Neighborhoods

 N1(abbaa) = { aabaa, aabbaa, abaa, abaaa, ababaa,

 abba, abbaa, abbab, abbaaa, abbaba,
 abbba, abbbaa, babbaa, bbaa, bbbaa }

Generating (Condensed) Neighborhoods

 Nd(w) = { v : v and w are ≤ d differences apart and
 v is not a proper prefix of another word in Nd(w) }

It suffices to find the words in the condensed neighborhood.

But how do you do that efficiently, including finding them in
the index? ...

... Compute rows of dynamic programming matrix as one
traverses the trie of all strings over Σ

 N1(abbaa) = { aabaa, aabbaa, abaa, abaaa, ababaa,

 abba, abbaa, abbab, abbaaa, abbaba,
 abbba, abbbaa, babbaa, bbaa, bbbaa }

3 2 1 1 2 3

b

0 1 2 3 4 5

0 1 2 3 4 5

a b b a a

1 0 1 2 3 4
a

2 1 1 2 2 3
a

3 2 1 1 2 3
b

4 3 2 2 1 2
a

5 4 3 3 2 1
a

w

v?

5 4 3 3 2 1

a

Done: a 1 in the right corner

4 3 2 2 1 2

a

2 1 1 2 2 3

a
1 0 1 2 3 4

a

Condensed Neighborhoods

0 1 2 3 4 5

5 4 3 3 2 1

4 3 2 2 1 2

a

a

3 2 1 1 2 3

b
2 1 1 2 2 3

a
1 0 1 2 3 4

a

0 1 2 3 4 5

a b b a a

2 1 1 2 2 3

1 0 1 2 3 4
a
a

3 2 1 1 2 3
b

4 3 2 2 1 2
a

5 4 3 3 2 1
a

w

v

Condensed Neighborhoods

Only need ±1 band !

0 1 _ _ _ _

_ _ _ _ 2 1

_ _ _ 2 1 2

a

a

_ _ 1 1 2 _

b
_ 1 1 2 _ _

a
1 0 1 _ _ _

a

0 1

a b b a a

 1 1 2

1 0 1
a
a

 1 1 2
b

 2 1 2
a

 2 1
a

w

v

Condensed Neighborhoods

0 1 _ _ _ _

1 0 1 _ _ _

_ 1 1 2 _ _

_ _ 1 1 2 _

_ _ _ _ 2 1

_ _ _ 2 1 2

a

a

a

a

b

_ _ _ _ 1 2

a

_ _ _ _ _ 1

a

1 1 1 _ _ _

b

_ _ _ _ 1 2

a

_ _ _ _ _ 1

a
_ _ _ _ 1 1

a

_ _ 1 2 3 _

b

_ _ _ 1 2 3

b

_ _ _ _ 1 2

a

_ _ _ _ _1

a

_ _ _ 3 2 1

a
_ _ _ 2 1 2

a

_ _ _ _ 2 1

a

Condensed Neighborhoods

_ 1 0 1 _ _

b

_ _ _ 1 2 3

b
_ _ _ 2 1 1

a
_ _ _ 1 2 2

b
_ _ _ 1 0 1

a
_ _ _ 1 1 2

b
_ _ 2 2 1 _

a
_ _ 2 1 2 _

b
_ 1 2 2 _ _

a
_ 2 1 1 _ _

b

_ _ 1 1 1 _

a
_ _ 1 0 1 _

b

If all entries are ≥ d
then wasting time on D.P.

0 1 _ _ _ _

1 0 1 _ _ _

_ 1 1 2 _ _

_ _ 1 1 2 _

_ _ _ _ 2 1

_ _ _ 2 1 2

a

a

a

a

b

_ _ _ _ 1 2

a

_ _ _ _ _ 1

a

1 1 1 _ _ _

b

_ _ _ _ 1 2

a

_ _ _ _ _ 1

a
_ _ _ _ 1 1

a

_ _ 1 2 3 _

b

_ _ _ 1 2 3

b

_ _ _ _ 1 2

a

_ _ _ _ _1

a

_ _ _ 3 2 1

a
_ _ _ 2 1 2

a

_ _ _ _ 2 1

a

Condensed Neighborhoods

_ 1 0 1 _ _

b

_ _ _ 1 2 3

b
_ _ _ 2 1 1

a
_ _ _ 1 2 2

b
_ _ _ 1 0 1

a
_ _ _ 1 1 2

b
_ _ 2 2 1 _

a
_ _ 2 1 2 _

b
_ 1 2 2 _ _

a
_ 2 1 1 _ _

b

_ _ 1 1 1 _

a
_ _ 1 0 1 _

b

If all entries are ≥ d
then wasting time on D.P.

0 1 _ _ _ _

1 0 1 _ _ _1 1 1 _ _ _

_ 1 0 1 _ _ _ 1 1 2 _ _

_ _ _ 1 0 1_ _ _ 1 1 2

_ _ 1 0 1 _ _ _ 1 1 1 _

a

ab

b

b

b

a

a

a	

b	

b	

a	

a

b	

b	

a	

a

b	

a	

a

a	

a

a

a	

a

ab	

a	

a

b	

b	

a	

a

b	

a	

aa

a

0 1

1 0 1

 1 1 2

 b b

 b a

 a a

a b b a a

 a

Condensed Neighborhoods

0 1 _ _ _ _

1 0 1 _ _ _1 1 1 _ _ _

_ 1 0 1 _ _ _ 1 1 2 _ _

_ _ _ 1 0 1_ _ _ 1 1 2

_ _ 1 0 1 _ _ _ 1 1 1 _

a

ab

b

b

b

a

a

a	

b	

b	

a	

a

b	

b	

a	

a

b	

a	

a

a	

a

a

a	

a

ab	

a	

a

b	

b	

a	

a

b	

a	

a

Condensed Neighborhoods

Use “KMP” on reverse of w to
efficiently discover these.

A shorter suffix of w
that is a prefix of
the extension is

also possible

0 1 _ _ _ _

1 0 1 _ _ _1 1 1 _ _ _

_ 1 0 1 _ _ _ 1 1 2 _ _

_ _ _ 1 0 1_ _ _ 1 1 2

_ _ 1 0 1 _ _ _ 1 1 1 _

a

ab

b

b

b

a

a

a	

b	

b	

a	

a

b	

b	

a	

a

b	

a	

a

a

ab	

a	

a

b	

b	

a	

a

b	

a	

a

Condensed Neighborhoods

Lemma: Neighborhoods and their hits in A can be
 generated in O(zd+h) time where z = |Nd(w)|

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ‘88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

• Fall ’89: Seed & Extend by Doubling

• Spr ’90: Generating Condensed Neighborhoods

The Story
• March ’88: The Lister Hill Meeting & Galil’s 2 questions

• June ‘88: Seed & Extend

• May ’89: The TRW Chip & The Cigarette Break

• Fall ’89: Blast is Born

• Fall ’89: The Splitting Lemma

• Fall ’89: Seed & Extend by Doubling

• Spr ’90: Generating Condensed Neighborhoods

• Fall ’90: Finale: Complexity

Complexity
How big is Nd(k)?

Developed recurrence for non-redundant edit scripts:
 (a) DI = S
 (b) DS = SD
 (c) IS = SI
 (d) ID = Φ

S(k,d) = S(k-1,d) + (Σ-1)S(k-1,d-1) + (Σ-1) Σj S(k-1,d-1)
d-1
Σ
j=0

+ (Σ-1)2 Σj S(k-2,d-2-j)
d-2
Σ
j=0

+ S(k-2-j,d-1-j)
d-1
Σ
j=0

≤ S(k,d) + Σj S(k-1,d-j)
 d
Σ
j=1

Nd(k)

Lemma:

Complexity
So how big is it?

where α(ε) = Σpow(ε)

and pow(ε) = logΣ () + ε logΣ c(ε) + ε c(ε)+1
c(ε)−1

and c(ε) = ε-1 + (1 + ε-2) .5

where β(ε) = Σ1-pow(ε)

Also Pr(w in Nε(k)) = O(1 / β(ε)k)

≤ 1.708 α(ε)k Nε(k)

Lemma:

pow(ε)

Complexity
So how big is it?

And when k = logΣ n?

where α = Σpow(ε)

= O(αk)Nε(k)

where β = Σ1-pow(ε)

Pr(w in Nε(k)) = O(1 / βk)

= O(npow(ε)) and Pr(w in Nε(k)) = O(npow(ε)-1)Nε(k)

Lemma:

Starts at 1 (ε=0) and grows
“Flex factor”

Starts at Σ (ε=0) and shrinks
“Effective alphabet size”

The Result
Theorem: Given
 (a) A is effectively Bernouilli,
 (b) a simple O(n) space, precomputed index of A, and
 (c) there are h d-matches of a query Q to A
then they can be found in O(d·npow(ε)·log n + pd·h) expected-time.

To my knowledge no one has improved
 on this in the last 20 years ! ?

!
Algorithmica 12, 4-5 (1994), 345-374

!
(submitted 1991 !)

!
A recent retrospective:

!
Computational Biology 19, (Springer-Verlag 2013), 3-15.

