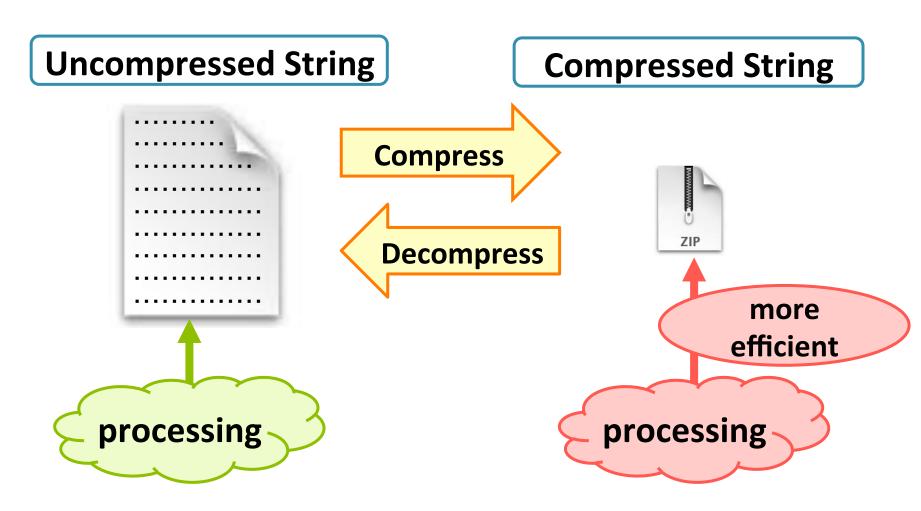
Efficient Lyndon factorization of grammar compressed text

Tomohiro I, <u>Yuto Nakashima</u>, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

Kyushu University, Japan

Background



We want to process compressed strings without decompressing explicitly.

Problem and our contribution

We solve the following problem.

Problem

Given an SLP S of size n representing a string w of length N, we compute the Lyndon factorization of w, denoted by LF(w).

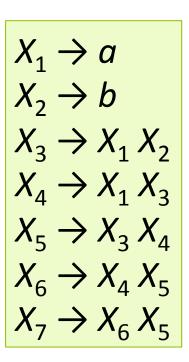
Theorem

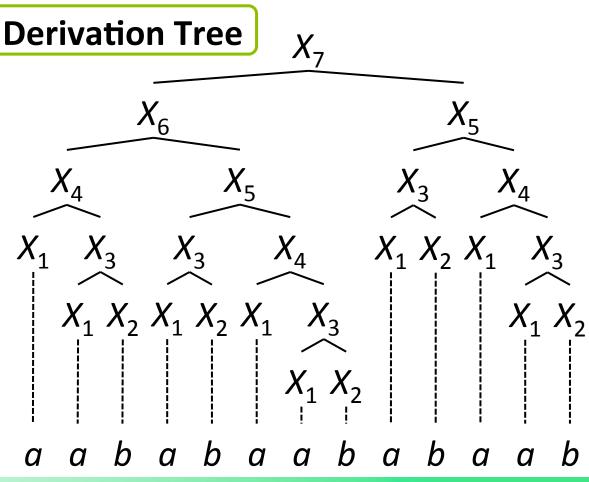
Given an SLP S of size n representing a string w of length N, we can compute LF(w) in $O(mn^4)$ time and $O(n^2)$ space, where m is the number of factors in LF(w).

Straight line Program (SLP)

 An SLP is a context free grammar in the Chomsky normal form, that derives a single string.

SLP





Lyndon word

Definition [R. C. Lyndon, 1954]

A string w is a Lyndon word, if w is lexicographically strictly smaller than its proper cyclic shifts.

Lyndon word w = aababbbaabab bbaaba proper cyclic abbaab shifts of w babbaa ababba

lexicographic order aababb = wababba abbaab baabab babbaa bbaaba

Lyndon factorization

Definition [K. T. Chen et al., 1958]

The Lyndon factorization of a string w, denoted by LF(w), is the factorization $I_1^{\rho_1}...I_m^{\rho_m}$ of w, such that each $I_i \subseteq \Sigma^+$ is a Lyndon word, $p_i \ge 1$, and $I_i > I_{i+1}$ for all $1 \le i < m$.

$$w = abcabbabbaabcaa$$

$$LF(w) = (abc)(abb)^{2}(aabc)(a)^{3}$$
 Lyndon factors

lexicographic order abc > abb > aabc > a

The Lyndon factorization of any string w is unique.

Representation of factorization

- Each Lyndon factor is represented by pair of length and its power.
- The representation takes O(m) space where m is the number of Lyndon factors.
- We call m is the size of the Lyndon factorization.

Example

$$w = abcabbabbaabcaa$$

$$LF(w) = (abc)(abb)^2(aabc)(a)^3$$

$$LF(w) = (3, 1)(3, 2)(4, 1)(1, 3)$$

Linear time algorithm

 There exists a linear time algorithm to compute the Lyndon factorization.

Theorem [J. P. Duval, 1983]

Given a string w of length N, LF(w) can be computed in O(N) time.

• If an SLP is very compressible, we want to compute the LF(w) in polynomial time for n where n is size of an SLP that derives w. (Since $N = O(2^n)$.)

basic idea of our algorithm

Lemma [J. P. Duval, 1983]

For any string w, let $LF(w) = I_1^{\rho_1}...I_m^{\rho_m}$.

Then, I_m is the lexicographically smallest suffix of w.

$$w = abcabbabbabbabb$$
smallest suffix of $w \uparrow$

$$w_1 = abcabbabbabbabbabb$$

smallest suffix of
$$w_1 \uparrow$$

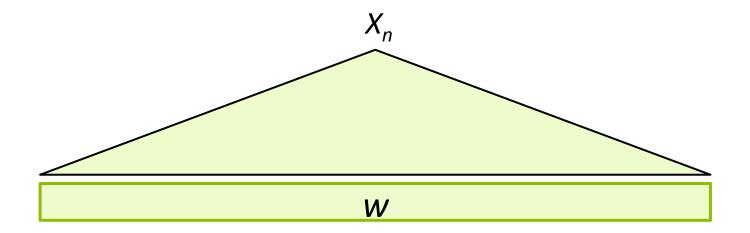
 $w_2 = abcabbabbaabb$

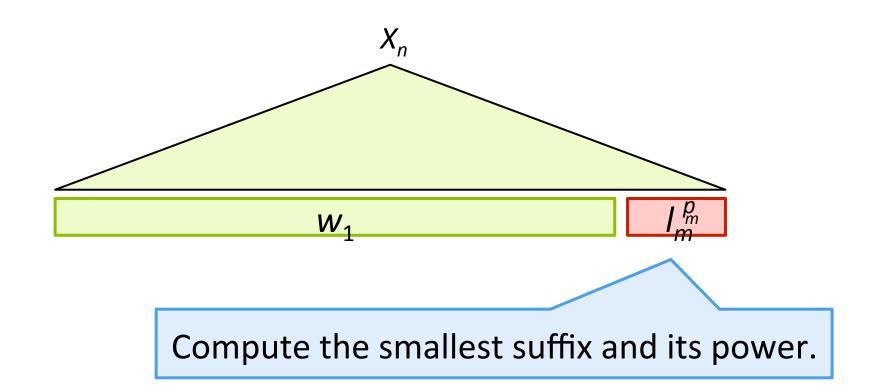
 \uparrow smallest suffix of w_2

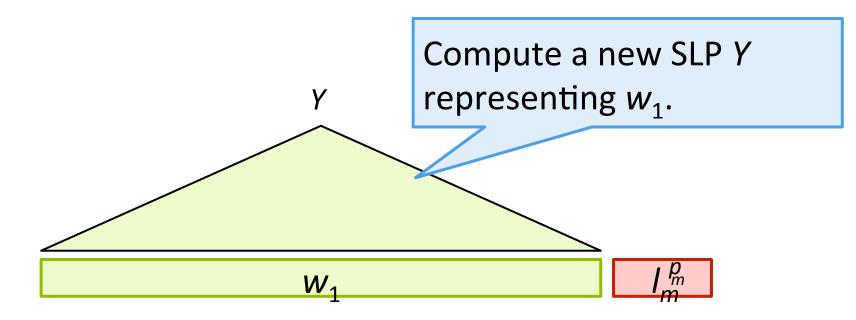
$$w_3 = abcabbabbaabb$$

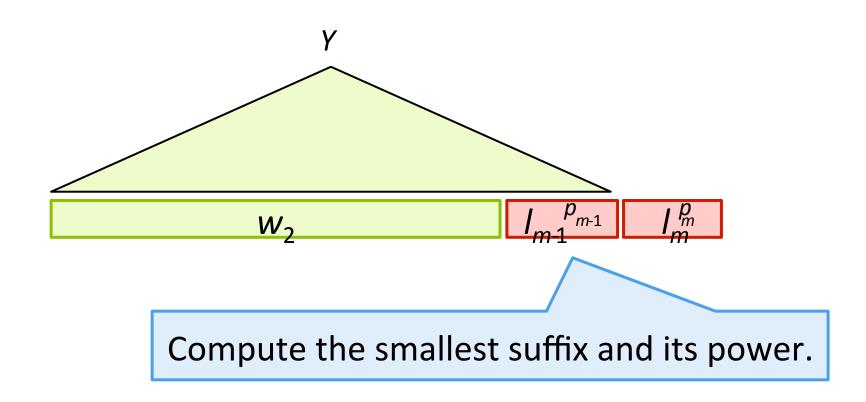
 \uparrow smallest suffix of w_3

$$LF(w) = (abc)(abb)^2(aabb)$$

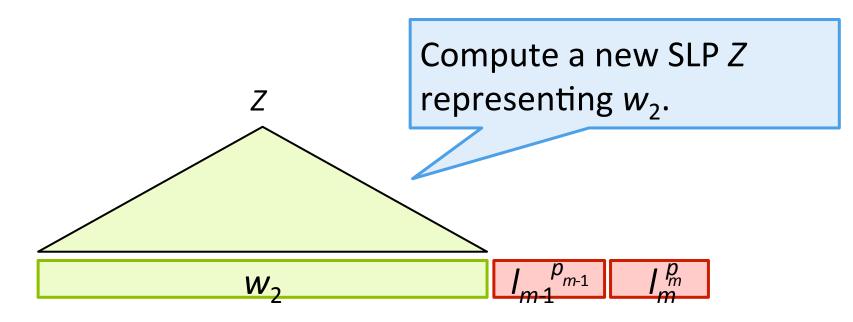








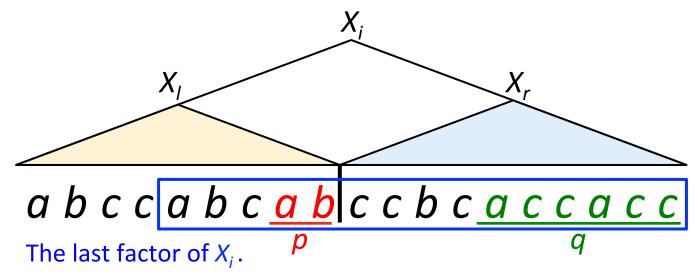
 We want to compute the lexicographically smallest suffix and its power when w is given an SLP.



We iterate these operations m times.

The smallest suffix of an SLP

• Let $X_i = X_i X_r$. Given the last factor p, q of X_i and X_r respectively, can we compute the last factor of X_i ?



- The starting position of the last factor of X_i may not be the same as the starting position of p or q.
- We consider the set of candidates which can be a prefix of the last factor of X_i.

Definition

For any non-empty string $w \in \Sigma^+$, let $LFCand(w) = \{x \mid x \in Suffix(w), \exists y \in \Sigma^+ \text{ s.t. } xy \text{ is the lexicographically smallest suffix of } wy \}.$ (Suffix(w) is the set of all suffixes of w.)

 LFCand(w) is the set of suffixes of w which can be a prefix of the lexicographically smallest suffix of wy for some non-empty string y.

Definition

```
For any non-empty string w \in \Sigma^+, let LFCand(w) = \{ x \mid x \in Suffix(w), \exists y \in \Sigma^+ \text{ s.t. } xy \text{ is the lexicographically smallest suffix of } wy \}. (Suffix(w) is the set of all suffixes of w.)
```

w = ababcababdababc<u>abab</u> = y

Definition

```
For any non-empty string w \in \Sigma^+, let LFCand(w) = \{x \mid x \in Suffix(w), \exists y \in \Sigma^+ \text{ s.t. } xy \text{ is the lexicographically smallest suffix of } wy \}. (Suffix(w) is the set of all suffixes of w.)
```

w = ababcababdabdababcababcce = y

Definition

```
For any non-empty string w \in \Sigma^+, let LFCand(w) = \{x \mid x \in Suffix(w), \exists y \in \Sigma^+ \text{ s.t. } xy \text{ is the lexicographically smallest suffix of } wy \}. (Suffix(w) is the set of all suffixes of w.)
```

w = ababcababdababcabab dc = y

Definition

For any non-empty string $w \in \Sigma^+$, let $LFCand(w) = \{x \mid x \in Suffix(w), \exists y \in \Sigma^+ \text{ s.t. } xy \text{ is the lexicographically smallest suffix of } wy \}.$ (Suffix(w) is the set of all suffixes of w.)

- LFCand has important properties.
- For any two elements of LFCand(w), the shorter one is the prefix of the longer one.

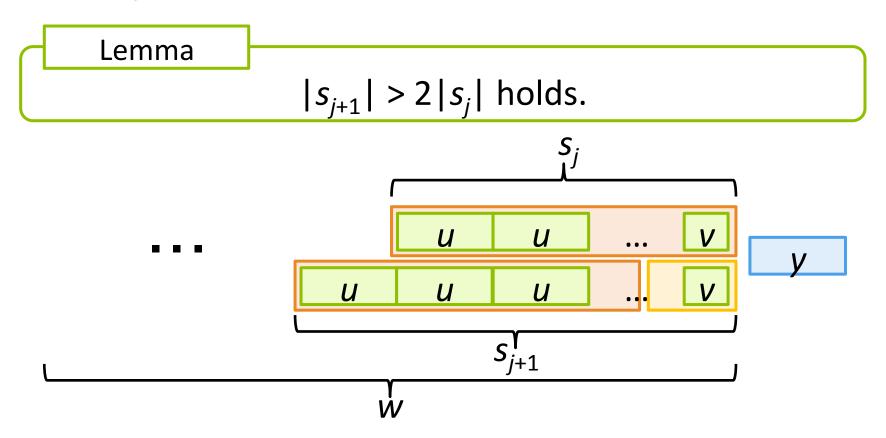
```
w = \underline{abab} \, \underline{cabab} \, \underline{abab} \, \underline{cabab} \, \underline{cabab}
LFCand(w)
```

Lemma

For any string w, the shortest element of LFCand(w) is the last Lyndon factor of w.

• If we can compute *LFCand*, we can compute the Lyndon factorization.

• Let s_i be the *j*th shortest string of *LFCand(w)*.



- If $|s_{i+1}| \le 2|s_i|$, then s_i and s_{i+1} have a period q.
- s_i can not be in LFCand(w).

Thus the following lemma holds.

Lemma

$$|s_{j+1}| > 2|s_j|$$
 holds.

By the above lemma, the following lemma holds.

Lemma

For any string w of length N, $|LFCand(w)| = O(\log N)$.

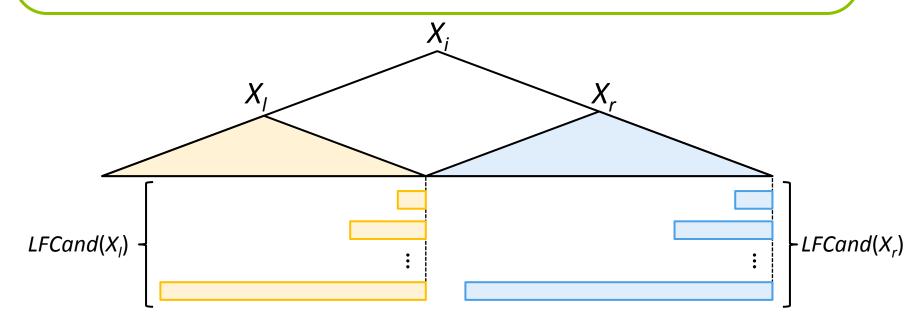
<u>Example</u>

$$w = ababcababdababcabab
LFCand(w)$$

Computing LFCand

Lemma

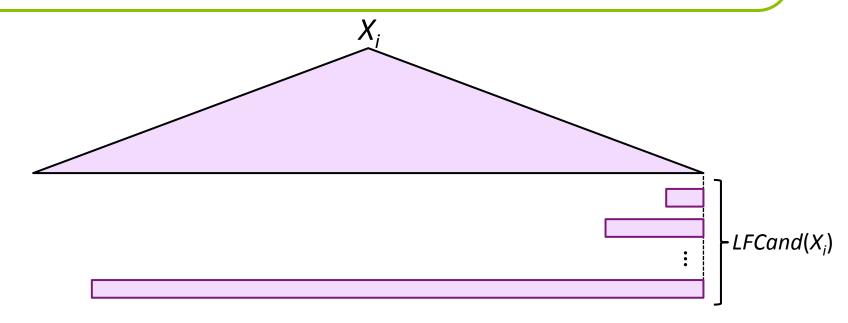
Let $X_i = X_i X_r$ be any production of a given SLP S of size n. Provided that sorted lists for $LFCand(X_i)$ and $LFCand(X_r)$ are already computed, a sorted list for $LFCand(X_i)$ can be computed in $O(n^3)$ time and $O(n^2)$ space.



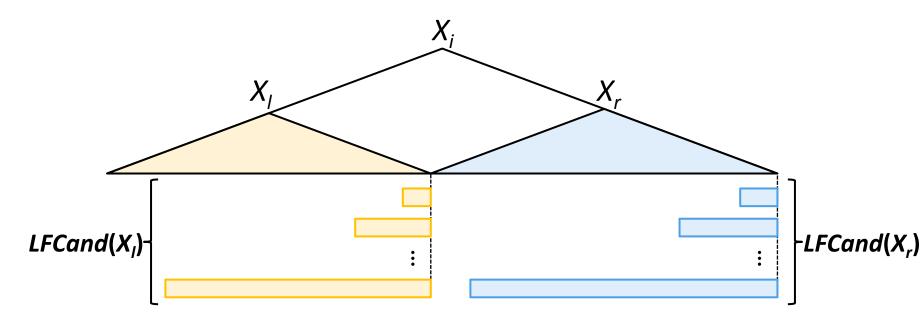
Computing LFCand

Lemma

Let $X_i = X_i X_r$ be any production of a given SLP S of size n. Provided that sorted lists for $LFCand(X_i)$ and $LFCand(X_r)$ are already computed, a sorted list for $LFCand(X_i)$ can be computed in $O(n^3)$ time and $O(n^2)$ space.

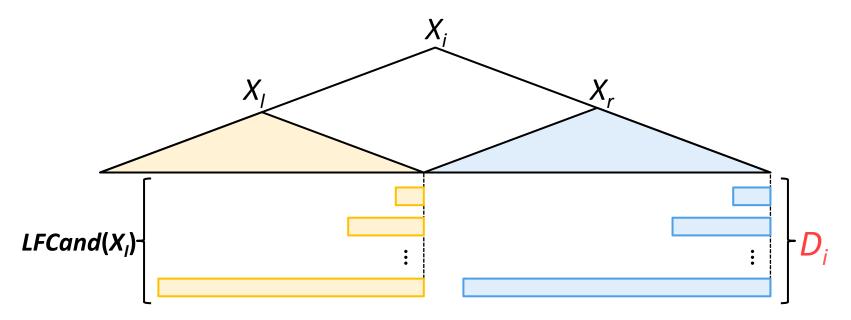


How to compute LFCand



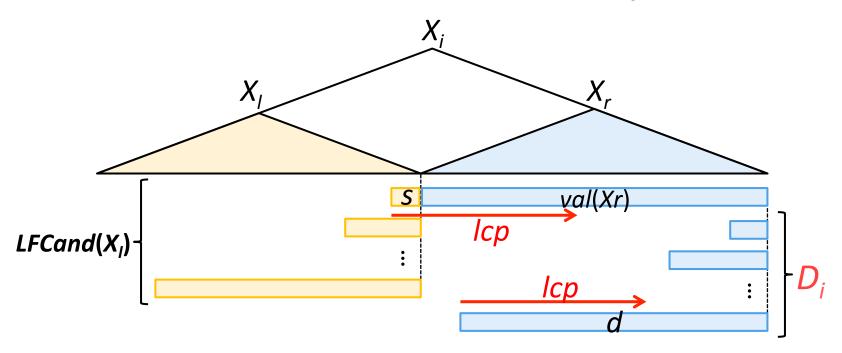
• Let an initially set $D_i \leftarrow LFCand(X_r)$.

How to compute LFCand



- Let an initially set $D_i \leftarrow LFCand(X_r)$.
- We update D_i , and the last D_i is a sorted list of the suffixes of X_i that are candidates of elements of $LFCand(X_i)$.

How to update D_i

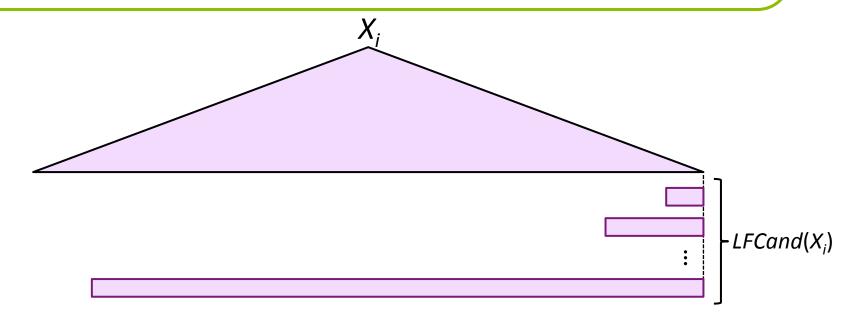


- Let s be the any string of LFCand(X_i).
- We consider whether $s \cdot val(X_r)$ can be in D_i or not by computing the lcp of the longest element d in D_i and $s \cdot val(X_r)$.

Computing LFCands

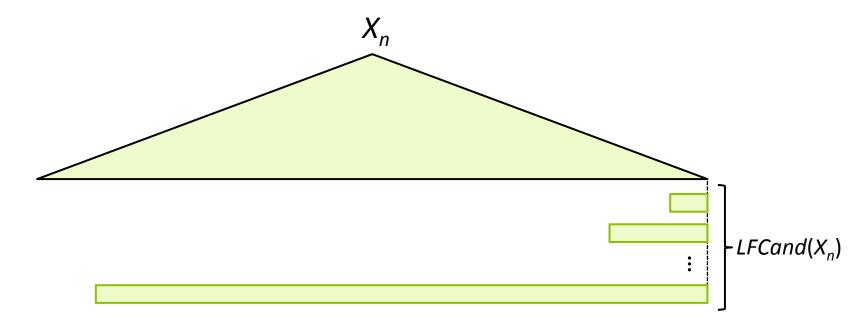
Lemma

Let $X_i = X_I X_r$ be any production of a given SLP S of size n. Provided that sorted lists for $LFCand(X_I)$ and $LFCand(X_r)$ are already computed, a sorted list for $LFCand(X_i)$ can be computed in $O(n^3)$ time and $O(n^2)$ space.



Computing the smallest suffix

We can compute $LFCand(X_n)$ in total of $O(n^4)$ time.



• For all i ($1 \le i \le n$), we compute $LFCand(X_i)$ in $O(n^3)$ time, thus we can compute $LFCand(X_n)$ in $O(n^4)$ time.

Complexity of the algorithm

- We repeat the following procedures m times.
 - Compute the LFCand(X) in $O(n^4)$ time, $O(n^2)$ space.
 - Compute a new SLP Y that represents the remaining string in O(n) time.
- In addition to the above procedure, $LFCand(X_i)$ for each variable X_i requires $O(\log N)$ space.

We can compute LF(w) in a total of $O(mn^4)$ time.

We can compute LF(w) in a total of $O(n^2 + n \log N) = O(n^2)$ space.

Coming Soon. (Hopefully)

Theorem [submitted]

Given an SLP S of size n and height h representing a string w of length N, we can compute LF(w) in $O(nh (n + \log N \log n))$ time and $O(n^2)$ space.

- In this result, the size m of LF(w) is not written explicitly.
- We show the following interesting lemma.

Lemma

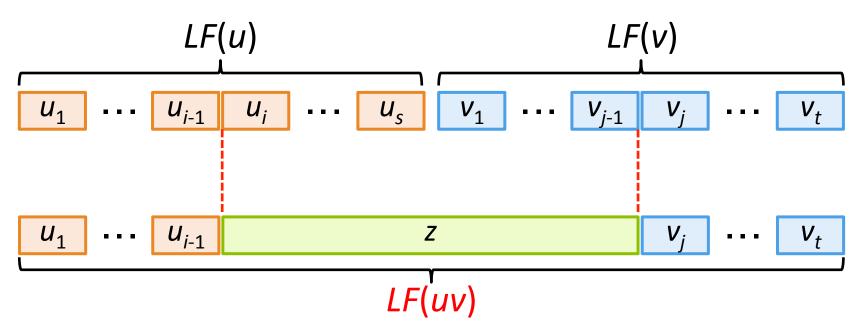
Let n be the size of any SLP representing a string w. The size m of the Lyndon factorization of w is at most n.

Lyndon factorization of concatenated string

Lemma [J. W. Daykin, et al., 1994][A. Apostolico, et al., 1995]

Let $LF(u) = u_1, ..., u_s$ and $LF(v) = v_1, ..., v_t$ with $u, v, u_i, v_j \in \Sigma^*$, $1 \le s$, $1 \le j \le t$. Then either $LF(uv) = u_1, ..., u_s$, $v_1, ..., v_t$ or $LF(uv) = u_1, ..., u_{i-1}, z, v_{j+1}, ..., v_t$ with $z = u_i ... u_s v_1 ... v_j$ for some $1 \le i \le s$, $1 \le j \le t$.

Lyndon factorization of concatenated string



 This lemma implies that we can obtain LF(uv) from LF(u) and LF(v) by computing z since the other Lyndon factors remain unchanged in uv.

Conclusion

Theorem [CPM 2013]

Given an SLP S of size n representing a string w of length N, we can compute LF(w) in $O(mn^4)$ time and $O(n^2)$ space, where m is the number of factors in LF(w).

Theorem [submitted]

Given a SLP S of size n and height h representing a string w of length N, we can compute LF(w) in $O(nh (n + \log N \log n))$ time and $O(n^2)$ space.

Thank you!