Efficient Lyndon factorization of
grammar compressed text

Tomohiro I, Yuto Nakashima,
Shunsuke Inenaga, Hideo Bannai,
Masayuki Takeda

Kyushu University, Japan

CPM 2013 June 19, 2013

Background

[Uncompressed String_] [Compressed String]

= Compress

. <Decompress

processing processing

We want to process compressed strings
without decompressing explicitly.
CPM 2013 June 19, 2013

Problem and our contribution

® We solve the following problem.

1 Problem ~N

Given an SLP S of size n representing a string w of
length N, we compute the Lyndon factorization of w,

Kdenoted by LF(w).

Given an SLP S of size n representing a string w of
length N, we can compute LF(w) in O(mn?#) time and

J

O(n?) space, where m is the number of factors in
LF(w).

CPM 2013 June 19, 2013

Straight line Program (SLP)

® An SLP is a context free grammar in the Chomsky
normal form, that derives a single string.

SLP Derivation Tree %
7

Xl —>a /)(6\ /)(5\
Xz —> b X4 X5)(3 X4
OKK KK X X KKK X
Xs =2 X3 Xy XXX XX, X oL X X
X 2 X4 Xs il Ez il iz il ~ R L
XXX | %

a ab ab aab ab aab
CPM 2013 June 19, 2013

Lyndon word

Definition [R. C. Lyndon, 1954 |

A string wis a Lyndon word, if w is lexicographically
strictly smaller than its proper cyclic shifts.

Lyndon word

w =|aababb|
" baabab
| bbaaba
roper < abbaat

babbaa
_ababba

exicographic order

aababb = w
ababba
abbaab

baabab
babbaa

v bbaaba

CPM 2013 June 19, 2013

Lyndon factorization

Definition [K. T. Chen et al., 1958]

The Lyndon factorization of a string w, denoted by
LF(w), is the factorization I, %..["M of w, such that

each /. € }*is a Lyndon word, p;>21, and [. > |, for
all1<i<m.

W=abﬂabﬂabﬂaabcdda

LF(w) =|(abc)(abb)(aabc)(a)3 oo

factors

lexicographic order abc > abb > aabc > a

The Lyndon factorization of any string w is unique.

CPM 2013 June 19, 2013

Representation of factorization

® Each Lyndon factor is represented by pair of length
and its power.

® The representation takes O(m) space where m is
the number of Lyndon factors.

® We call mis the size of the Lyndon factorization.

Example

W=abdabﬂabﬁaabﬁdda

LF(w) =(abc)(abb)?(aabc)(a)?3

LF(w)=(3, 1)(3, 2)(4, 1)(1, 3)

CPM 2013 June 19, 2013

Linear time algorithm

® There exists a linear time algorithm to compute the
Lyndon factorization.

Theorem [J. P. Duval, 1983 |

Given a string w of length N,
LF(w) can be computed in O(N) time.

® |f an SLP is very compressible, we want to compute
the LF(w) in polynomial time for n where n is size of

an SLP that derives w.
(Since N = 0(2").)

CPM 2013 June 19, 2013

basic idea of our algorithm

Lemmma [J. P. Duval, 1983]
For any string w, let LF(w) = llpl.../mp”".
Then, | is the lexicographically smallest suffix of w.

w =abcabbabblaabb

smallest suffix of w

w,=abcabblabb

smallest suffix of w; T

w,=abclabb

T smallest suffix of w,

wy=labc

I smallest suffix of w,

LF(w) = (abc)(abb)?(aabb)

CPM 2013 June 19, 2013

Sub problem

® We want to compute the lexicographically smallest
suffix and its power when w is given an SLP.

CPM 2013 June 19, 2013

Sub problem

® We want to compute the lexicographically smallest
suffix and its power when w is given an SLP.

W, [

Compute the smallest suffix and its power.

CPM 2013 June 19, 2013

Sub problem

® We want to compute the lexicographically smallest
suffix and its power when w is given an SLP.

Compute a new SLP Y
Y representing w;.

CPM 2013 June 19, 2013

Sub problem

® We want to compute the lexicographically smallest
suffix and its power when w is given an SLP.

w, [om | L

L

/T

Compute the smallest suffix and its power.

CPM 2013 June 19, 2013

Sub problem

® We want to compute the lexicographically smallest
suffix and its power when w is given an SLP.

Compute a new SLP Z
Z representing w,.

w, [om | L

L

® We iterate these operations m times.

CPM 2013 June 19, 2013

The smallest suffix of an SLP

® Let X.= X, X, . Given the last factor p, g of X, and X,
respectively, can we compute the last factor of X; ?

1
abcclabcablccbcaccacc
The last factor of X.. p q

® The starting position of the last factor of X; may not
be the same as the starting position of p or g.

® We consider the set of candidates which can be a

prefix of the last factor of X .
CPM 2013 June 19, 2013

LFCand
Definition
For any non-empty string weE }~,
let LFCand(w) = {x | x € Suffix(w), Ay € >*
s.t. xy is the lexicographically smallest suffix of wy }.
(Suffix(w) is the set of all suffixes of w.)

® [FCand(w) is the set of suffixes of w which can be a
prefix of the lexicographically smallest suffix of wy
for some non-empty string y.

CPM 2013 June 19, 2013

LFCand
Definition
For any non-empty string weE }~,
let LFCand(w) = {x | x € Suffix(w), Ay € >*
s.t. xy is the lexicographically smallest suffix of wy }.
(Suffix(w) is the set of all suffixes of w.)

w=ababcababdababcabab abb=y

CPM 2013 June 19, 2013

LFCand
Definition
For any non-empty string weE }~,
let LFCand(w) = {x | x € Suffix(w), Ay € >*
s.t. xy is the lexicographically smallest suffix of wy }.
(Suffix(w) is the set of all suffixes of w.)

w=ababcababdababcabab cc=y

CPM 2013 June 19, 2013

LFCand
Definition
For any non-empty string weE }~,
let LFCand(w) = {x | x € Suffix(w), Ay € >*
s.t. xy is the lexicographically smallest suffix of wy }.
(Suffix(w) is the set of all suffixes of w.)

w=ababcababdababcabab dc=y

CPM 2013 June 19, 2013

LFCand
Definition
For any non-empty string weE }~,
let LFCand(w) = {x | x € Suffix(w), Ay € >*
s.t. xy is the lexicographically smallest suffix of wy }.
(Suffix(w) is the set of all suffixes of w.)

w=ababcababdababcabab

} LFCand(w)

CPM 2013 June 19, 2013

Properties of LFCand

® [FCand has important properties.

® For any two elements of LFCand(w), the shorter
one is the prefix of the longer one.

w=ababcababdababcabab

} LFCand(w)

CPM 2013 June 19, 2013

Properties of LFCand

Lemma

For any string w, the shortest element of LFCand(w)
is the last Lyndon factor of w.

w=ababcababdababcabab

} LFCand(w)

® |f we can compute LFCand, we can compute the
Lyndon factorization.

CPM 2013 June 19, 2013

Properties of LFCand

® Lets; be the jth shortest string of LFCand(w).

Lemma
[_ i1l >2]s;| holds. J
S.
o)
l \
u u Vv
y
u u u Vv
L ']
\ 3j+1]
Y
w

® If |s;,| <2]s;], thens;and s, have a period g.
® s;can not be in LFCand(w).
CPM 2013 June 19, 2013

Properties of LFCand

® Thus the following lemma holds.

Lemma
|si1] >2]s;| holds.

® By the above lemma, the following lemma holds.

Lemma
For any string w of length N, |LFCand(w)| = O(log N).

Example

w=ababcababdababcabab

} LFCand(w)

CPM 2013 June 19, 2013

Computing LFCand

Lemma
Let X. = X, X, be any production of a given SLP S of size n.
Provided that sorted lists for LFCand(X)) and LFCand(X,) are
already computed, a sorted list for LFCand(X;) can be
computed in O(n3) time and O(n?) space.

LFCand(X)) - | 1 rLFCand(X))

CPM 2013 June 19, 2013

Computing LFCand

Lemma
Let X. = X, X, be any production of a given SLP S of size n.
Provided that sorted lists for LFCand(X)) and LFCand(X,) are
already computed, a sorted list for LFCand(X;) can be
computed in O(n3) time and O(n?) space.

X.

/

-LFCand(X))

CPM 2013 June 19, 2013

How to compute LFCand

X, X

LFCand(X)] | . | [LFCand(X))

® Let aninitially set D, & LFCand(X,).

CPM 2013 June 19, 2013

How to compute LFCand

X, X

LFCand(X)] | : 'Dl-

® Let an initially set D, & LFCand(X,).

® We update D,, and the last D;is a sorted list of the
suffixes of X; that are candidates of elements of

LFCand(X).

CPM 2013 June 19, 2013

How to update D,

X

/

X, X

S \/)ﬂ/(X r) _
LFCand(X))- : Icp | —

Icp S : i
| d

® Let s be the any string of LFCand(X)).

® We consider whether s * val(X,) can be in D, or not
by computing the lcp of the longest element d in D,

and s - val(X,).

CPM 2013 June 19, 2013

Computing LFCands

Lemma
Let X. = X, X, be any production of a given SLP S of size n.
Provided that sorted lists for LFCand(X)) and LFCand(X,) are
already computed, a sorted list for LFCand(X;) can be
computed in O(n3) time and O(n?) space.

X.

/

-LFCand(X))

CPM 2013 June 19, 2013

Computing the smallest suffix

We can compute LFCand(X,) in total of O(n*) time.

X

n

1 FLFCand(X,)

® Foralli(1<i<n), wecompute LFCand(X.) in O(n3)
time, thus we can compute LFCand(X,) in O(n*) time.

CPM 2013 June 19, 2013

Complexity of the algorithm

® We repeat the following procedures m times.
® Compute the LFCand(X) in O(n*) time, O(n?) space.

® Compute a new SLP Y that represents the
remaining string in O(n) time.

® |n addition to the above procedure, LFCand(X) for
each variable X; requires O(log N) space.

[We can compute LF(w) in a total of O(mn?) time.]

4 A
We can compute LF(w) in a total of

O(n? + n log N) = O(n?) space.
N Y

CPM 2013 June 19, 2013

Coming Soon. (Hopefully)

Given an SLP S of size n and height h representing a

string w of length N, we can compute LF(w) in
O(nh (n + log N log n)) time and O(n?) space.

® |n this result, the size m of LF(w) is not written
explicitly.

® We show the following interesting lemma.

~1 Lemma N
Let n be the size of any SLP representing a string w.
\The size m of the Lyndon factorization of w is at most n.

CPM 2013 June 19, 2013

Lyndon factorization of concatenated string

Lemma [J. W. Daykin, et al., 1994][A. Apostolico, et al., 1995]
Let LF(u) = u,,..., u.and LF(v) = v,,.., v,with u, v, u,
vjEZ*, 1<s,1<j<t.Then either LF(uv) = uy,..., U,
Vy,..., V. Or LF(uv) = u,,..., U., Z, View o Vi with z = u....
uyv,..v.forsomel<i<s 1<j<t.

CPM 2013 June 19, 2013

Lyndon factorization of concatenated string

LF(u) LF(v)
\ \
| I | 1
Uy | v ul._1I u, | .| u, V, | - Vf-lll Vi | eee | Yy
u, u,_ll z | v, Vv,
)
'
LF(uv)

® This lemma implies that we can obtain LF(uv) from
LF(u) and LF(v) by computing z since the other
Lyndon factors remain unchanged in uv.

CPM 2013 June 19, 2013

Conclusion

Given an SLP S of size n representing a string w of
length N, we can compute LF(w) in O(mn?*) time and
O(n?) space, where m is the number of factors in

LF(w).

Theorem [submitted

Given a SLP S of size n and height h representing a
string w of length N, we can compute LF(w) in
O(nh (n + log N log n)) time and O(n?) space.

Thank you !

CPM 2013 June 19, 2013

