New Algorithms for Position Heaps

Travis Gagie, Wing-Kai Hon, Tsung-Han Ku

CPM2013

&

&

&

E

E

Outline

Position Heap

Limiting Length and Height

Turing a Suffix Tree into a Position Heap
Using a Position Heap as a Suffix Array

Using a Compressed Suffix Array as a Position Heap

Position Heap

* 1he root 1s labeled 0 and the other nodes are labeled 1 to
n such that parent’s labels are smaller than their
children’s labels

+ For 1<i <n, the path label of the node labeled i 1s a
prefix of S[i..n].

+ For 1<i<n, the node labeled i stores a pointer (called
maximal-reach pointer) to the deepest node whose path
label 1s a prefix of S[i..n]

Position Heap

o«

A position heap for S = abaababbabbab$

4

Position Heap

o« e

A position heap for S = abaababbabbab$

5

Position Heap

A position heap for S = abaababbabbab$

6

Position Heap

A position heap for S = abaababbabbab$

7

Position Heap

A position heap for S = abaababbabbab$

8

Position Heap

A position heap for S = abaababbabbab$

9

Position Heap

A position heap for S = abaababbabbab$

10

Position Heap

A position heap for S = abaababbabbab$

11

Position Heap

A position heap for S = abaababbabbab$

12

Position Heap

A position heap for S = abaababbabbab$

13

Position Heap

A position heap for S = abaababbabbab$

14

Position Heap

A position heap for S = abaababbabbab$

15

Position Heap

A position heap for S = abaababbabbab$

16

Position Heap

A position heap for S = abaababbabbab$

17

Position Heap

s

o 4 b
PN
$

(& &

A position heap for S = abaababbabbab$

18

Position Heap

+ With the following auxiliary data structures, the pattern
matching problem can be solved in optimal time (1.¢.

O(|P| + occ)).

oy An array A of pointers such that, given i, in O(1) time
we can find the node labeled i.

@ A data structure B such that, given i and j, in O(1) time
we can determine whether the node labeled i 1s an
ancestor of the node labeled ;.

19

Query on Position Heap

[)

1’ a b
2 £
$

,-/ A

A position heap for S = abaababbabbab$
Query pattern P = aabab, candidate are 3and 3.

Query on Position Heap

()

2
\

,-/ A

b

=

Query pattern P = aabab, candidate 1s 3.
Check 1f 3+2= 5 1s on the path or 1n the subtree of 8.

Limiting Length and Height

+ Suppose the length of the query pattern P 1s always
less than or equal to a variable M.

+ Then we can build a position heap whose height
would be bounded in O(M).

22

Limiting Length and Height

+ Suppose we want to build the position heap of a string

o F
Y Y

2M 2M

Instead of building the position heap on S, we build the
position heap of S°/S”.

23

Limiting Length and Height

According to the nature of the position heap, the height
of the position heap of S’/S”would be O(M).

By adopting Ehrenfeucht et al.’s approaches with an
AVL tree, we have the following theorem.

Theorem 1: If we will never search for a pattern of length greater than
M in a dynamic string S, then we can maintain a position heap that
works as an index for S such that

» Searching for a pattern of length m = M takes O(mlog|S|+occ) time,
* Inserting a substring of length / takes O((M+/)Mlog(|S|+/)) time,

* Deleting a substring of length / takes O((M+[)Mlog|S]|) time.

24

Suffix Tree Into Position Heap

+ A position heap of a string S 1s a subtree of the suffix
trie of S.

+ Suffix tree 1s a compact suffix trie.

+ Here, we show how to turn a suffix tree into a
position heap.

25

The suffix tree of S = abaababbabbabs$.

26

The suffix tree of S = abaababbabbabs$.

27

The suffix tree of S = abaababbabbabs$.

28

The suffix tree of S = abaababbabbabs$.

29

The suffix tree of S = abaababbabbabs$.

30

The suffix tree of S = abaababbabbabs$.

31

The suffix tree of S = abaababbabbabs$.

32

The suffix tree of S = abaababbabbabs$.

33

The suffix tree of S = abaababbabbabs$.

34

The suffix tree of S = abaababbabbabs$.

35

The suffix tree of S = abaababbabbabs$.

36

The suffix tree of S = abaababbabbabs$.

Si

The suffix tree of S = abaababbabbabs$.

38

The suffix tree of S = abaababbabbabs$.

89

The suffix tree of S = abaababbabbabs$.

40

The suffix tree of S = abaababbabbabs$.

41

Suffix Tree Into Position Heap

+ (G1ven a suffix tree, we can build the position heap 1n
linear time by using Westbrook’s approaches, and
Berkman et al.’s approaches.

+ By using Farach’s linear time suffix tree construction
algorithm independent of the alphabet size, we can build
a position heap of a string S 1n linear time independent
of the alphabet size.

42

Using Position Heap as Suffix Array

+ Define D[i] = the depth of the node labeled SA[]

+ Define E[i] = the depth of the node with rank i in
preorder

43

ab
$

3 &

P N

+
I TSI Ry 1T D NB B2 = wd 732, 3, 2]

=111, 2,2,3,3,4, 1, 2, 2, 3,4, 2,3]

SA=114,3,12,1,4,9,6, 13,2, 11, 8, 5, 10, 7]

44

Using Position Heap as Suffix Array

+ By using succinct partial rank and select query structures
which support constant time query on arrays D and E,
we can compute the SA[7] value in constant time.

+ Theorem: We can add O(n log /) bits to a position heap,
where /4 1s the height of the heap, such that i1t supports
access to the corresponding suffix array and inverse
suffix array in O(1) time.

45

Using CSA as Position Heap

To represent a position heap, we need

E

E

E

Its structure as a tree;=» balanced parentheses representation
The nodes’ labels; = by using £, D, and S4

The edges’ labels; =» by using SA-! and a bit-vector

The maximal-reach pointers; = next slide, we will show

The array A4 of pointers; =» similar to previous one described in the
previous slides

The data structure B; =»similar to previous one described in the
previous slides

46

N
~Q
N
S
"
Q
S
Sq

= Y

CCYCEYCEPFECE)))) CCY CCE) ™)) ())

Using CSA as Position Heap

CC)CC) CEFECEF)))) CC) CCE) **)) (FF))

x4

This pair represents the node labeled 9.

Suppose we want to compute the maximal-reach pointer of
the node labeled 6.

First we compute SA-'[6] = 7. ; it is the 7-th star we visited

Then we compute which parentheses pair encloses the 7-th
star.

48

Thank you

