LOCATING ALL MAXTIMAL
APPROXIMATE RUNS
IN A STRING

Mika Amit, Maxime Crochemore and Gad M. Landau

CPM 2013, Germany

EXACT RUNS

An exact run is a non-empty substring of T,
that can be divided into identical adjacent non-
overlapping substrings: Ut.uy

Y=/ Aa b cabocaibeaboaal

v = abe :
(period) Ur=a

period length = lul = p

EXACT RUNS

o An exact run is a non-empty substring of T,
that can be divided into identical adjacent non-
overlapping substrings: Ut.uy

=7 ab caboabeabicalt
period = abe

e A maximal exact run is an exact run that
cannot be extended

RELATED WORK

o Given a string T of length i,
detecting all occurrences of exact runs in T
can be done in Olnlogn)-time

o Crochemore, 1981

o Apostolico & Preparata, 1983

e Main & Lorentz, 1984

RELATED WORK

o Given a string T of length i,
detecting all exact runs in T can be done in
0(n)-time

o Crochemore, 1983
e Main, 1989

o Kolpakov and Kucherov, 1999

APPROXIMATE RUNS

e Finding approximate runs is sometimes more
sensible than finding exact runs

o There are many different measurements and
definitions of approximate runs

o The difference is in measuring the differences
between the periods

RELATED WORK

Landau and Schmidt, 1993

Sim, [liopoulos, Park and Smyth, 1999
Landau, Schmidt and Sokol, 2001
Kolpakov and Kucherov, 2001

Amir, Eisenberg and Levy, 2012

APPROXIMATE RUNS - V.1

Given a string T and a number Kk,

find a substring of T that can be divided into
adjacent non-overlapping substrings: Ut.u1,
such that the difference between every two
adjacent periods does not exceed k

T- . sbaaboadcddeder,

I-MAR
(Maximal Approximate Run) (4-MAR)

APPROXIMATE RUNS - V.2

Given a string T and a number k,

find a substring of T that can be divided into
adjacent non-overlapping substrings: Ut.u1,
such that the difference between every two
periods does not exceed k

= = b d cadcd

b C‘c} b e,
; J

APPROXIMATE RUNS - V.3

Given a string T and a number k,
find a substring of T that can be divided into

adjacent non-overlapping substrings: Ut.u1,
such that the difference between each period
and a consensus substring does not exceed k

1= a'b a be= ¢ ad c‘b Cir.

I-MAR (4-MAR)

APPROXIMATE RUNS -
OURK VERSION

Given a string T and a number k,

find a substring of T that can be divided into
adjacent non-overlapping substrings: Ut.u1,
such that the sum of all differences between each
period and a consensus substring < k

1= ab C a b e b € a b ca'b Ciy.

3-MAR

U =abc odifi

MISMATCH VS§. MODIFIED LETTER

I'=.,abdabdabcabdabd..

mismateh mismateh

MISMATCH VS§. MODIFIED LETTER

2 mismatches B > 1 modified letter

T= dabdabdablabdabd

miéma’rch

MISMATCH VS§. MODIFIED LETTER

2 mismatches ¢ 1 modified letter

1 mismatch ;‘J‘ 2 n{p modified letters

T=...abdab‘ab c‘ab Ca b~

miémafch

MISMATCH VS§. MODIFIED LETTER

2 mismatches == 1 modified letter

- %, modified letters

1 mismatch ==

T =" b dabda bda bda b -

APPROXIMATE RUNS -
PROBLEM DEFINITION

Input: a string T, of length n, and a number k

Output: for each period size 1 <p<"3,

find all occurrences of k-MARs with period
lengthpinT

APPROXIMATE RUNS -
PROBLEM DEFINITION

Input: a string T, of length n, and a number k

Output: for each period size 1 <p<"3,

find all occurrences of k-MARs with period
lengthpinT

LOCATING ALL K-NMARS
ALGORITHMS

An 0(n?) algorithm
(uses Parikh matrix)

An improved 0lnlognk?) algorithm
(uses Main & Lorentz ('84) technique)

An efficient Q(nlognkZogk) algorithm

AN O(N2) ALGORITHM

Using Parikh matrix (p=3 k=2)

/ﬂ Wifl a | b | c\la | b

“Wi n ner ’,.,. "R Sy o
letter p—uwu—o—y * #modified letters = 8

AN O(N2) ALGORITHM

Using Parikh matrix (p=3 k=2)

#wodified letters = 2

AN O(N2) ALGORITHM

Time complexity using Parikh matrix:
for each period size | sp<¥%
find all k-MARs of size p in 0{n) time

Total: 0{n?) time (for constant alphabet)

AN IMPROVED ALGORITHM

Divide and Conquer (Main & Lorentz):

* for each period size p
* find all k-MARs with period size p that
contain the middle position

SOME OBSERVATIONS..

2 mismatches | 1 modified letter

e

T=_abdabdabidabdabd..

Observation 1:
A k-MAR can contain at most 2k*1 mismatches

X ¥ X X & xu 3 X ¥ 5 &

| | s RiEBaiiast N Rt S~ 2 £S o A5 . Bl e
Ry 30 - a - - c r S o ik e ’ | = y
| | |
1
|
i 1
| i
I

SOME OBSERVATIONS..

Observation 2:

A k-MAR can contain at most 0(k) problematic
columns for each period size

p=7 k=1
problematic
columns
b 2 gim 4 5 pin 7 2 phn 4 Sphn Tmim 2 phw 4 ¥
aabbcbdaacbcbddac'bc
‘There are 0(k) ;

problematic columns |

SOME OBSERVATIONS..

~ (exaet run)

There are 0(k) zones |

SOME OBSERVATIONS..

Observation 3:
A k-MAR can either start on the leftmost position of
a zone or on the rightmost k*1 periods of it

k=3
X X
1idicdaidicdaidicdaidicda }i_
| U = atied

On each zone there are at mos’r
{O(kz) positions fo visit

AN IMPROVED ALGORITHM

Given a period length p, and a text T:
%k Find 4k+2 mismatch positions:
X v Xn g X ¥

%k On each zone visit only problematic columns

in the last k*1 periods
X X

abcdabedalfcdaiiedaldcal

7

AN IMPROVED ALGORITHM

Time complexity of iteration 1:

* for all period length ISPS%

+ find all k-MAKRs that contain position“/z

1. find (k) mismatch positions in Q(k) time

2. for each one of the Olk) zones:
visit only Qlk2) positions in Q{k?®) time

Total of 0lnk?) for iteration 1
Total of Olnlognk?) time for the entire algorithm

THE €EFFICIENT ALGORITHM

Observation:
Not all 0(k?) positions in a zone need to be
visited

x x NN S O B e L e e o
- = 3 " G £ RS N L T R R P Ry Sy P ;
iz . ag g R RS I SRR e PEEIN TT AREL e oy LA b
B 7} St s R o . o e m ol b e geml WS S A N U S LI 2 e Ges.z "
- i~ o AR arn o S citeddd : - 3 e as0n . - agcna - O TR > = >

THE €EFFICIENT ALGORITHM

Observation 3:

Not all 0(k2) positions in a zone need to be
visited

L= abdd abdd abdd v =abed

i

problematic problematic

positions colvmns initial number of ‘
ﬂproblema’nc positions: O(k) |

THE €EFFICIENT ALGORITHM

Observation 3:

Not all 0(k2) positions in a zone need to be
visited

| , r
L= abdd abdd abdd U= ?fd R = ebed ebed ebed ebed

1/

“hew’ problematic
problematic columns
positions

number of added |
problematic ;
positions: Olklogk) |

THE €EFFICIENT ALGORITHM

Time complexity of iteration 1:

* for all period length ISPS%

+ find all k-MAKs that contain position%

1. find O(k) mismatch positions in Q(k) time

2. for each one of the Qlk) zones:
visit Q(klogk) positions in Q(kZlogk) time

Total QlnkZogk) for iteration 1
Total O(nlognkZlogk) time for the entire algorithm

