LOCATING ALL MAXIMAL APPROXIMATE RUNS IN A STRING

Mika Amit, Maxime Crochemore and Gad M. Landau

CPM 2013, Germany

EXACT RUNS

 An exact run is a non-empty substring of **I**, that can be divided into identical adjacent nonoverlapping substrings: U[†].U₁

EXACT RUNS

 An exact run is a non-empty substring of **I**, that can be divided into identical adjacent nonoverlapping substrings: U[†].U₁

 $T = \dots a b c a b c a b c a b c a b \dots$

period = abc

• A maximal exact run is an exact run that cannot be extended

RELATED WORK

- Given a string **T** of length **n**, detecting all occurrences of exact runs in **T** can be done in **O(nlogn)**-time
 - Crochemore, 1981
 - Apostolico & Preparata, 1983
 - Main & Lorentz, 1984

RELATED WORK

- Given a string **T** of length **n**,
 detecting all exact runs in **T** can be done in
 O(n)-time
 - Crochemore, 1983
 - Main, 1989
 - Kolpakov and Kucherov, 1999

APPROXIMATE RUNS

- Finding approximate runs is sometimes more sensible than finding exact runs
- There are many different measurements and definitions of approximate runs
- The difference is in measuring the differences between the periods

RELATED WORK

- Landau and Schmidt, 1993
- Sim, Iliopoulos, Park and Smyth, 1999
- Landau, Schmidt and Sokol, 2001
- Kolpakov and Kucherov, 2001
- Amir, Eisenberg and Levy, 2012

...

APPROXIMATE RUNS - V.1

 Given a string **1** and a number **k**, find a substring of **1** that can be divided into adjacent non-overlapping substrings: **U**[†].**U**₁, such that the difference between every two adjacent periods does not exceed **k**

T = ...a b d a b c a d c d d c d e c ... I-MAR (Maximal Approximate Run) (4-MAR)

APPROXIMATE RUNS - V.2

Given a string **1** and a number **k**,
 find a substring of **1** that can be divided into adjacent non-overlapping substrings: **U[†]**.**U**₁,
 such that the difference between **every** two periods does not exceed **k**

APPROXIMATE RUNS - V.3

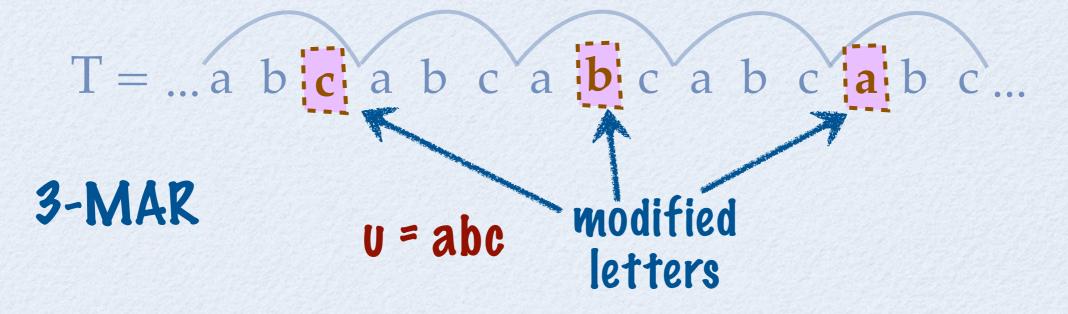
Given a string **1** and a number **k**,
 find a substring of **1** that can be divided into adjacent non-overlapping substrings: **u**[†].**u**₁,
 such that the difference between each period and a consensus substring does not exceed **k**

$$T = \dots a b d a b c a d c a d c d b c \dots$$

-MAR $U = abc$ (4-MAR)

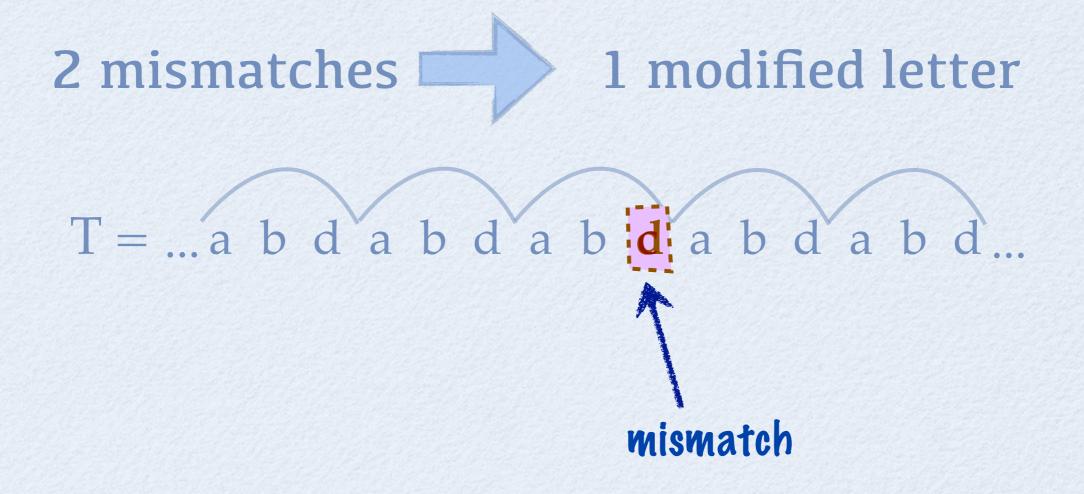
APPROXIMATE RUNS -OUR VERSION

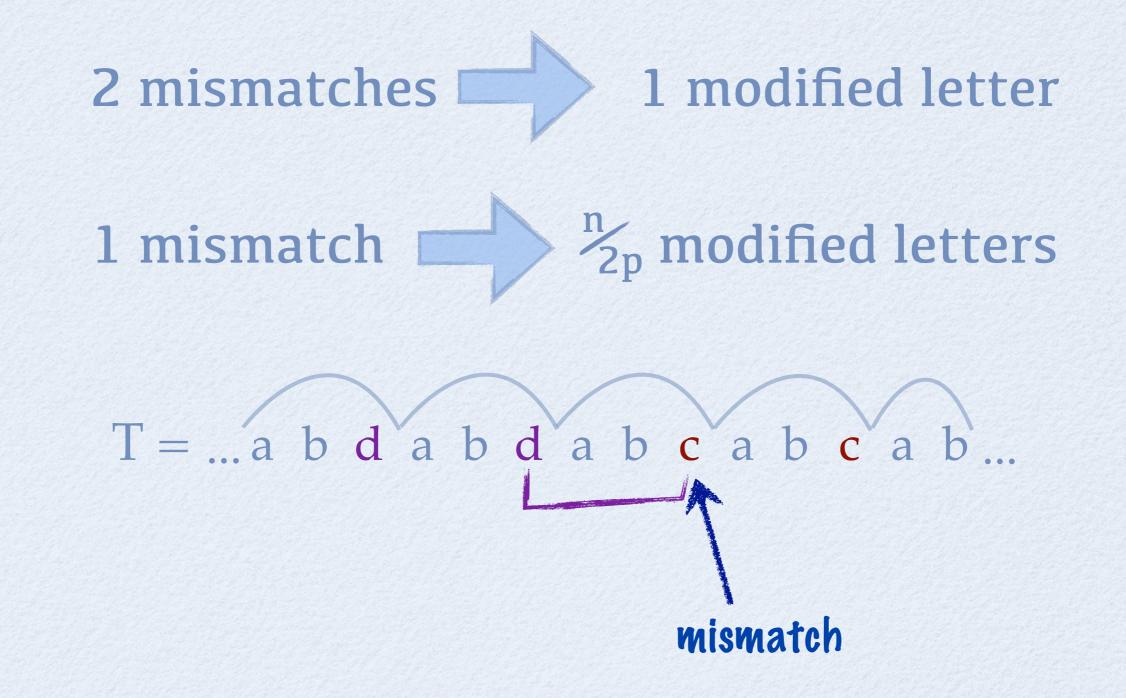
 Given a string **1** and a number **k**, find a substring of **1** that can be divided into adjacent non-overlapping substrings: **U[†]**.**U**₁, such that the **sum** of all differences between each period and a **consensus** substring ≤ **k**

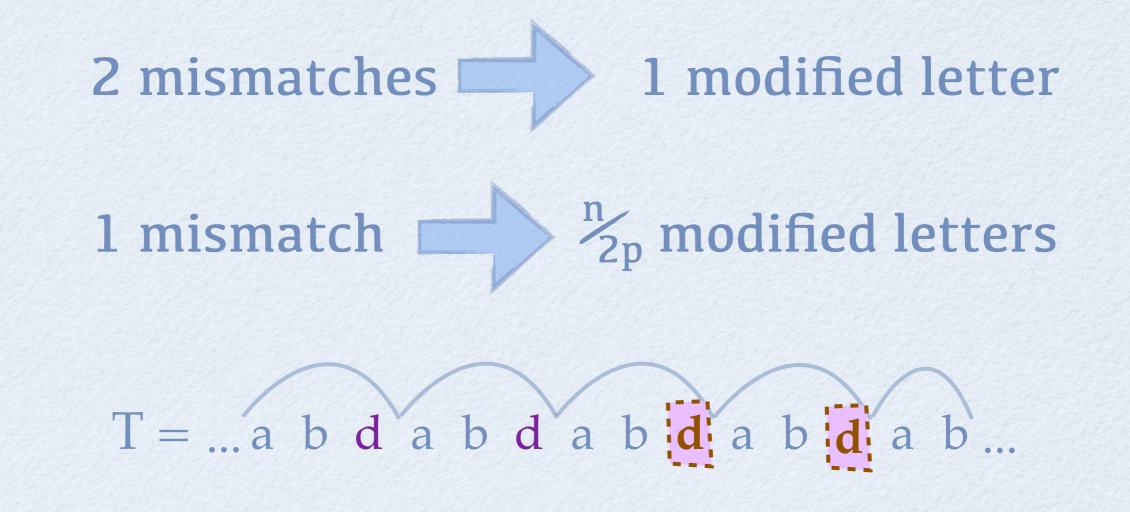


$$T = ...a b d a b d a b c a b d a b d ...$$

mismatch mismatch



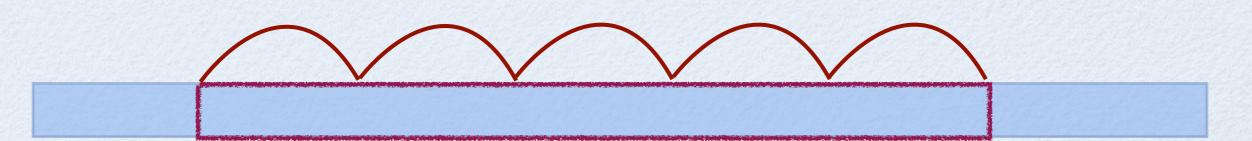




APPROXIMATE RUNS -PROBLEM DEFINITION

Input: a string **I**, of length **n**, and a number **k**

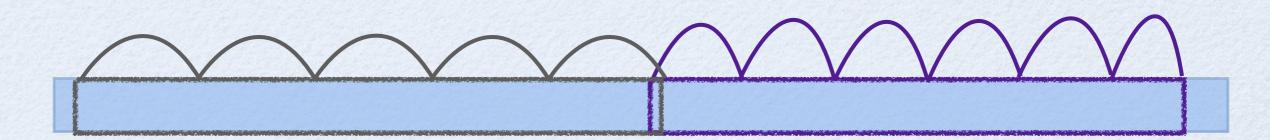
Output: for each period size $1 \le p \le \frac{n}{2}$, find all occurrences of **k-MAR**s with period length **p** in **T**



APPROXIMATE RUNS -PROBLEM DEFINITION

Input: a string **I**, of length **n**, and a number **k**

<u>Output:</u> for each period size $1 \le p \le \frac{n}{2}$, find all occurrences of **k-MAR**s with period length **p** in **T**

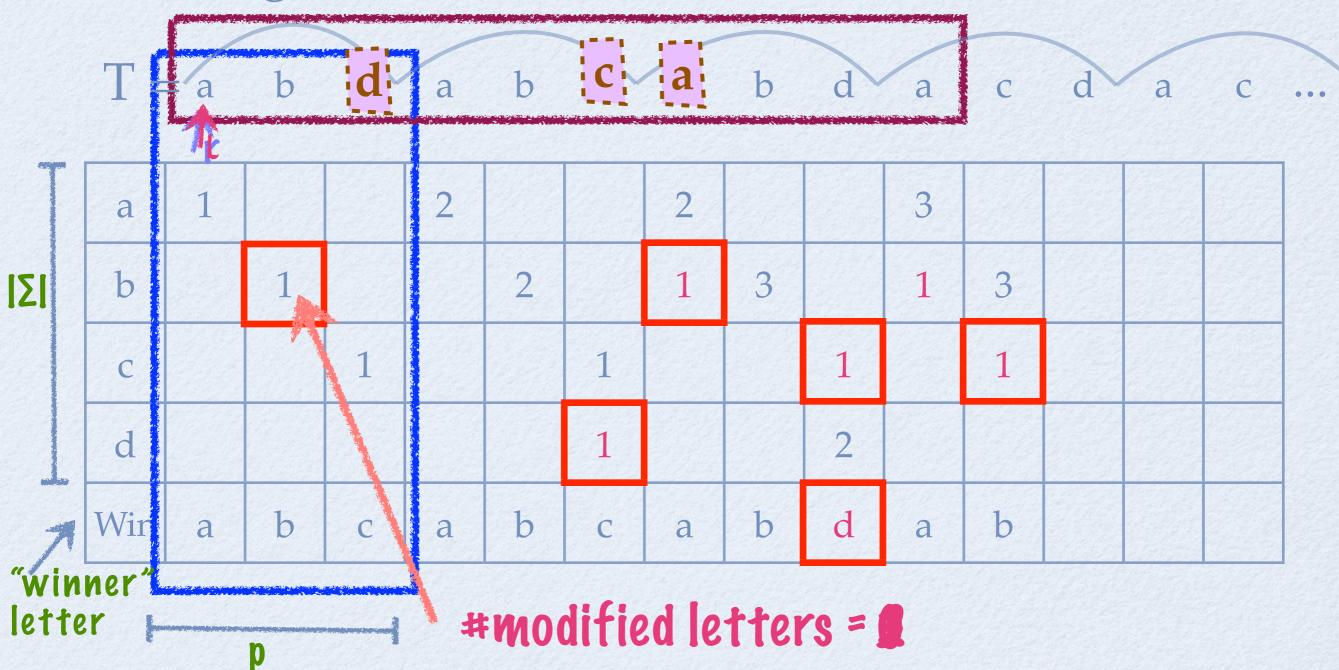


LOCATING ALL K-MARS ALGORITHMS

- An O(n²) algorithm (uses Parikh matrix)
- An improved O(nlognk³) algorithm (uses Main & Lorentz ('84) technique)
- An efficient O(nlognk²logk) algorithm

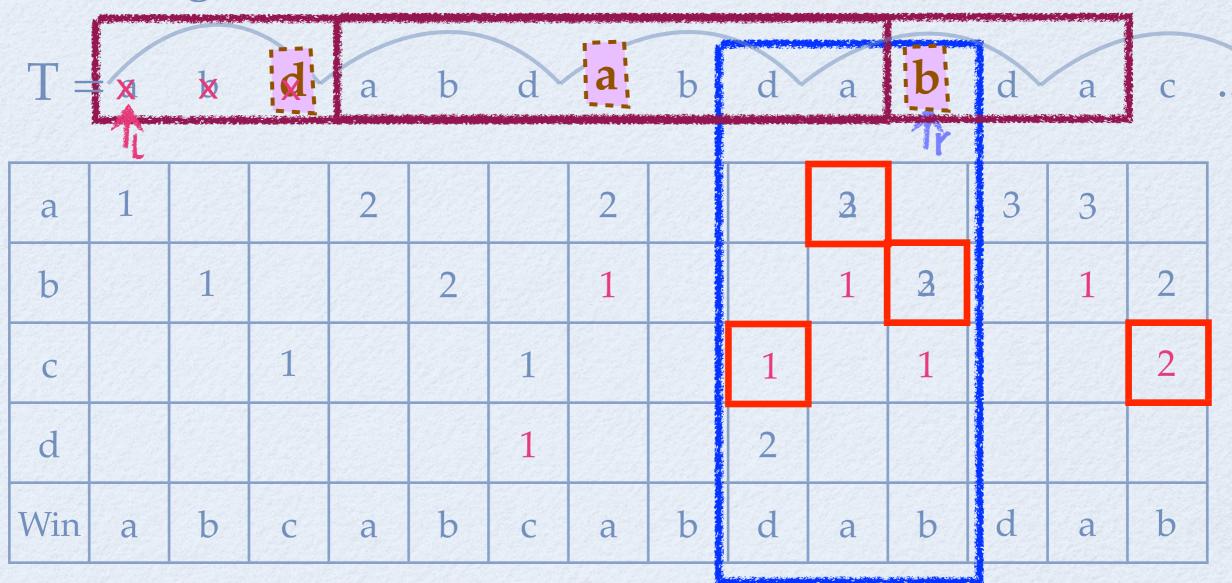
 $ANO(N^2) ALGORITHM$

• Using Parikh matrix (p=3, k=2)



 $ANO(N^2) ALGORITHM$

• Using Parikh matrix (p=3, k=2)



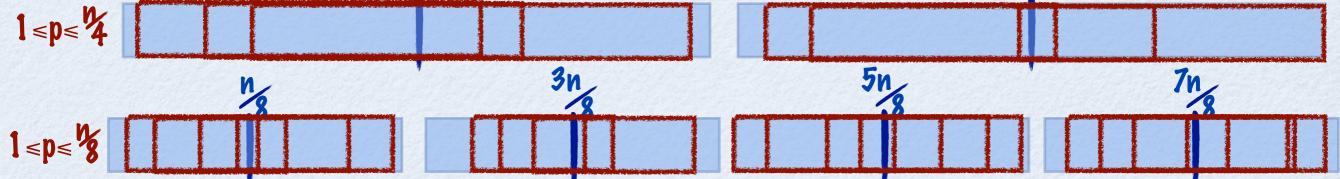
#modified letters = 2

$ANO(N^2) ALGORITHM$

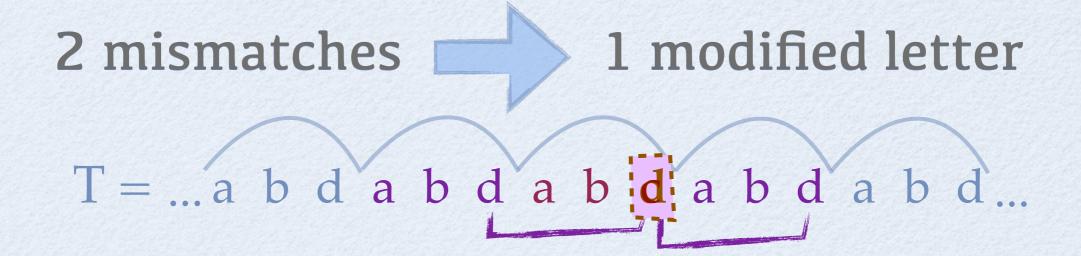
- Time complexity using Parikh matrix:
 - for each period size $1 \le p \le \frac{n}{2}$
 - find all k-MARs of size **p** in **O(n)** time
 - Total: 0(n²) time (for constant alphabet)

AN IMPROVED ALGORITHM

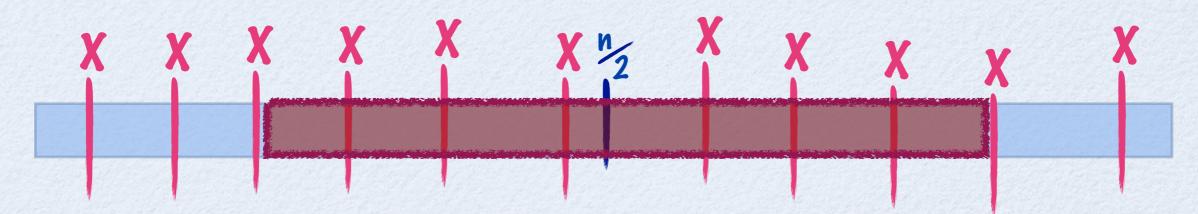
• Divide and Conquer (Main & Lorentz): * for each period size p * find all k-MARs with period size **p** that contain the middle position n/2 1 < p < 2 3n4 n/4



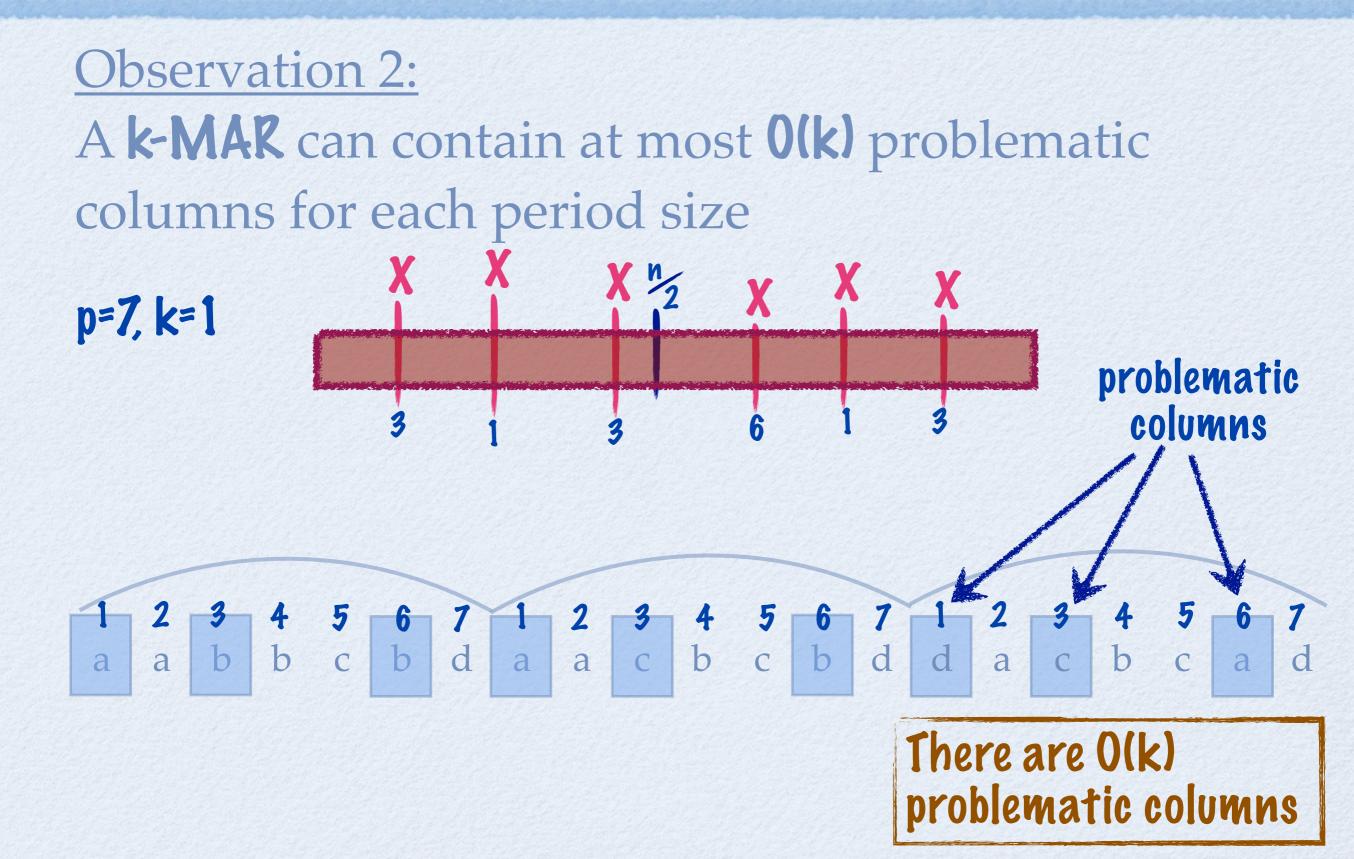
SOME OBSERVATIONS ..



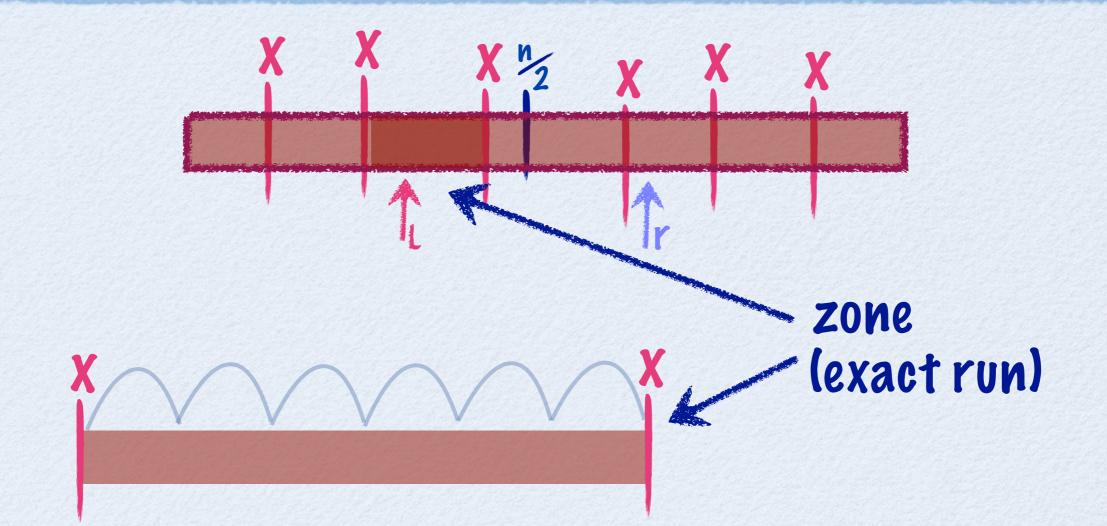
Observation 1: A **k-MAR** can contain at most **2k+1** mismatches



SOME OBSERVATIONS ...



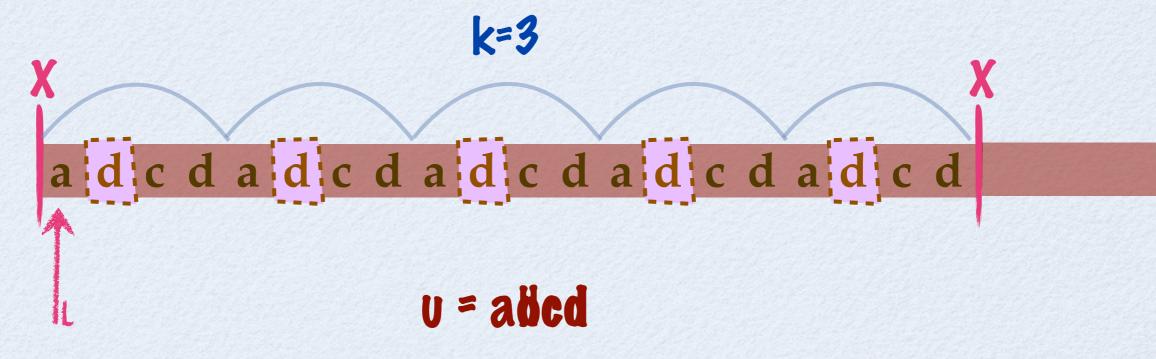
SOME OBSERVATIONS ..



SOME OBSERVATIONS ...

Observation 3:

A **k-MAR** can either start on the leftmost position of a zone or on the rightmost **k+1** periods of it



On each zone there are at most $O(k^2)$ positions to visit

AN IMPROVED ALGORITHM

Given a period length **p**, and a text **f**: ***** Find **4k+2** mismatch positions:

abcdabcdadcdadcdadcd

X

On each zone visit only problematic columns in the last k+1 periods

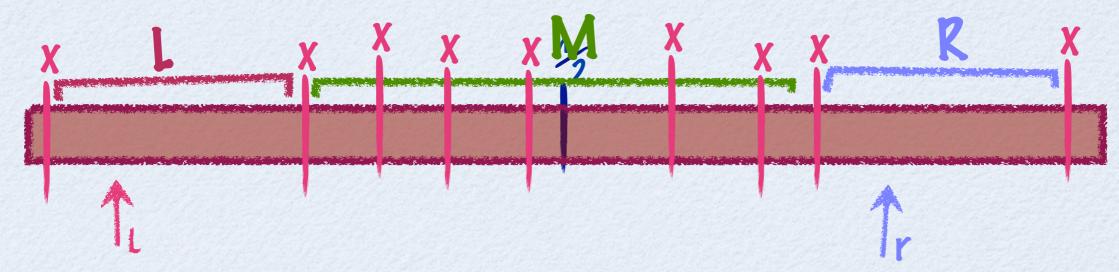
X

AN IMPROVED ALGORITHM

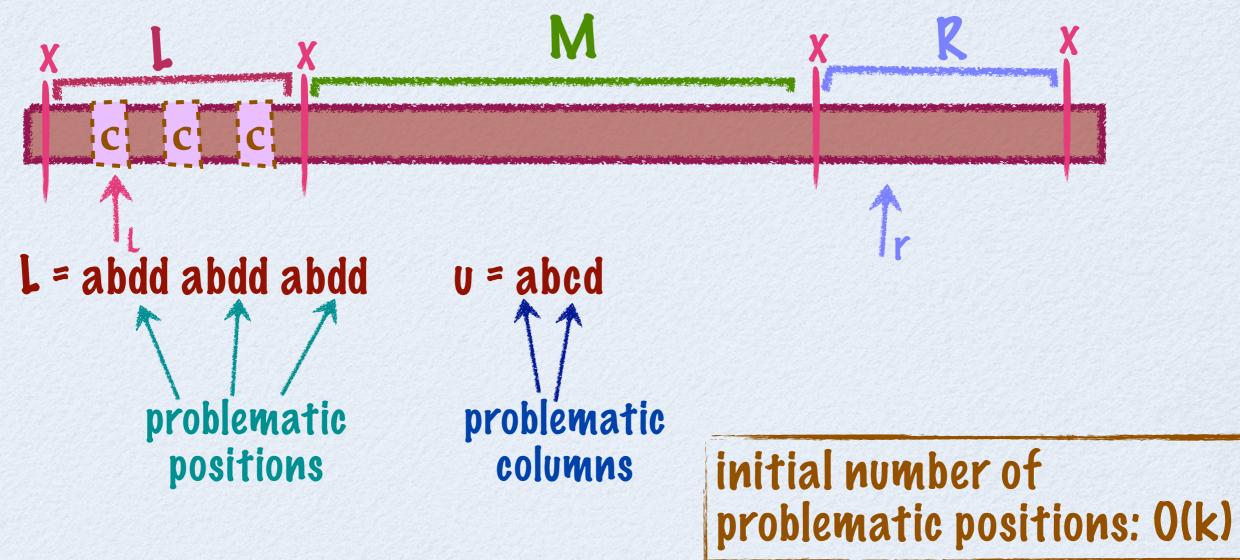
- Time complexity of iteration 1:
 * for all period length 1 n</sup>/₂
 * find all k-MARs that contain position ⁿ/₂
 1. find 0(k) mismatch positions in 0(k) time
 2. for each one of the 0(k) zones:
 visit only 0(k²) positions in 0(k³) time
- Total of **O(nk³)** for iteration 1

• Total of O(nlognk³) time for the entire algorithm

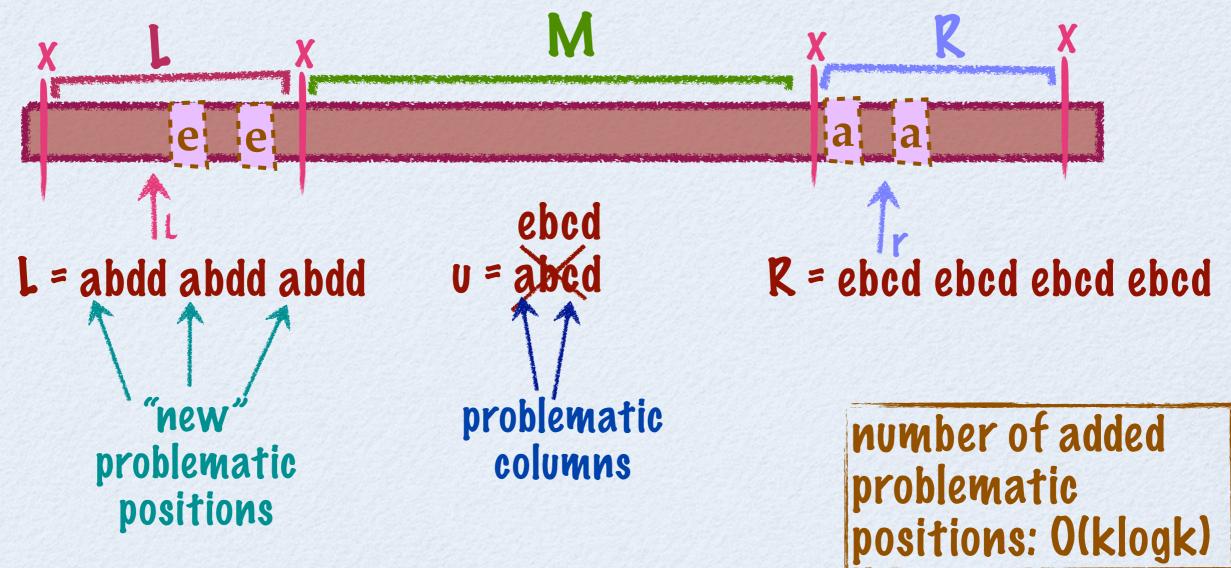
Observation: Not all **0(k²)** positions in a zone need to be visited



Observation 3: Not all **O(k²)** positions in a zone need to be visited



Observation 3: Not all **O(k²)** positions in a zone need to be visited



- Time complexity of iteration 1:
 * for all period length 1≤p≤ⁿ/2
 * find all k-MARs that contain positionⁿ/2
 - find 0(k) mismatch positions in 0(k) time
 for each one of the 0(k) zones: visit 0(klogk) positions in 0(k²logk) time
- Total **O(nk²logk)** for iteration 1
- Total O(nlognk²logk) time for the entire algorithm

