
locating all maximal
approximate runs

in a string

Mika Amit, Maxime Crochemore and Gad M. Landau

CPM 2013, Germany

An exact run is a non-empty substring of T,
that can be divided into identical adjacent non-
overlapping substrings: ut⋅u1

Exact Runs

... a b c a b c a b c a b c a b ...

u = abc

period length = |u| = p

T =

(period) u1=ab

An exact run is a non-empty substring of T,
that can be divided into identical adjacent non-
overlapping substrings: ut⋅u1

A maximal exact run is an exact run that
cannot be extended

Exact Runs

... a b c a b c a b c a b c a b ...

period = abc

T =

related work

Given a string T of length n,
detecting all occurrences of exact runs in T
can be done in O(nlogn)-time

Crochemore, 1981

Apostolico & Preparata, 1983

Main & Lorentz, 1984

related work

Given a string T of length n,
detecting all exact runs in T can be done in
O(n)-time

Crochemore, 1983

Main, 1989

Kolpakov and Kucherov, 1999

approximate runs

Finding approximate runs is sometimes more
sensible than finding exact runs

There are many different measurements and
definitions of approximate runs

The difference is in measuring the differences
between the periods

related work

Landau and Schmidt, 1993

Sim, Iliopoulos, Park and Smyth, 1999

Landau, Schmidt and Sokol, 2001

Kolpakov and Kucherov, 2001

Amir, Eisenberg and Levy, 2012

...

a b d a b c a d c d d c d e cd e c

approximate runs - v.1

 Given a string T and a number k,
find a substring of T that can be divided into
adjacent non-overlapping substrings: ut⋅u1,

T =

such that the difference between every two
adjacent periods does not exceed k

a b d a b c a d c d d c... ...

1-MAR
(Maximal Approximate Run) (4-MAR)

approximate runs - v.2

 Given a string T and a number k,
find a substring of T that can be divided into
adjacent non-overlapping substrings: ut⋅u1,

T =

such that the difference between every two
periods does not exceed k

... ...a b d a b c a d c d b c d b ca b d d b ca b c d b c

2-MAR

a d ca b c

approximate runs - v.3

 Given a string T and a number k,
find a substring of T that can be divided into
adjacent non-overlapping substrings: ut⋅u1,

T =

such that the difference between each period
and a consensus substring does not exceed k

... ...a b d a b c a d c a d c d b ca b d a d c d b c

1-MAR u = abc
(4-MAR)

approximate runs -
Our version

 Given a string T and a number k,
find a substring of T that can be divided into
adjacent non-overlapping substrings: ut⋅u1,

T =

such that the sum of all differences between each
period and a consensus substring ≤ k

... ...a b d a b c a c c a b c e b cd c e

u = abc

c b a

3-MAR modified
letters

Mismatch vs. modified letter

T =a b d a b d a b c a b d a b da b d a b da b c

mismatchmismatch

Mismatch vs. modified letter

T =a b d a b d a b c a b d a b d

 2 mismatches 1 modified letter

dc

mismatch

Mismatch vs. modified letter

T =a b d a b d a b c a b c a b

 2 mismatches 1 modified letter

1 mismatch modified letters n
2p

d d c c

mismatch

Mismatch vs. modified letter

T =a b d a b d a b c a b c a b

 2 mismatches 1 modified letter

1 mismatch modified letters n
2p

d d cd cd

approximate runs -
problem definition

Input: a string T, of length n, and a number k

Output: for each period size 1⩽p⩽ ,
find all occurrences of k-MARs with period
length p in T

n
2

approximate runs -
problem definition

Input: a string T, of length n, and a number k

Output: for each period size 1⩽p⩽ ,
find all occurrences of k-MARs with period
length p in T

n
2

Locating All k-MARS
algorithms

An O(n2) algorithm
 (uses Parikh matrix)

An improved O(nlognk3) algorithm
 (uses Main & Lorentz (’84) technique)

An efficient O(nlognk2logk) algorithm

an o(n2) algorithm

Using Parikh matrix (p=3, k=2)

a 1 2 2 3

b 1 2 1 3 1 3

c 1 1 1 1

d 1 2

Win a b c a b c a b d a b

#modified letters = 312

a b c a b d b b d a c d a c

0

...T = c ad

|∑|

“winner ”
le t ter

p

rl

an o(n2) algorithm

Using Parikh matrix (p=3, k=2)

a 2 2

b 2 1 1

c 1

d 1 2

Win a b c a b c a b d a b

#modified letters = 32

a b c a b d b b d a c d a c ...T = ad
rl

1

x

23

x

1 32

x

1 1 1

b

3

d

3

1

a

2

2

b

an o(n2) algorithm

Time complexity using Parikh matrix:

for each period size 1 ⩽ p ⩽

find all k-MARs of size p in O(n) time

Total: O(n2) time (for constant alphabet)

n
2

an improved algorithm

Divide and Conquer (Main & Lorentz):

for each period size p
find all k-MARs with period size p that
contain the middle position

n
2

n
4

3n
4

n
8

3n
8

5n
8

7n
8

find all k-MARs with period size p that
contain the middle position

1⩽p⩽n
2

1⩽p⩽n
4

1⩽p⩽n
8

some observations..

T =a b d a b d a b c a b d a b da b d a b da b c

 2 mismatches 1 modified letter

dc

Observation 1:
A k-MAR can contain at most 2k+1 mismatches

xn
2 x x x xxx x xxx

 2 mismatches 1 modified letter

some observations..
Observation 2:
A k-MAR can contain at most O(k) problematic
columns for each period size

xn
2 x xxx x

3 1 3 6 1 3

a a b b c b d a a c b c b d d a c b c a d
1 2 6 1 2 1 23 4 5 7 3 4 5 6 7 3 4 5 6 7

problematic
columns

p=7, k=1

There are O(k)
problematic columns

some observations..

xn
2 x xxx x

x x (exact run)
zone

l r

There are O(k) zones

some observations..

x x

Observation 3:
A k-MAR can either start on the leftmost position of
a zone or on the rightmost k+1 periods of it

leftmost position
rightmost k+1 periods

k=3

a b c d a b c d a b c d a b c d a b c dd d d d d

u = abcdu = adcdl

On each zone there are at most
O(k2) positions to visit

an improved algorithm

xn
2 x x xxx x x

 Find 4k+2 mismatch positions:
Given a period length p, and a text T:

 On each zone visit only problematic columns
in the last k+1 periods
x x
a b c d a b c d a b c d a b c d a b c dd d d

l

an improved algorithm

Time complexity of iteration 1:
for all period length 1⩽p⩽
find all k-MARs that contain position

1. find O(k) mismatch positions in O(k) time
2. for each one of the O(k) zones:
 visit only O(k2) positions in O(k3) time

 Total of O(nk3) for iteration 1

 Total of O(nlognk3) time for the entire algorithm

n
2

n
2

The efficient algorithm

Observation:
Not all O(k2) positions in a zone need to be
visited

n
2 RL Mxxx x x x x x x

l r

The efficient algorithm

Observation 3:
Not all O(k2) positions in a zone need to be
visited

RL Mxx x x

c

u = abcdL = abdd abdd abdd

c c

problematic
columns

problematic
positions initial number of

problematic positions: O(k)

l r

The efficient algorithm

Observation 3:
Not all O(k2) positions in a zone need to be
visited

RL Mxx x x

u = abcdL = abdd abdd abdd
ebcd

e e

R = ebcd ebcd ebcd ebcd

a a

problematic
columns

“new”
problematic

positions
number of added
problematic
positions: O(klogk)

l r

the efficient algorithm

Time complexity of iteration 1:
for all period length 1⩽p⩽
find all k-MARs that contain position

1. find O(k) mismatch positions in O(k) time
2. for each one of the O(k) zones:
 visit O(klogk) positions in O(k2logk) time

 Total O(nk2logk) for iteration 1

 Total O(nlognk2logk) time for the entire algorithm

n
2

n
2

Th i nk yeu !a o

