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Problem
• Design a (compressed) index for a set D={S1, S2, ..., Sd} 

of d strings of total length n drawn from an alphabet of 
size 𝛔

• Given any pattern P, report all the occ strings in D 
having Edit Distance at most one from P

• edit(P, S) = minimum # of edit operations (insertion, 
deletion, substitution) to transform P into S
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Motivations 

• Information Retrieval

• e.g., users may misspell terms in their queries

• Database

• e.g., you may do not remember the correct spelling of a key

• Data Mining

• e.g, clean a noised dataset
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Reduced to membership queries 
in a super set containing 
all the strings that have 

edit distance one from any string in D.

For each S∈D, we add O(𝞼|S|)
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If P[1,i-1] == S[1,i-1] 
and

P[i,p] == S[i+1,s], and s=p+1
then, 

 S has edit distance one from P
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then, 

 S has edit distance one from P

Use Balanced Search Trees to index
these factorizations
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• Time: O(|P| + log n + occ)

• D. Belazzougui [CPM’09]

• Space: O(n log σ)
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Similar approach
 

Use of Minimal Perfect
Hash Functions to index factorizations 

and to save space
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Our results

2nHk + n · o(log �) + 2d log dSpace
Time

Solution based on Patricia tries and Perfect hashing

O(|P |+ occ)

Top-k strings in O(|P |+ k log k)

� = !(logc n)fornHk + n · o(log �)Space
Time

Solution based on Compressed Permuterm index

O(|P | log log � + occ)
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cmp(D) = abcc accb baca caac cbcc access time: O(1) 
space: Hk + n o(log 𝞼)
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h1, 2, c, 1, 3i

h1, 3, c, 0, 0i

(d) Tuples induced by
string abcc

Fig. 3 The picture shows a running example for the set of strings D = {abcc,accb,baca,caac,cbcc}.
Figures (a) and (b) show the patricia tries of, respectively, the strings in D and the strings in D written in
reversed order. For each internal node we report the time of its visit in a preorder visit of the tree while for
each leaf we report the identifier of the corresponding string in D. We report complete edges labels, even
if a patricia trie stores only the first symbol of each label. Figure (c) reports lcp, lcpr , and p . Figure (d)
shows the four tuples induced by the string abcc.

nodes with monotone minimal perfect hash functions as described in [3]. In this way
choosing the correct edge to follow from the current node can be done in constant
time regardless of the alphabet size. The extra cost in term of space is bounded by
O(d log logs) bits. The correctness of the steps performed during the search is es-
tablished by comparing the searched string and labels on the followed edges. This is
done by accessing directly to the appropriate portion of strings in D from their com-
pressed representations. For this aim D is represented by resorting to the compressed
scheme of Lemma 1 that allows constant time access to any symbol of any string in
D. The space required by this is bounded by kth order entropy accordingly to Lemma
1. Since the strings do not keep their original order in the trie PT

r

, we store a per-
mutation p of {1,2, . . . ,d} that keeps track of the original order in D of each leaf
of PT

r

. Namely, p(i) is the index in D of the ith lexicographically smaller string in
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nodes with monotone minimal perfect hash functions as described in [3]. In this way
choosing the correct edge to follow from the current node can be done in constant
time regardless of the alphabet size. The extra cost in term of space is bounded by
O(d log logs) bits. The correctness of the steps performed during the search is es-
tablished by comparing the searched string and labels on the followed edges. This is
done by accessing directly to the appropriate portion of strings in D from their com-
pressed representations. For this aim D is represented by resorting to the compressed
scheme of Lemma 1 that allows constant time access to any symbol of any string in
D. The space required by this is bounded by kth order entropy accordingly to Lemma
1. Since the strings do not keep their original order in the trie PT

r

, we store a per-
mutation p of {1,2, . . . ,d} that keeps track of the original order in D of each leaf
of PT

r

. Namely, p(i) is the index in D of the ith lexicographically smaller string in

a b c cIndex tuples so that, 
given                       , 
 return the symbols, 
if any, in tuples of the 

form                                .hnpi, i, ?, p� i+ 1, nsii

npi, i, spi, p� i+ 1

Define the function F, so that, 

iff there exists tuple

F (np, i, j, sp) = c

hnp, i, c, j, spi
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Define the function F, so that, 

iff there exists tuple
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A function F from a subset S ⊆ U of size n
to an alphabet of size σ can be represented within

nH0 + n o(H0) bits, so that
if x ∈ S, F(x) evaluated in constant time
if x ∉ S, an arbitrary symbol is returned
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mutation p of {1,2, . . . ,d} that keeps track of the original order in D of each leaf
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. Namely, p(i) is the index in D of the ith lexicographically smaller string in

a b c cIndex tuples so that, 
given                       , 
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if any, in tuples of the 

form                                .hnpi, i, ?, p� i+ 1, nsii

npi, i, spi, p� i+ 1

Define the function F, so that, 

iff there exists tuple

F (np, i, j, sp) = c

hnp, i, c, j, spi

A function F from a subset S ⊆ U of size n
to an alphabet of size σ can be represented within

nH0 + n o(H0) bits, so that
if x ∈ S, F(x) evaluated in constant time
if x ∉ S, an arbitrary symbol is returned

We may err!
P[1,i] c P[i+1,p]
may not be in D.

We need to check 
if it belongs to D!
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2nHk + n · o(log �) + 2d log dSpace:

Time: O(|P |+ occ)



D = {abcc, accb, baca, caac, cbcc}

9

0

1

1 2

bcc ccb

3 5

4 5

aac
bcc

a

baca

c

(a) PT

0

3 2 3

4 5

1 5

a c

aac

cb

acab

bcca

c

(b) PT

r

1 2 3 4 5

lcp 1 0 0 1 ⇥

lcpr 0 0 1 3 ⇥

p 3 2 4 1 5

(c) lcp, lcpr , and p

h0, 0, a, 3, 5i

h1, 1, b, 2, 3i

h1, 2, c, 1, 3i

h1, 3, c, 0, 0i

(d) Tuples induced by
string abcc

Fig. 3 The picture shows a running example for the set of strings D = {abcc,accb,baca,caac,cbcc}.
Figures (a) and (b) show the patricia tries of, respectively, the strings in D and the strings in D written in
reversed order. For each internal node we report the time of its visit in a preorder visit of the tree while for
each leaf we report the identifier of the corresponding string in D. We report complete edges labels, even
if a patricia trie stores only the first symbol of each label. Figure (c) reports lcp, lcpr , and p . Figure (d)
shows the four tuples induced by the string abcc.

nodes with monotone minimal perfect hash functions as described in [3]. In this way
choosing the correct edge to follow from the current node can be done in constant
time regardless of the alphabet size. The extra cost in term of space is bounded by
O(d log logs) bits. The correctness of the steps performed during the search is es-
tablished by comparing the searched string and labels on the followed edges. This is
done by accessing directly to the appropriate portion of strings in D from their com-
pressed representations. For this aim D is represented by resorting to the compressed
scheme of Lemma 1 that allows constant time access to any symbol of any string in
D. The space required by this is bounded by kth order entropy accordingly to Lemma
1. Since the strings do not keep their original order in the trie PT

r

, we store a per-
mutation p of {1,2, . . . ,d} that keeps track of the original order in D of each leaf
of PT

r

. Namely, p(i) is the index in D of the ith lexicographically smaller string in

a b c cIndex tuples so that, 
given                       , 
 return the symbols, 
if any, in tuples of the 

form                                .hnpi, i, ?, p� i+ 1, nsii

npi, i, spi, p� i+ 1

Define the function F, so that, 

iff there exists tuple

F (np, i, j, sp) = c

hnp, i, c, j, spi

A function F from a subset S ⊆ U of size n
to an alphabet of size σ can be represented within

nH0 + n o(H0) bits, so that
if x ∈ S, F(x) evaluated in constant time
if x ∉ S, an arbitrary symbol is returned

We may err!
P[1,i] c P[i+1,p]
may not be in D.

We need to check 
if it belongs to D!

LCP
+

LCS
+

identifiers

Compressed 
Representation 

+
Compressed

function

in O(1). 
see the paper

2nHk + n · o(log �) + 2d log dSpace:

Time: O(|P |+ occ)



D = {abcc, accb, baca, caac, cbcc}



D = {abcc, accb, baca, caac, cbcc}
Subset of strings having 
the same length p+1



D = {abcc, accb, baca, caac, cbcc}15

c

b

a

b

b

#

a

#

c

c

#

#

a

c

a

c

#

#

a

c

a

b

a

a

c

a

b

c

c

b

a

#

c

ac

c

#

a

c

a

#

#

a

c

c

c

b

#

a#b

#

b

a

c

c

b

c

c

#

a

c

#

c

#

b

a

c

c

c

a

c

c

b

b

c

c

b

a

c

a

a

c

b

a

#

F L

a b c c #

b c c # a

c c # a b

c # a b c

# a b c c

a c c b #

c c b # a

c b # a c

b # a c c

# a c c b

b a c a #

a c a # b

c a # b a

a # b a c

# b a c a

c a a c #

a a c # c

a c # c a

c # c a a

# c a a c

c b c c #

b c c # c

c c # c b

c # c b c

# c b c c

Fig. 4 Figure shows the matrix M4 for our variant of the Burrows-Wheeler Transform Bwt(right)
which is obtained by sorting lexicographically all the cyclic rotations of strings in the set D4 =
{abcc,accb,baca,caac,cbcc}. The resulting Burrows-Wheeler Transform is the last column of this
matrix (i.e., Bwt4) = L). The Figure shows also the compact trie built on all these cyclic rotations. Dashed
arrows show the existing relation among T4 and M4.

Dp+1. The trie for our set of five strings D4 is shown in Figure ??. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [?], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of rows
of Bwtp+1 sharing the longest common prefix with P0 = #P[1, p]. This is done by
using the following strategy. We search P0 backwards. At any step i, we keep the fol-
lowing invariant: [li,ri] is the largest range of rows of Bwtp+1 which are prefixed by

Subset of strings having 
the same length p+1
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Fig. 4 Figure shows the matrix M4 for our variant of the Burrows-Wheeler Transform Bwt(right)
which is obtained by sorting lexicographically all the cyclic rotations of strings in the set D4 =
{abcc,accb,baca,caac,cbcc}. The resulting Burrows-Wheeler Transform is the last column of this
matrix (i.e., Bwt4) = L). The Figure shows also the compact trie built on all these cyclic rotations. Dashed
arrows show the existing relation among T4 and M4.

Dp+1. The trie for our set of five strings D4 is shown in Figure ??. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [?], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of rows
of Bwtp+1 sharing the longest common prefix with P0 = #P[1, p]. This is done by
using the following strategy. We search P0 backwards. At any step i, we keep the fol-
lowing invariant: [li,ri] is the largest range of rows of Bwtp+1 which are prefixed by
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strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [?], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of rows
of Bwtp+1 sharing the longest common prefix with P0 = #P[1, p]. This is done by
using the following strategy. We search P0 backwards. At any step i, we keep the fol-
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to rows prefixed by Pi�1. This is achieved by augmenting the compressed permuterm
index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.
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Dp+1. The trie for our set of five strings D4 is shown in Figure ??. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [?], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of rows
of Bwtp+1 sharing the longest common prefix with P0 = #P[1, p]. This is done by
using the following strategy. We search P0 backwards. At any step i, we keep the fol-
lowing invariant: [li,ri] is the largest range of rows of Bwtp+1 which are prefixed by
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to rows prefixed by Pi�1. This is achieved by augmenting the compressed permuterm
index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.
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index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

D = {abcc, accb, baca, caac, cbcc}
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strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.
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(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
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strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
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the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

D = {abcc, accb, baca, caac, cbcc}
Subset of strings having 
the same length p+1

Given P[1,p], 
identify the rows prefixed by a 

cyclic rotation of P on the 
subset with string of len p+1

i.e., P[i,p]#P[1,i-1]

Strings corresponding to 
these rows are at distance one 

from P (an insertion)!

 P = acc



15

c

b

a

b

b

#

a

#

c

c

#

#

a

c

a

c

#

#

a

c

a

b

a

a

c

a

b

c

c

b

a

#

c

ac

c

#

a

c

a

#

#

a

c

c

c

b

#

a#b

#

b

a

c

c

b

c

c

#

a

c

#

c

#

b

a

c

c

c

a

c

c

b

b

c

c

b

a

c

a

a

c

b

a

#

F L

# a b c c

# a c c b

# b a c a

# c a a c

# c b c c

a # b a c

a a c # c

a b c c #

a c # c a

a c a # b

a c c b #

b # a c c

b a c a #

b c c # a

b c c # c

c # a b c

c # c a a

c # c b c

c a # b a

c a a c #

c b # a c

c b c c #

c c # a b

c c # c b

c c b # a

Fig. 4 Figure shows the matrix M4 for our variant of the Burrows-Wheeler Transform Bwt(right)
which is obtained by sorting lexicographically all the cyclic rotations of strings in the set D4 =
{abcc,accb,baca,caac,cbcc}. The resulting Burrows-Wheeler Transform is the last column of this
matrix (i.e., Bwt4) = L). The Figure shows also the compact trie built on all these cyclic rotations. Dashed
arrows show the existing relation among T4 and M4.

to rows prefixed by Pi�1. This is achieved by augmenting the compressed permuterm
index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

D = {abcc, accb, baca, caac, cbcc}
Subset of strings having 
the same length p+1

Given P[1,p], 
identify the rows prefixed by a 

cyclic rotation of P on the 
subset with string of len p+1

i.e., P[i,p]#P[1,i-1]

Strings corresponding to 
these rows are at distance one 

from P (an insertion)!

 P = acc
One rotation is cc#a



15

c

b

a

b

b

#

a

#

c

c

#

#

a

c

a

c

#

#

a

c

a

b

a

a

c

a

b

c

c

b

a

#

c

ac

c

#

a

c

a

#

#

a

c

c

c

b

#

a#b

#

b

a

c

c

b

c

c

#

a

c

#

c

#

b

a

c

c

c

a

c

c

b

b

c

c

b

a

c

a

a

c

b

a

#

F L

# a b c c

# a c c b

# b a c a

# c a a c

# c b c c

a # b a c

a a c # c

a b c c #

a c # c a

a c a # b

a c c b #

b # a c c

b a c a #

b c c # a

b c c # c

c # a b c

c # c a a

c # c b c

c a # b a

c a a c #

c b # a c

c b c c #

c c # a b

c c # c b

c c b # a

Fig. 4 Figure shows the matrix M4 for our variant of the Burrows-Wheeler Transform Bwt(right)
which is obtained by sorting lexicographically all the cyclic rotations of strings in the set D4 =
{abcc,accb,baca,caac,cbcc}. The resulting Burrows-Wheeler Transform is the last column of this
matrix (i.e., Bwt4) = L). The Figure shows also the compact trie built on all these cyclic rotations. Dashed
arrows show the existing relation among T4 and M4.

to rows prefixed by Pi�1. This is achieved by augmenting the compressed permuterm
index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

D = {abcc, accb, baca, caac, cbcc}
Subset of strings having 
the same length p+1

Given P[1,p], 
identify the rows prefixed by a 

cyclic rotation of P on the 
subset with string of len p+1

i.e., P[i,p]#P[1,i-1]

Strings corresponding to 
these rows are at distance one 

from P (an insertion)!

 P = acc
One rotation is cc#a

abcc is in D



15

c

b

a

b

b

#

a

#

c

c

#

#

a

c

a

c

#

#

a

c

a

b

a

a

c

a

b

c

c

b

a

#

c

ac

c

#

a

c

a

#

#

a

c

c

c

b

#

a#b

#

b

a

c

c

b

c

c

#

a

c

#

c

#

b

a

c

c

c

a

c

c

b

b

c

c

b

a

c

a

a

c

b

a

#

F L

# a b c c

# a c c b

# b a c a

# c a a c

# c b c c

a # b a c

a a c # c

a b c c #

a c # c a

a c a # b

a c c b #

b # a c c

b a c a #

b c c # a

b c c # c

c # a b c

c # c a a

c # c b c

c a # b a

c a a c #

c b # a c

c b c c #

c c # a b

c c # c b

c c b # a

Fig. 4 Figure shows the matrix M4 for our variant of the Burrows-Wheeler Transform Bwt(right)
which is obtained by sorting lexicographically all the cyclic rotations of strings in the set D4 =
{abcc,accb,baca,caac,cbcc}. The resulting Burrows-Wheeler Transform is the last column of this
matrix (i.e., Bwt4) = L). The Figure shows also the compact trie built on all these cyclic rotations. Dashed
arrows show the existing relation among T4 and M4.

to rows prefixed by Pi�1. This is achieved by augmenting the compressed permuterm
index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
in O(logs n̂ log log n̂) time by requiring O(n̂ logs

log log n̂ ) bits of additional space, where n̂
is the total size of the indexed dictionary.

D = {abcc, accb, baca, caac, cbcc}
Subset of strings having 
the same length p+1
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subset with string of len p+1

i.e., P[i,p]#P[1,i-1]

Strings corresponding to 
these rows are at distance one 

from P (an insertion)!

 P = acc
One rotation is cc#a

abcc is in D

How to identify rows 
prefixed by P[i,p]#P[1,i-1]?



15

c

b

a

b

b

#

a

#

c

c

#

#

a

c

a

c

#

#

a

c

a

b

a

a

c

a

b

c

c

b

a

#

c

ac

c

#

a

c

a

#

#

a

c

c

c

b

#

a#b

#

b

a

c

c

b

c

c

#

a

c

#

c

#

b

a

c

c

c

a

c

c

b

b

c

c

b

a

c

a

a

c

b

a

#

F L

# a b c c

# a c c b

# b a c a

# c a a c

# c b c c

a # b a c

a a c # c

a b c c #

a c # c a

a c a # b

a c c b #

b # a c c

b a c a #

b c c # a

b c c # c

c # a b c

c # c a a

c # c b c

c a # b a

c a a c #

c b # a c

c b c c #

c c # a b

c c # c b

c c b # a

Fig. 4 Figure shows the matrix M4 for our variant of the Burrows-Wheeler Transform Bwt(right)
which is obtained by sorting lexicographically all the cyclic rotations of strings in the set D4 =
{abcc,accb,baca,caac,cbcc}. The resulting Burrows-Wheeler Transform is the last column of this
matrix (i.e., Bwt4) = L). The Figure shows also the compact trie built on all these cyclic rotations. Dashed
arrows show the existing relation among T4 and M4.

to rows prefixed by Pi�1. This is achieved by augmenting the compressed permuterm
index with a data structure that supports the two operations: parent and depth on a
(conceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in
Dp+1. The trie for our set of five strings D4 is shown in Figure 4. There is a very
strong relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to
the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
prefix between rows in the corresponding interval of Mp+1.

Given a range [l,r], let u be the node of the above trie corresponding to range
[l,r]. The two operations are defined as follows:
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the ith row of Mp+1. Moreover, any internal node of Tp+1 corresponds to an interval
on Mp+1. It is very well known that the locus of a node is equal to the longest common
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[l,r]. The two operations are defined as follows:

1. parent(u) returns the range [l0,r0] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [22], we are able to support both these operations
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is the total size of the indexed dictionary.
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Subset of strings having 
the same length p+1

Given P[1,p], 
identify the rows prefixed by a 

cyclic rotation of P on the 
subset with string of len p+1

i.e., P[i,p]#P[1,i-1]

Strings corresponding to 
these rows are at distance one 

from P (an insertion)!

 P = acc
One rotation is cc#a

abcc is in D

How to identify rows 
prefixed by P[i,p]#P[1,i-1]?

-) Backward search for each of 
them? O(p2) time
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Time: O(|P | log log � + occ)
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Space:

Time:

Optimal time/space complexities?

O(|P | log �/w + occ) where w size of a word

O(n log �)

Open Problems



Thank You


