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Background: Processing large scale string data
! Data compression allows large scale string data to be stored 

compactly
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! In order to process such data, we usually decompress them, 
which requires a lot of space and time.
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Problem Previous Work

Equality Test [Plandowski ’94]; Lifshits ’07]; 
[Schmidt-Schauss+ ’09];

Pattern Match [Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04],
[Lifshits ’06], [Gawrychowski '11]

Approximate Pattern Match [Matsumoto+ ’00]; [Navarro+ ’01]

Subsequence Match [Cegielski+ ’00]; [Tiskin ’09]; [Yamamoto+ ’11]

Longest Common Subsequence / 
Edit Distance

[Tiskin ’07, ’08]; [Hermelin + ’09, ’11]

Pattern Discovery [Inenaga+ ’09]; [Matsubara+ ’09]

q-gram Frequencies [Goto+ ’11]; [Goto+ ’12]

Grammar-Based Compressed String Processing 
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Main contribution

The algorithm is asymptotically always at least as fast and better 
in many cases compared to working on the uncompressed string

Uncompressed 
String

SLP
(SPIRE 2011)

q-gram Freq O(|T |) = O(2n) 
time and space

O(qn) 
time and space

SLP
(This work)

O(min{qn, |T|-dup(q, D)})
time and space

dup(q, D) : a quantity that represents the amount of redundancy that 
                   the SLP D captures with respect to q-grams

T : uncompressed string, n : the size of SLP



q-gram frequencies problem

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition
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q-gram frequencies problem

abaababaab
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  aab
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    bab
     aba
      baa
       aab
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q =  3Example

Freq(T, “aba”)  =  3
Freq(T, “baa”)  =  2
Freq(T, “aab”)  =  2
Freq(T, “bab”)  =  1

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition



Straight Line Program (SLP)

SLP can represent the output of well-known compression algorithms
! e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS

Straight Line Program is a context free grammar in the 
Chomsky normal form that derives a single string.

X1 = expr1, X2 = expr2, ...., Xn = exprn

expri ! ! or
expri = Xl・Xr (l, r < i)

Definition



Example of SLP
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SLP: D Derivation Tree of D
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X5

Length of the decompressed string can be "(2n)



O(qn) algorithm for 
q-gram frequencies problem on SLP

[Goto et al., SPIRE 2011]



O(qn) Algorithm in 2011
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For Xi = Xl Xr,  Xi stabs an occurrence of P  "  P starts in Xl and ends in Xr
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q = 3

Definition

For each occurrence of q-gram P, there exists a unique variable  
which stabs the occurrence of P

Observation



O(qn) Algorithm in 2011

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

Important idea: counting stabbed occurrences
We can compute Freq(T, P) by counting the number of 
occurrences of P stabbed by Xi, and summing them up for all Xi

Freq(T, P) =  2・ 1 + 1 + 1
X5 X6 X7

q = 3



O(qn) Algorithm in 2011

More formal description

For each variable Xi, 
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

Definition
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vOcc(Xi)       = 2,    vOcc(Xj)       = 1
Freq串(Xi, P) = 3,   Freq串(Xj , P) = 1

Frequency of P = 3・2 + 1 ・1= 7T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

More formal description

For each variable Xi, 
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

Definition



O(qn) Algorithm in 2011

串
Freq(T,P) =

n

∑
i=1

Freq (Xi,P) · vOcc(Xi)

More formal description

T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

Lemma

vOcc(Xi)       = 2,    vOcc(Xj)       = 1
Freq串(Xi, P) = 3,   Freq串(Xj , P) = 1

Frequency of P = 3・2 + 1 ・1= 7

For each variable Xi, 
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

Definition
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Computing Freq串(Xi, P)

Xl Xr

Xi 

ti

q-1 q-1
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Xl Xr

ti

Xi 

Xi stabs P "  P starts in Xl and ends in Xr

・・・・

q-1 q-1

q-grams stabbed by Xi

Computing Freq串(Xi, P)
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Xl Xr

ti

Xi 

For any P ! !q ,  Freq串(Xi, P) = Freq(ti, P)

q-1 q-1

Computing Freq串(Xi, P)

Observation

・・・・ q-grams stabbed by Xi
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Xl Xr

ti

Computing Freq串(Xi, P) by Freq(ti, P)

Xi 

q-1 q-1

Freq(T,P) =
n

∑
i=1

Freq(ti,P) · vOcc(Xi)

Lemma

・・・・ q-grams stabbed by Xi
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Freq(T,P) =
n

∑
i=1

Freq(ti,P) · vOcc(Xi)

O(n) time and space in total 

O(qn) time and space in total 

Computing frequencies by Freq(ti, P) and vOcc(Xi)

Lemma
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Freq(T,P) =
n

∑
i=1

Freq(ti,P) · vOcc(Xi)

O(n) time and space in total 

O(qn) time and space in total 

Computing frequencies by Freq(ti, P) and vOcc(Xi)

Lemma

Sketch of proof:
Using the suffix array of the concatenation of all ti’s,
we can compute all q-gram frequencies in O(qn) time and space.

SLP q-gram Frequencies Problem can be 
solved in O(qn) time and space.

Theorem
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New Algorithm

Inefficiency of O(qn) algorithm

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

! Total length of decompressed strings ti can be larger than |T|

q = 3

ti’s
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! There are overlaps between partially decompressed strings ti
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Inefficiency of O(qn) algorithm

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

t6 and t5 overlap with “ab”

q = 3

! There are overlaps between partially decompressed strings ti



New Algorithm

Identifying the redundancies

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T = a a b a b a a b a b a a b

q = 3

! Consider all partially decompressed strings ti in derivation tree



New Algorithm

Removing overlaps of neighboring ti’s

X1 X2

a ba a ab a b a b a a b
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X1 X2
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X4
X1

X5X4
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X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T = a a b a b a a b a b a a b

q = 3

! Eliminate length-(q-1) prefix of all ti’s except for leftmost one
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Removing overlaps of neighboring ti’s
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2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Concatenation of remaining strings equals to T

a a b a b a a b a b a a b
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Removing duplicate ti’s
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X1 X2
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X1 X2
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X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! For all partially eliminated ti, remove all but first occurrence

a a b a b a a b a b a a b
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What we have left
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! Compact representation of all ti’s
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t7 !
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! Edge from Xi to Xj  " ti and tj are neighboring
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Neighbor tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

neighbor tree

T =

X6

X5

X7

X4 

q = 3

a a b a b a a b a b a a b

# 

ab

ab

aa
aab

! Edge from Xi to Xj  " ti and tj are neighboring



New Algorithm

Size of neighbor tree

neighbor tree

T =

X6

X5

X7

X4 

q = 3

a a b a b a a b a b a a b

# 

ab

ab

aa
aab

! Edge from Xi to Xj  " ti and tj are neighboring

Lemma
The total length of edge labels in neighbor tree of G is

(q-1) + ! {|ti| - (q-1) | |Xi| ≧ q, i = 1, ..., n}  
= |T| - dup(q, D)

where dup(q, D) = ∑{(vOcc(Xi)−1) · (|ti|− (q−1)) | |Xi|≥ q, i = 1, . . . ,n}



New Algorithm

Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in 
O(min{qn, |T|-dup(q, D)}) 
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Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in 
O(min{qn, |T|-dup(q, D)}) 

Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size



New Algorithm

Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in 
O(min{qn, |T|-dup(q, D)}) 

Theorem
The q-gram frequencies problem on a SLP D of size n, 
representing string T can be solved in O(min{qn, |T|-dup(q, D)}) 
time and space.

Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size



New Algorithm

|T|

! |ti|

Example of ENGLISH data of 200MB from pizza & chili corpus

Preliminary Experiment (ENGLISH 200MB)
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Summary

Future work:
Other applications of neighbor tree
 (e.g. one paper accepted to SPIRE 2012)

Uncompressed 
String

SLP
(SPIRE 2011)

q-gram Freq O(|T |) = O(2n) 
time and space

O(qn) 
time and space

SLP
(This work)

O(min{qn, |T|-dup(q, D)})
time and space


