
Speeding up q-gram mining on
grammar based compressed text

Kyushu University
◯Keisuke Goto，Hideo Bannai，
Shunsuke Inenaga, Masayuki Takeda

1

Background: Processing large scale string data
! Data compression allows large scale string data to be stored

compactly

Large Scale
String Data

Compressed
String Data

compress

! In order to process such data, we usually decompress them,
which requires a lot of space and time.

Compressed
String Data

Background: Processing large scale string data

! In order to process such data, we usually decompress them,
which requires a lot of space and time.

Compressed
String Data

Large Scale
String Data

decompress

Background: Processing large scale string data

! In order to process such data, we usually decompress them,
which requires a lot of space and time.

Compressed
String Data

Large Scale
String Data

decompress

HUGE!!

Background: Processing large scale string data

! One solution is to process compressed strings
without explicit decompression.

Compressed
String Data

Background: Processing large scale string data

! One solution is to process compressed strings
without explicit decompression.

Compressed
String Data

without explicitly
 decompressing

Small !!

Background: Processing large scale string data

Problem Previous Work

Equality Test [Plandowski ’94]; Lifshits ’07];
[Schmidt-Schauss+ ’09];

Pattern Match [Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04],
[Lifshits ’06], [Gawrychowski '11]

Approximate Pattern Match [Matsumoto+ ’00]; [Navarro+ ’01]

Subsequence Match [Cegielski+ ’00]; [Tiskin ’09]; [Yamamoto+ ’11]

Longest Common Subsequence /
Edit Distance

[Tiskin ’07, ’08]; [Hermelin + ’09, ’11]

Pattern Discovery [Inenaga+ ’09]; [Matsubara+ ’09]

q-gram Frequencies [Goto+ ’11]; [Goto+ ’12]

Grammar-Based Compressed String Processing

Grammar-Based Compressed String Processing

Problem Previous Work

Equality Test [Plandowski ’94]; Lifshits ’07];
[Schmidt-Schauss+ ’09];

Pattern Match [Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04],
[Lifshits ’06], [Gawrychowski '11]

Approximate Pattern Match [Matsumoto+ ’00]; [Navarro+ ’01]

Subsequence Match [Cegielski+ ’00]; [Tiskin ’09]; [Yamamoto+ ’11]

Longest Common Subsequence /
Edit Distance

[Tiskin ’07, ’08]; [Hermelin + ’09, ’11]

Pattern Discovery [Inenaga+ ’09]; [Matsubara+ ’09]

q-gram Frequencies [Goto+ ’11]; [Goto+ ’12]

Main contribution

The algorithm is asymptotically always at least as fast and better
in many cases compared to working on the uncompressed string

Uncompressed
String

SLP
(SPIRE 2011)

q-gram Freq O(|T |) = O(2n)
time and space

O(qn)
time and space

SLP
(This work)

O(min{qn, |T|-dup(q, D)})
time and space

dup(q, D) : a quantity that represents the amount of redundancy that
 the SLP D captures with respect to q-grams

T : uncompressed string, n : the size of SLP

q-gram frequencies problem

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition

q-gram frequencies problem

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

abaababaabT =
q = 3Example

Definition

q-gram frequencies problem

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

abaababaabT =
q = 3Example

aba
 baa
 aab
 aba
 bab
 aba
 baa
 aab

Definition

q-gram frequencies problem

abaababaab
aba
 baa
 aab
 aba
 bab
 aba
 baa
 aab

T =
q = 3Example

Freq(T, “aba”) = 3

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition

q-gram frequencies problem

abaababaab
aba
 baa
 aab
 aba
 bab
 aba
 baa
 aab

T =
q = 3Example

Freq(T, “aba”) = 3
Freq(T, “baa”) = 2

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition

q-gram frequencies problem

abaababaab
aba
 baa
 aab
 aba
 bab
 aba
 baa
 aab

T =
q = 3Example

Freq(T, “aba”) = 3
Freq(T, “baa”) = 2
Freq(T, “aab”) = 2

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition

q-gram frequencies problem

abaababaab
aba
 baa
 aab
 aba
 bab
 aba
 baa
 aab

T =
q = 3Example

Freq(T, “aba”) = 3
Freq(T, “baa”) = 2
Freq(T, “aab”) = 2
Freq(T, “bab”) = 1

Input：string T, positive integer q
Output：{(P, Freq(T, P)) | P ! !q, Freq(T, P) > 0}

where Freq(T, P) is # occurrences of P in T

Definition

Straight Line Program (SLP)

SLP can represent the output of well-known compression algorithms
! e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS

Straight Line Program is a context free grammar in the
Chomsky normal form that derives a single string.

X1 = expr1, X2 = expr2,, Xn = exprn

expri ! ! or
expri = Xl・Xr (l, r < i)

Definition

Example of SLP

X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5

X7 = X6 X5

n = | D | = 7

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

SLP: D Derivation Tree of D

Example of SLP

X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5

X7 = X6 X5

n = | D | = 7

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

SLP: D Derivation Tree of D

Length of the decompressed string can be "(2n)

Example of SLP

X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5

X7 = X6 X5

n = | D | = 7

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

SLP: D Derivation Tree of D
X7

X6

X5

Length of the decompressed string can be "(2n)

O(qn) algorithm for
q-gram frequencies problem on SLP

[Goto et al., SPIRE 2011]

O(qn) Algorithm in 2011

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

For Xi = Xl Xr, Xi stabs an occurrence of P " P starts in Xl and ends in Xr

Important Observation: stabbing

q = 3

Definition

O(qn) Algorithm in 2011

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

For Xi = Xl Xr, Xi stabs an occurrence of P " P starts in Xl and ends in Xr

Important Observation: stabbing

q = 3

Definition

O(qn) Algorithm in 2011

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

For Xi = Xl Xr, Xi stabs an occurrence of P " P starts in Xl and ends in Xr

Important Observation: stabbing

q = 3

Definition

O(qn) Algorithm in 2011

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

For Xi = Xl Xr, Xi stabs an occurrence of P " P starts in Xl and ends in Xr

Important Observation: stabbing

q = 3

Definition

For each occurrence of q-gram P, there exists a unique variable
which stabs the occurrence of P

Observation

O(qn) Algorithm in 2011

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

Important idea: counting stabbed occurrences
We can compute Freq(T, P) by counting the number of
occurrences of P stabbed by Xi, and summing them up for all Xi

Freq(T, P) = 2・ 1 + 1 + 1
X5 X6 X7

q = 3

O(qn) Algorithm in 2011

More formal description

For each variable Xi,
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

Definition

O(qn) Algorithm in 2011

More formal description

For each variable Xi,
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

Definition

Japanese skewer,
used to stab foods

串(Kushi):
YakitoriBBQ Oden

O(qn) Algorithm in 2011

More formal description

For each variable Xi,
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

Definition

Japanese skewer,
used to stab foods

串(Kushi):
YakitoriBBQ Oden

O(qn) Algorithm in 2011

vOcc(Xi) = 2, vOcc(Xj) = 1
Freq串(Xi, P) = 3, Freq串(Xj , P) = 1

Frequency of P = 3・2 + 1 ・1= 7T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

More formal description

For each variable Xi,
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

Definition

O(qn) Algorithm in 2011

串
Freq(T,P) =

n

∑
i=1

Freq (Xi,P) · vOcc(Xi)

More formal description

T
P

Xn

P
P
P

P
P
P

Xi Xi Xj

Lemma

vOcc(Xi) = 2, vOcc(Xj) = 1
Freq串(Xi, P) = 3, Freq串(Xj , P) = 1

Frequency of P = 3・2 + 1 ・1= 7

For each variable Xi,
- Freq串(Xi, P) : # occurrences of P stabbed by Xi in the string derived from Xi.

- vOcc(Xi) : # nodes labeled by Xi in the derivation tree of the last variable Xn.

Definition

O(qn) Algorithm in 2011

Computing Freq串(Xi, P)

Xl Xr

Xi

ti

q-1 q-1

O(qn) Algorithm in 2011

Xl Xr

ti

Xi

Xi stabs P " P starts in Xl and ends in Xr

・・・・

q-1 q-1

q-grams stabbed by Xi

Computing Freq串(Xi, P)

O(qn) Algorithm in 2011

Xl Xr

ti

Xi

For any P ! !q , Freq串(Xi, P) = Freq(ti, P)

q-1 q-1

Computing Freq串(Xi, P)

Observation

・・・・ q-grams stabbed by Xi

O(qn) Algorithm in 2011

Xl Xr

ti

Computing Freq串(Xi, P) by Freq(ti, P)

Xi

q-1 q-1

Freq(T,P) =
n

∑
i=1

Freq(ti,P) · vOcc(Xi)

Lemma

・・・・ q-grams stabbed by Xi

O(qn) Algorithm in 2011

Freq(T,P) =
n

∑
i=1

Freq(ti,P) · vOcc(Xi)

O(n) time and space in total

O(qn) time and space in total

Computing frequencies by Freq(ti, P) and vOcc(Xi)

Lemma

O(qn) Algorithm in 2011

Freq(T,P) =
n

∑
i=1

Freq(ti,P) · vOcc(Xi)

O(n) time and space in total

O(qn) time and space in total

Computing frequencies by Freq(ti, P) and vOcc(Xi)

Lemma

Sketch of proof:
Using the suffix array of the concatenation of all ti’s,
we can compute all q-gram frequencies in O(qn) time and space.

SLP q-gram Frequencies Problem can be
solved in O(qn) time and space.

Theorem

O(qn) Algorithm in 2011

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

da
ta

 s
iz

e
(M

B) |T|
! |ti|

ENGLISH data of 200MB from pizza & chili corpus

Efficiency & Inefficiency of O(qn) algorithm

0 20 40 60 80 100q

Total length of decompressed strings ti

O(qn) Algorithm in 2011

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

da
ta

 s
iz

e
(M

B) |T|
! |ti|

ENGLISH data of 200MB from pizza & chili corpus

Efficiency & Inefficiency of O(qn) algorithm

0 20 40 60 80 100q

•when q is small,
the algorithm runs faster

Total length of decompressed strings ti

O(qn) Algorithm in 2011

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

da
ta

 s
iz

e
(M

B) |T|
! |ti|

ENGLISH data of 200MB from pizza & chili corpus

Efficiency & Inefficiency of O(qn) algorithm

0 20 40 60 80 100q

•when q is small,
the algorithm runs faster

•when q is large,
the algorithm runs slower

Total length of decompressed strings ti

New Algorithm

New algorithm

New Algorithm

Inefficiency of O(qn) algorithm

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

! Total length of decompressed strings ti can be larger than |T|

q = 3

ti’s

New Algorithm

Inefficiency of O(qn) algorithm

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

t4 and t6 overlap with “ab”

! There are overlaps between partially decompressed strings ti

q = 3

New Algorithm

Inefficiency of O(qn) algorithm

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

t6 and t5 overlap with “ab”

q = 3

! There are overlaps between partially decompressed strings ti

New Algorithm

Identifying the redundancies

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T = a a b a b a a b a b a a b

q = 3

! Consider all partially decompressed strings ti in derivation tree

New Algorithm

Removing overlaps of neighboring ti’s

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T = a a b a b a a b a b a a b

q = 3

! Eliminate length-(q-1) prefix of all ti’s except for leftmost one

New Algorithm

Removing overlaps of neighboring ti’s

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Concatenation of remaining strings equals to T

a a b a b a a b a b a a b

New Algorithm

Removing duplicate ti’s

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! For all partially eliminated ti, remove all but first occurrence

a a b a b a a b a b a a b

New Algorithm

What we have left

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Compact representation of all ti’s

a a b a b a a b a b a a b

New Algorithm

What we have left

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Compact representation of all ti’s

a a b a b a a b a b a a b

t4 ○

New Algorithm

What we have left

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Compact representation of all ti’s

a a b a b a a b a b a a b

t6 ○

New Algorithm

What we have left

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Compact representation of all ti’s

a a b a b a a b a b a a b

t5○

New Algorithm

What we have left

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

! Compact representation of all ti’s

a a b a b a a b a b a a b

t7 !

New Algorithm

Neighbor tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

a a b a b a a b a b a a b

! Edge from Xi to Xj " ti and tj are neighboring

New Algorithm

Neighbor tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

a a b a b a a b a b a a b

! Edge from Xi to Xj " ti and tj are neighboring

New Algorithm

Neighbor tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13T =

q = 3

a a b a b a a b a b a a b

ab

ab

aa
aab

! Edge from Xi to Xj " ti and tj are neighboring

New Algorithm

Neighbor tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

neighbor tree

T =

X6

X5

X7

X4

q = 3

a a b a b a a b a b a a b

ab

ab

aa
aab

! Edge from Xi to Xj " ti and tj are neighboring

New Algorithm

Size of neighbor tree

neighbor tree

T =

X6

X5

X7

X4

q = 3

a a b a b a a b a b a a b

ab

ab

aa
aab

! Edge from Xi to Xj " ti and tj are neighboring

Lemma
The total length of edge labels in neighbor tree of G is

(q-1) + ! {|ti| - (q-1) | |Xi| ≧ q, i = 1, ..., n}
= |T| - dup(q, D)

where dup(q, D) = ∑{(vOcc(Xi)−1) · (|ti|− (q−1)) | |Xi|≥ q, i = 1, . . . ,n}

New Algorithm

Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in
O(min{qn, |T|-dup(q, D)})

New Algorithm

Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in
O(min{qn, |T|-dup(q, D)})

Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size

New Algorithm

Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in
O(min{qn, |T|-dup(q, D)})

Theorem
The q-gram frequencies problem on a SLP D of size n,
representing string T can be solved in O(min{qn, |T|-dup(q, D)})
time and space.

Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size

New Algorithm

|T|

! |ti|

Example of ENGLISH data of 200MB from pizza & chili corpus

Preliminary Experiment (ENGLISH 200MB)
size of neighbor tree and !|ti|

size of neighbor tree

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

da
ta

 s
iz

e
(M

B)

0 20 40 60 80 100q

Summary

Future work:
Other applications of neighbor tree
 (e.g. one paper accepted to SPIRE 2012)

Uncompressed
String

SLP
(SPIRE 2011)

q-gram Freq O(|T |) = O(2n)
time and space

O(qn)
time and space

SLP
(This work)

O(min{qn, |T|-dup(q, D)})
time and space

