Speeding up *q*-gram mining on grammar based compressed text

Kyushu University OKeisuke Goto, Hideo Bannai, Shunsuke Inenaga, Masayuki Takeda

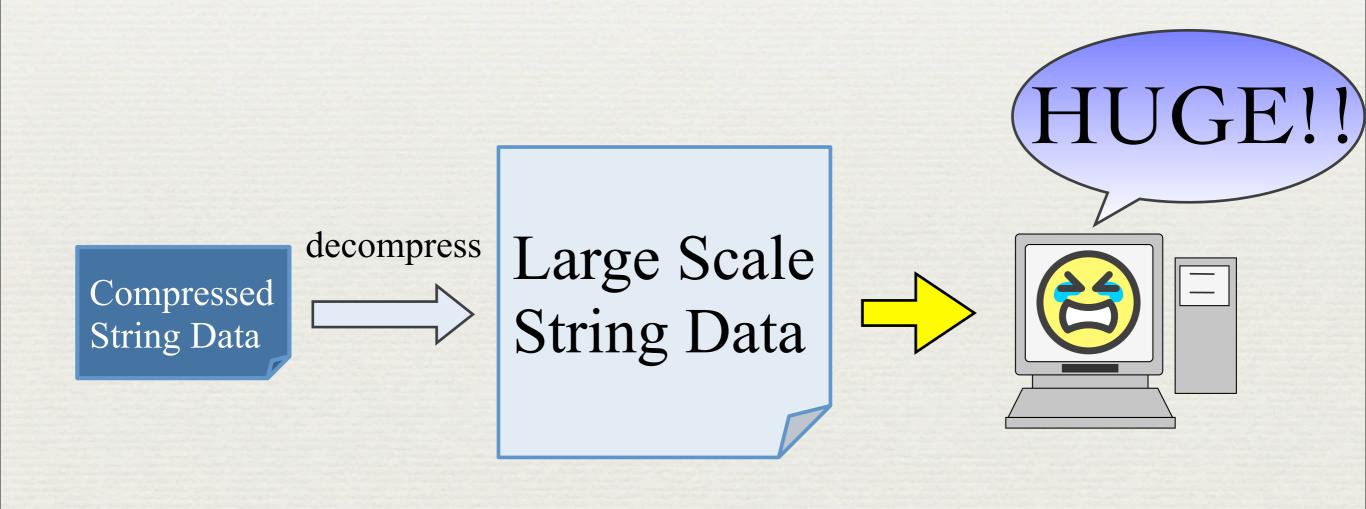
 Data compression allows large scale string data to be stored compactly

• In order to process such data, we usually decompress them, which requires a lot of space and time.

Compressed String Data

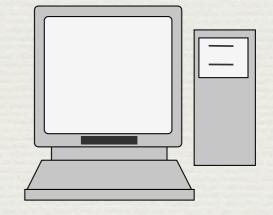
• In order to process such data, we usually decompress them, which requires a lot of space and time.

• In order to process such data, we usually decompress them, which requires a lot of space and time.

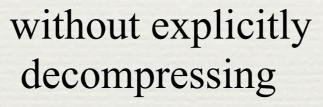


 One solution is to process compressed strings without explicit decompression.

Compressed String Data



One solution is to process compressed strings
without explicit decompression.



Compressed String Data

Grammar-Based Compressed String Processing

Problem	Previous Work	
Equality Test	[Plandowski '94]; Lifshits '07]; [Schmidt-Schauss+ '09];	
Pattern Match	[Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04], [Lifshits '06], [Gawrychowski '11]	
Approximate Pattern Match	tch [Matsumoto+'00]; [Navarro+'01]	
Subsequence Match	[Cegielski+ '00]; [Tiskin '09]; [Yamamoto+ '11]	
Longest Common Subsequence / Edit Distance	[Tiskin '07, '08]; [Hermelin + '09, '11]	
Pattern Discovery	overy [Inenaga+ '09]; [Matsubara+ '09]	
q-gram Frequencies	[Goto+ '11]; [Goto+ '12]	

Grammar-Based Compressed String Processing

Problem	Previous Work	
Equality Test	[Plandowski '94]; Lifshits '07]; [Schmidt-Schauss+ '09];	
Pattern Match	[Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04], [Lifshits '06], [Gawrychowski '11]	
Approximate Pattern Match	tch [Matsumoto+'00]; [Navarro+'01]	
Subsequence Match	[Cegielski+ '00]; [Tiskin '09]; [Yamamoto+ '11]	
Longest Common Subsequence / Edit Distance	[Tiskin '07, '08]; [Hermelin + '09, '11]	
Pattern Discovery	[Inenaga+ '09]; [Matsubara+ '09]	
q-gram Frequencies	[Goto+ '11]; [Goto+ '12]	

Main contribution

	Uncompressed String	SLP (SPIRE 2011)	SLP (This work)
<i>q</i> -gram Freq	$O(T) = O(2^n)$ time and space	<i>O</i> (<i>qn</i>) time and space	$O(\min\{qn, T -dup(q, D)\})$ time and space

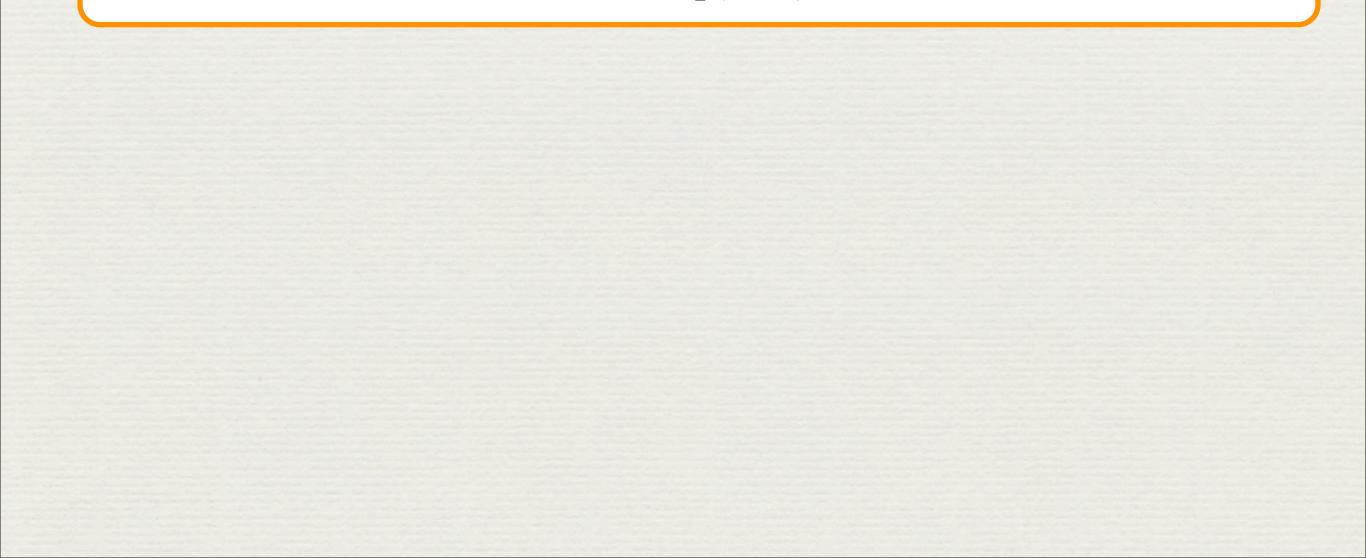
T: uncompressed string, n: the size of SLP

dup(q, D): a quantity that represents the amount of redundancy that the SLP D captures with respect to q-grams

The algorithm is asymptotically always at least as fast and better in many cases compared to working on the uncompressed string

Definition

Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*



Definition

Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*

Example q = 3T = abaababaab

Definition

Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*

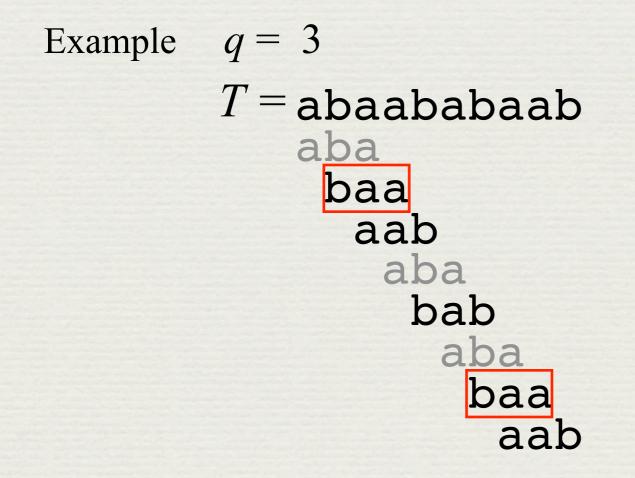
Definition

Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*

Freq(T, "aba") = 3

Definition

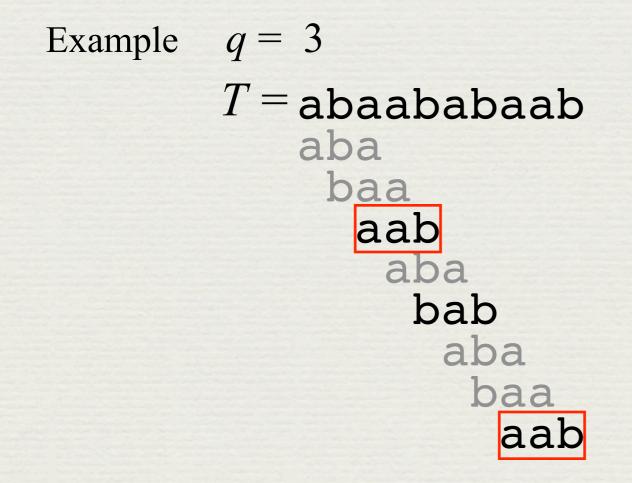
Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*



Freq(T, "aba") = 3Freq(T, "baa") = 2

Definition

Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*



Freq(T, ``aba'') = 3Freq(T, ``baa'') = 2Freq(T, ``aab'') = 2

Definition

Input : string *T*, positive integer *q* Output : $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of *P* in *T*

Freq(T, ``aba ``) = 3 Freq(T, ``baa `') = 2 Freq(T, ``aab `') = 2Freq(T, ``bab `') = 1

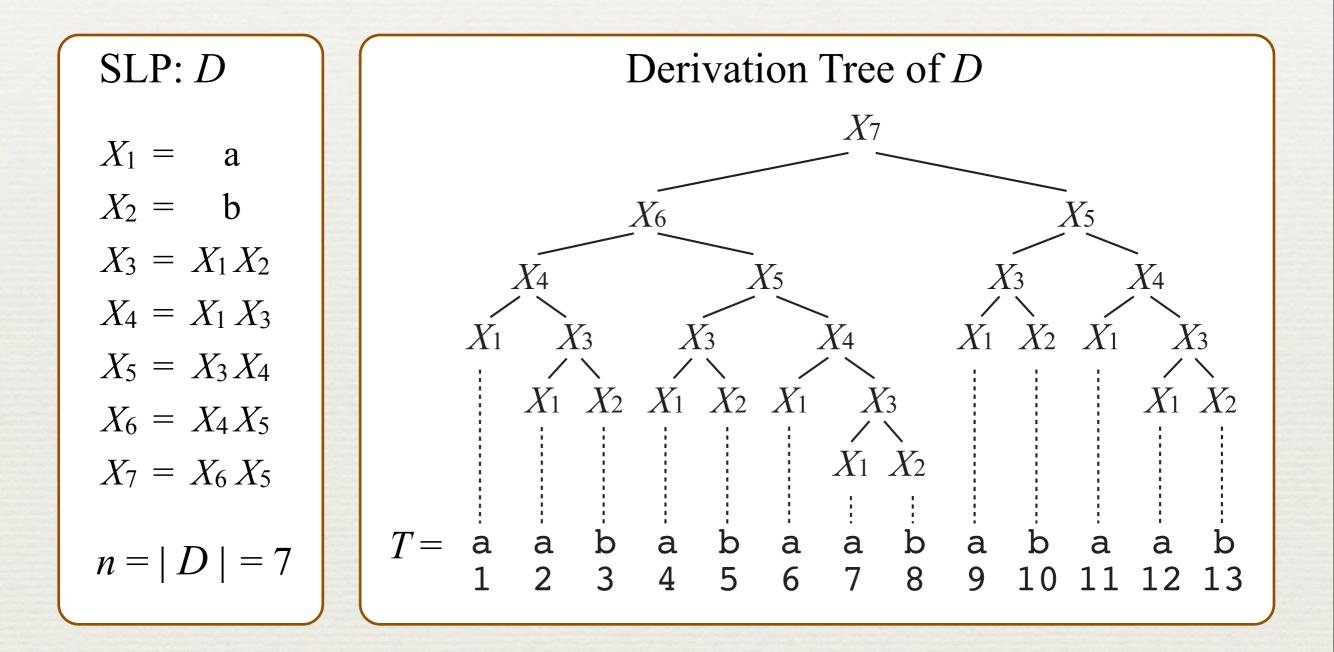
Straight Line Program (SLP)

Definition

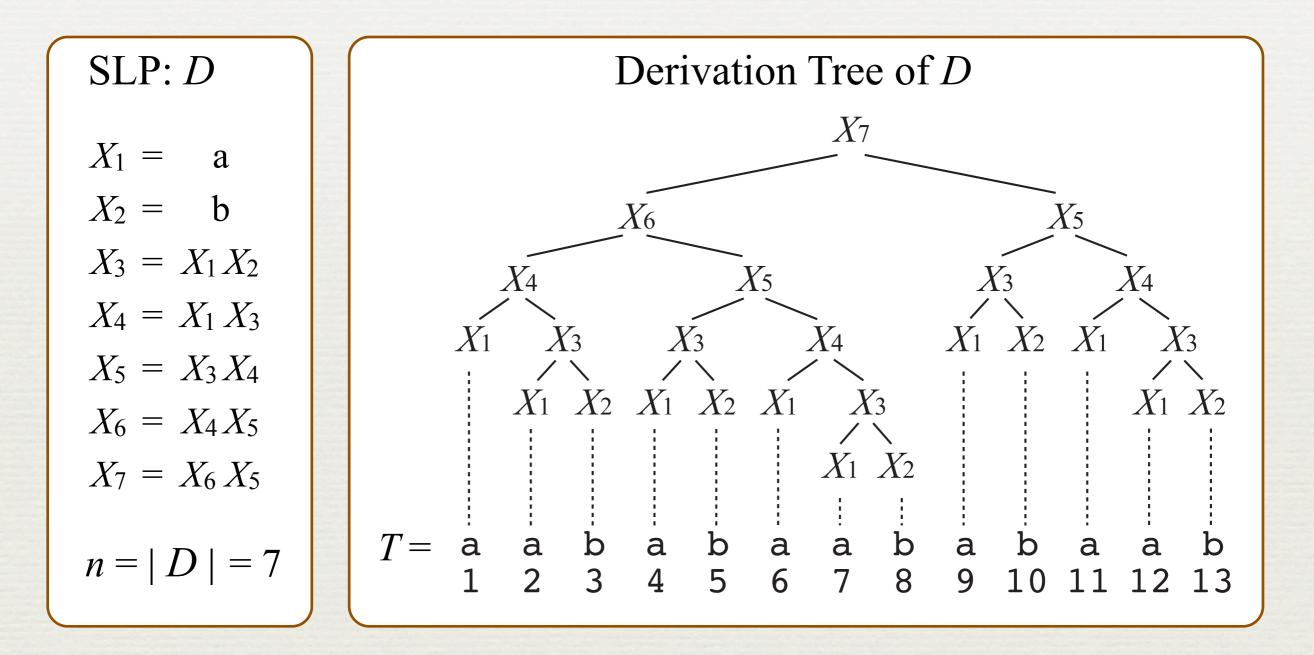
Straight Line Program is a context free grammar in the Chomsky normal form that derives a single string. $X_1 = expr_1, X_2 = expr_2, ..., X_n = expr_n$ $expr_i \in \Sigma$ or $expr_i = X_l \cdot X_r (l, r < i)$

SLP can represent the output of well-known compression algorithms + e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS

Example of SLP

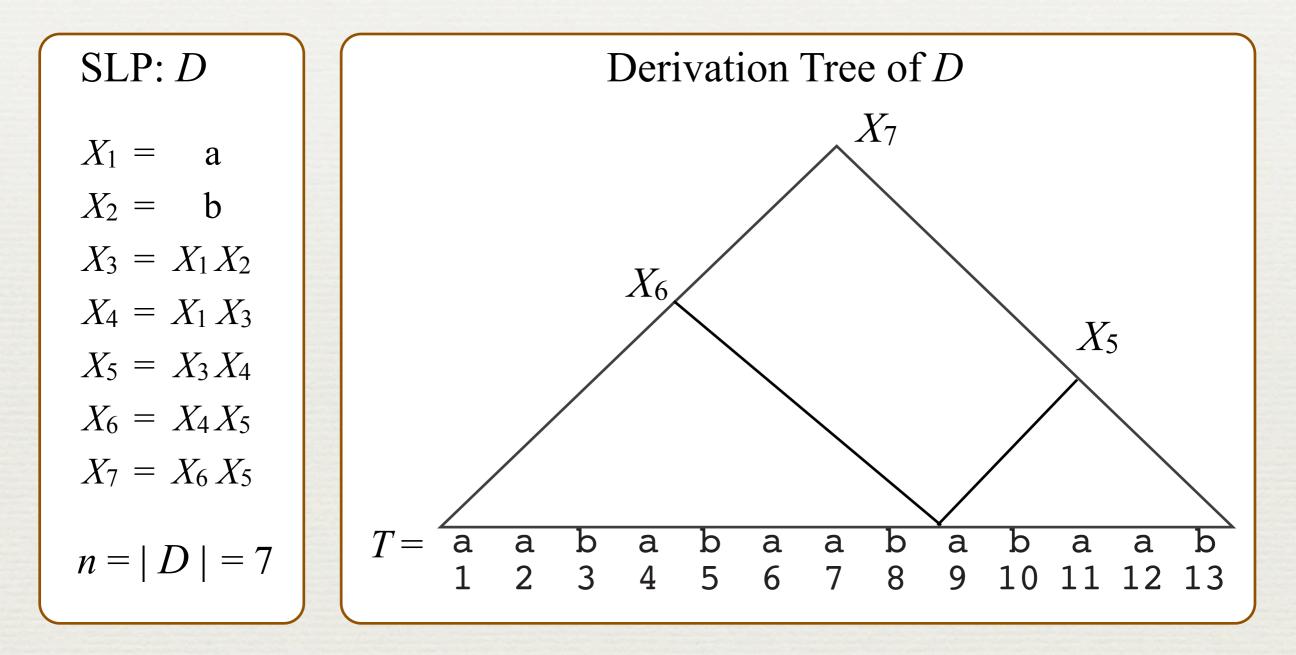


Example of SLP



Length of the decompressed string can be $\Theta(2^n)$

Example of SLP



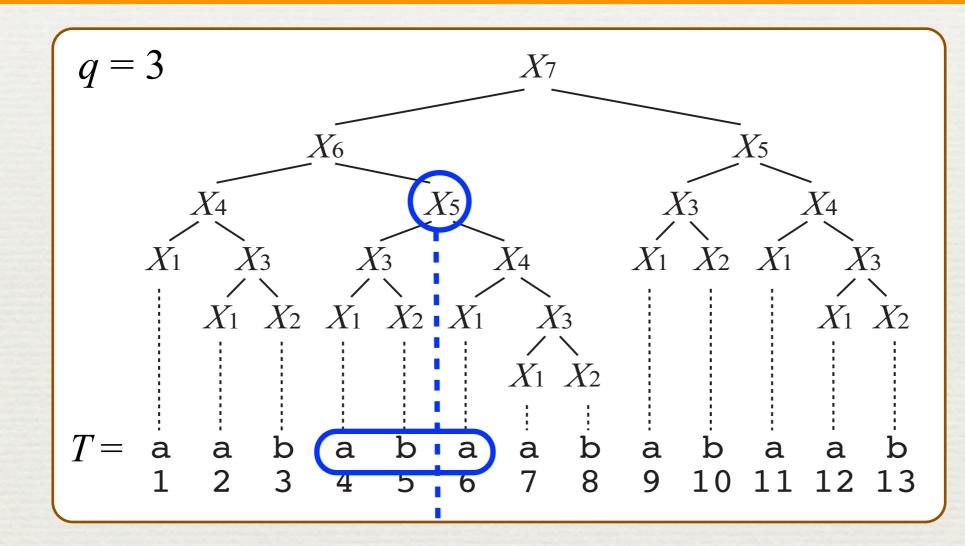
Length of the decompressed string can be $\Theta(2^n)$

O(qn) algorithm for *q*-gram frequencies problem on SLP

[Goto et al., SPIRE 2011]

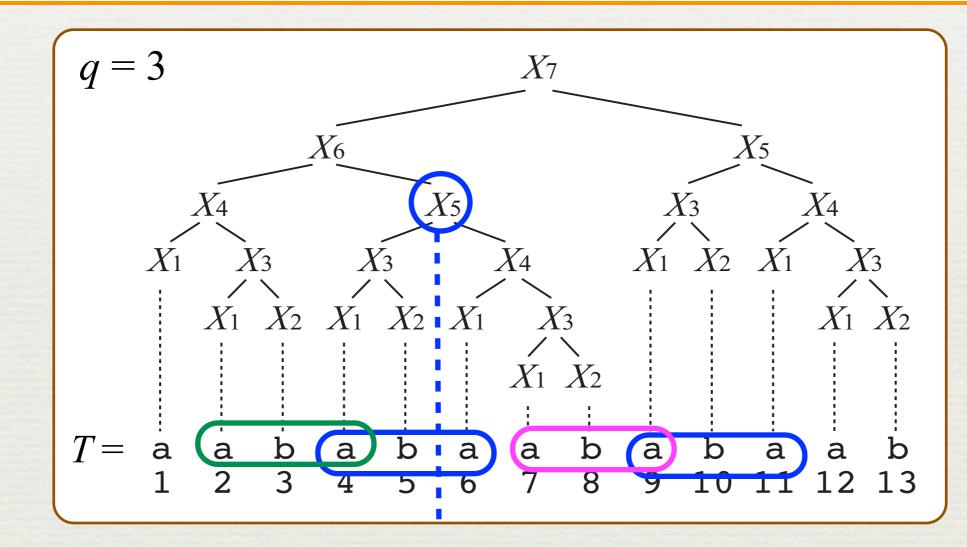
Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r



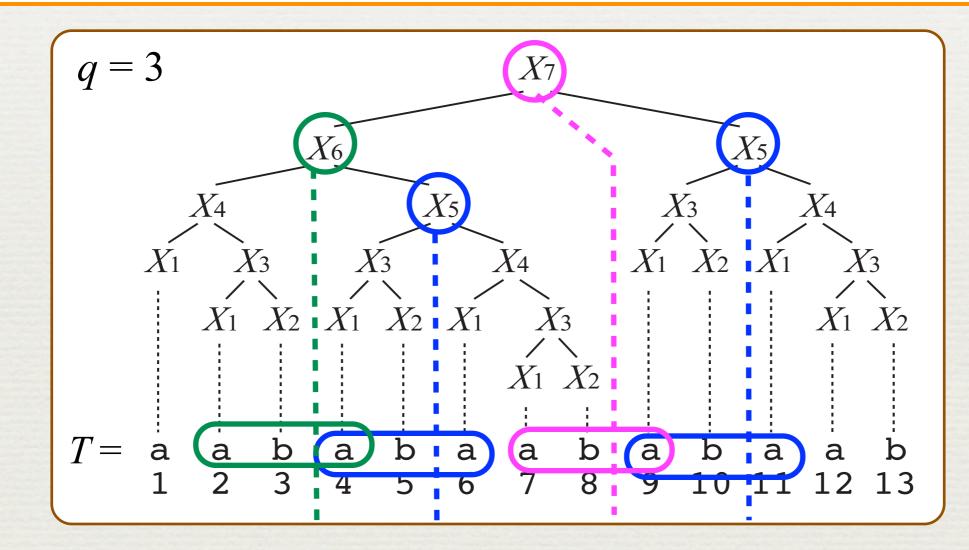
Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of $P \iff P$ starts in X_l and ends in X_r



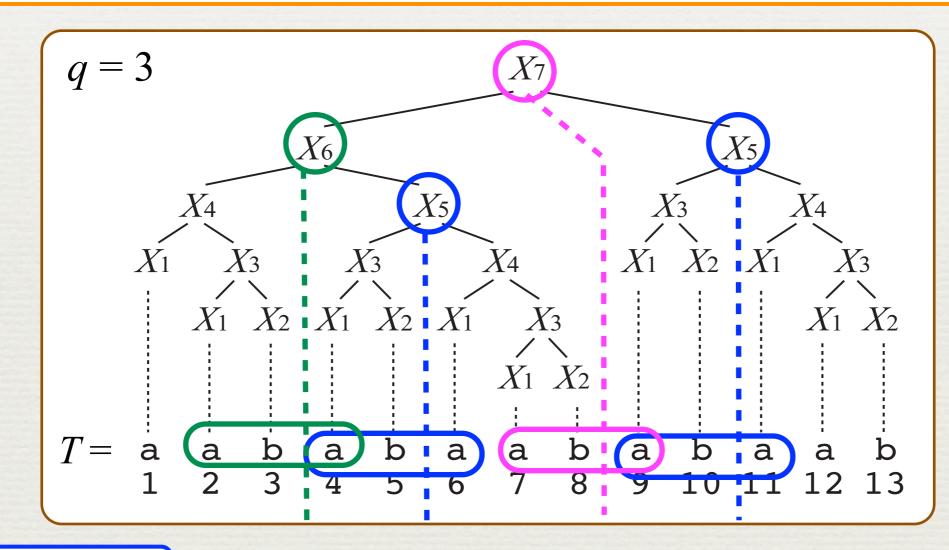
Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r



Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r



Observation

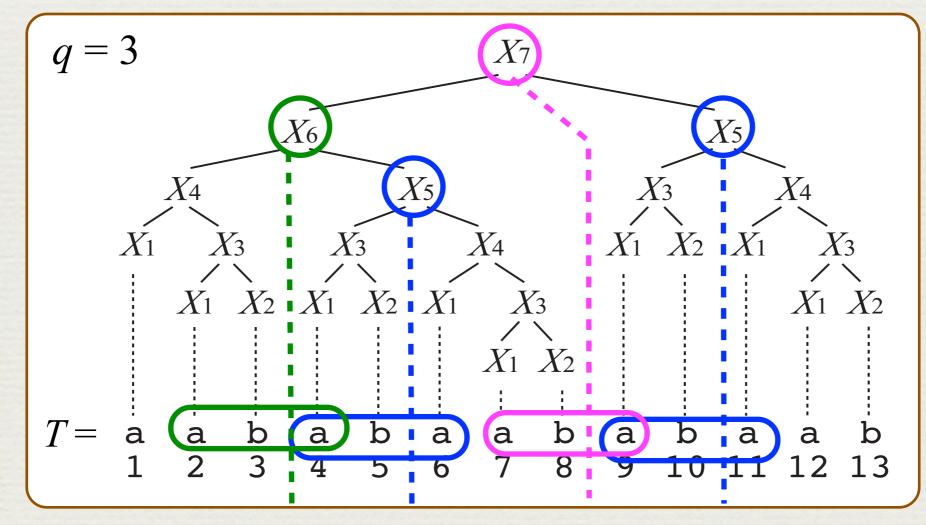
For each occurrence of q-gram P, there exists a unique variable which stabs the occurrence of P

Important idea: counting stabbed occurrences

We can compute Freq(T, P) by counting the number of occurrences of *P* stabled by X_i , and summing them up for all X_i

$$Freq(T, P) = 2 \cdot 1 + 1 + 1$$

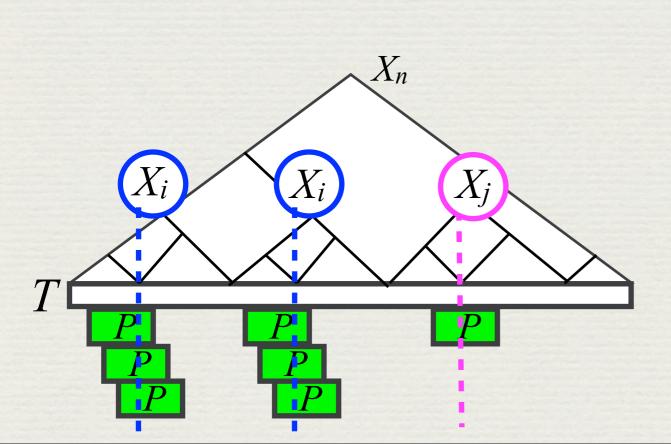
X₅ X₆ X₇



Definition

For each variable X_i ,

- *Freq*[‡](X_i , P) : # occurrences of P stabbed by X_i in the string derived from X_i .
- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n .

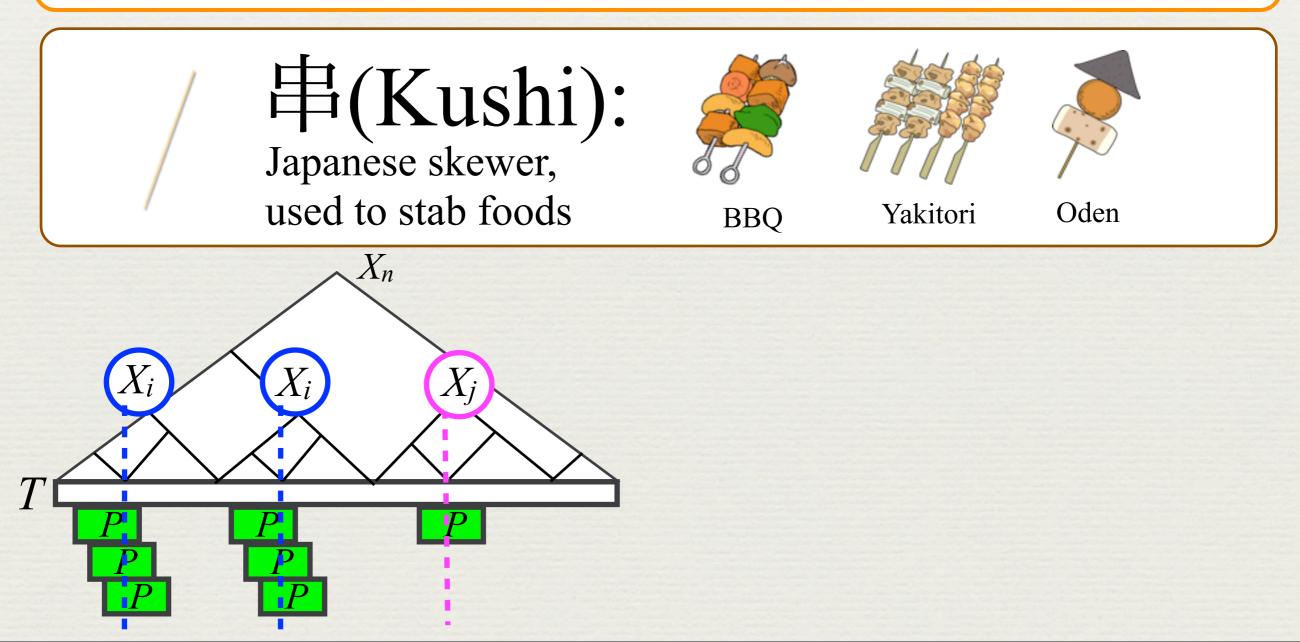


Definition

For each variable X_i ,

- *Freq*^{\oplus}(*X_i*, *P*) : # occurrences of *P* stabbed by *X_i* in the string derived from *X_i*.

- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n .

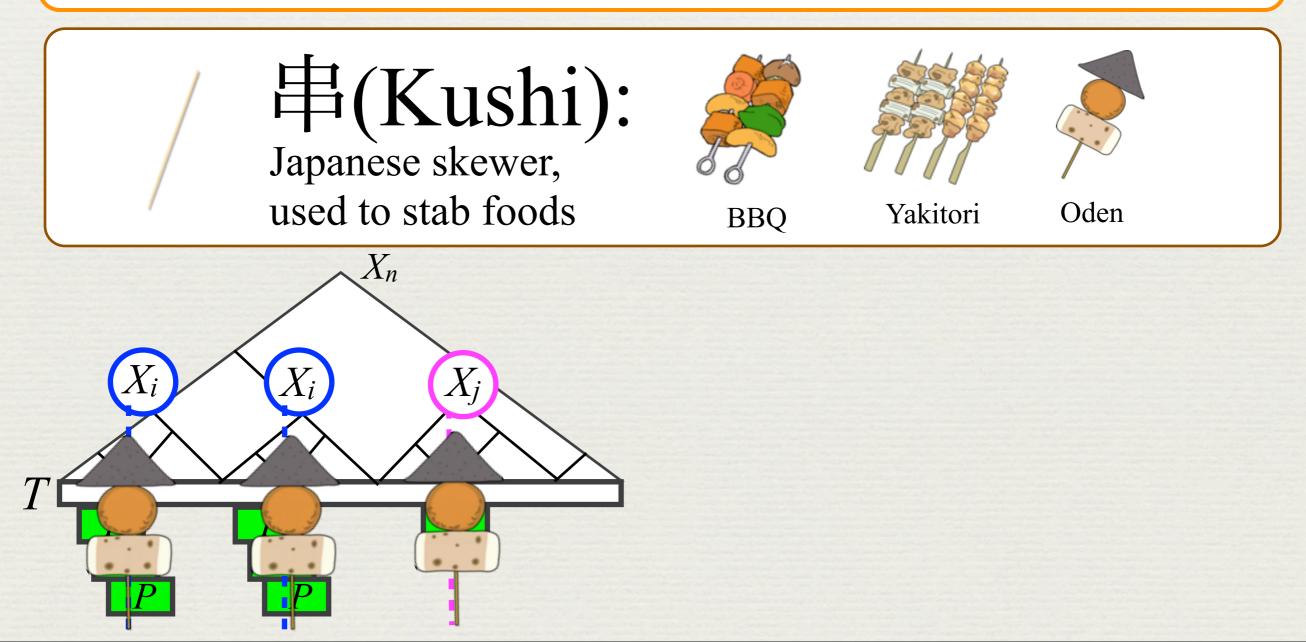


Definition

For each variable X_i ,

- *Freq*^{\oplus}(*X_i*, *P*) : # occurrences of *P* stabbed by *X_i* in the string derived from *X_i*.

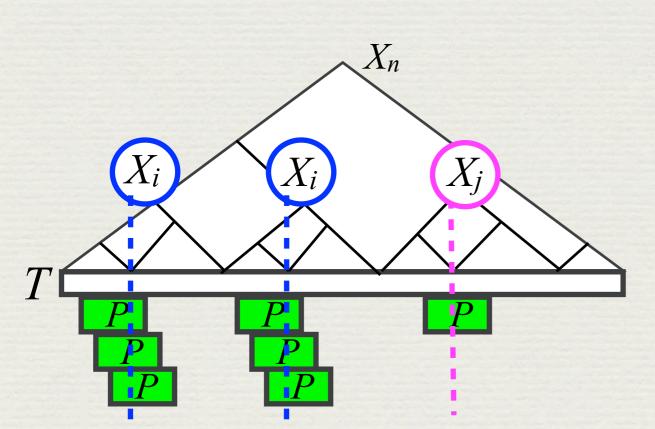
- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n .



Definition

For each variable X_i ,

- *Freq*[‡](X_i , P) : # occurrences of P stabbed by X_i in the string derived from X_i .
- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n .



 $Freq^{\oplus}(X_i, P) = 3, Freq^{\oplus}(X_j, P) = 1$ $vOcc(X_i) = 2, vOcc(X_j) = 1$ Frequency of $P = 3 \cdot 2 + 1 \cdot 1 = 7$

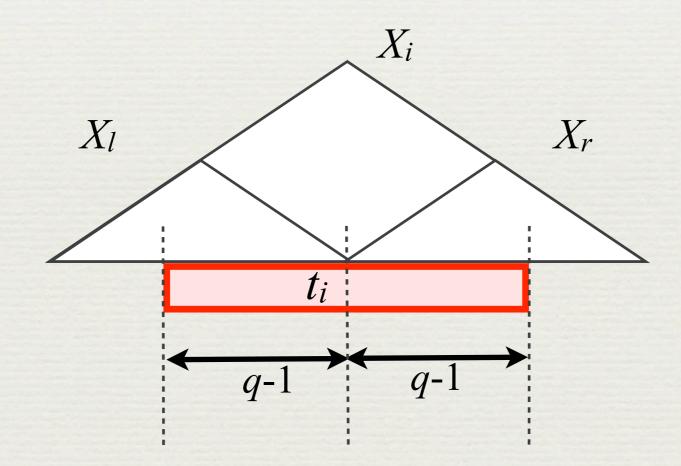
Definition

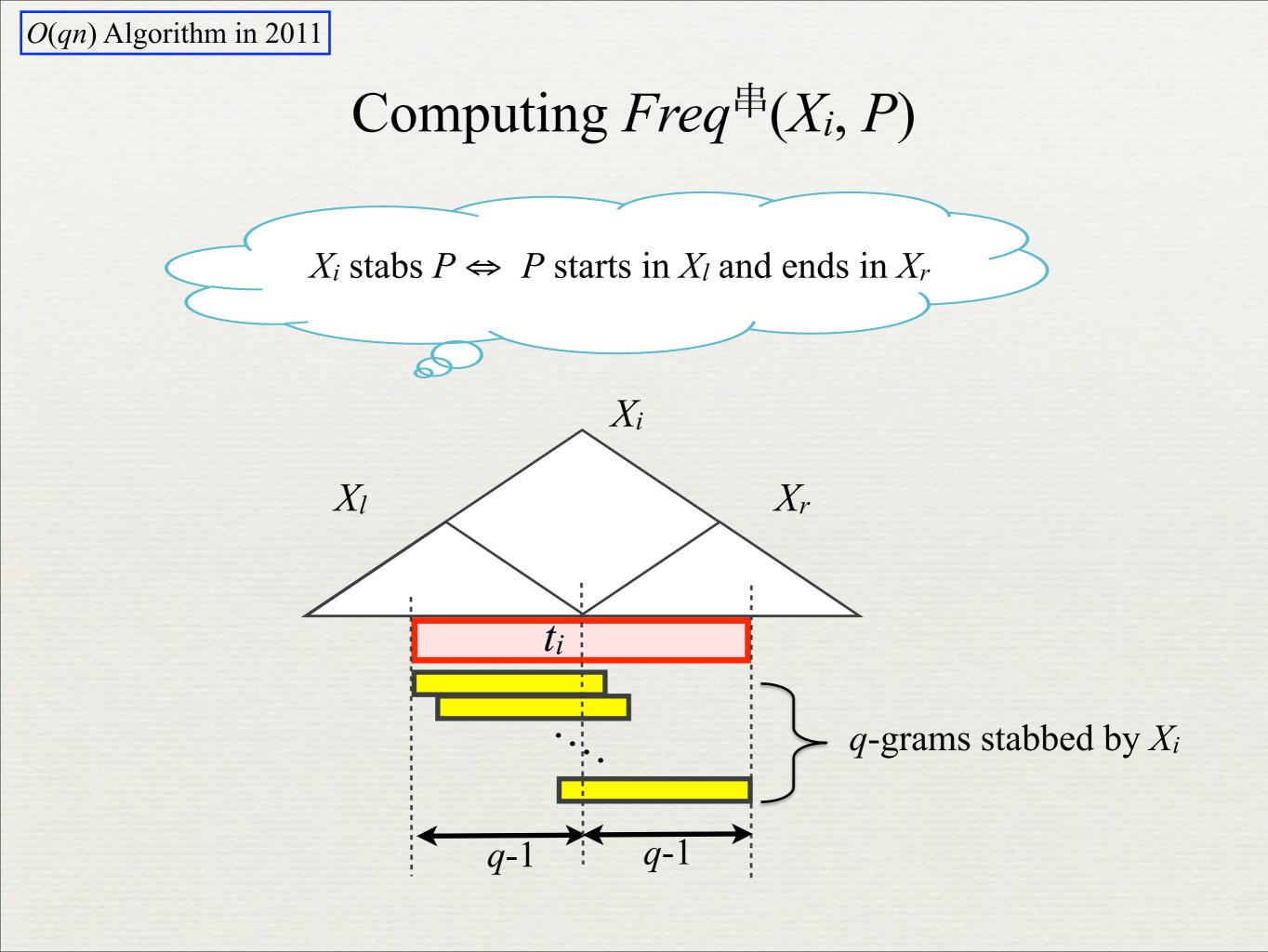
For each variable X_i ,

- *Freq*^{\oplus}(*X_i*, *P*) : # occurrences of *P* stabbed by *X_i* in the string derived from *X_i*.
- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n .



Computing $Freq^{\oplus}(X_i, P)$



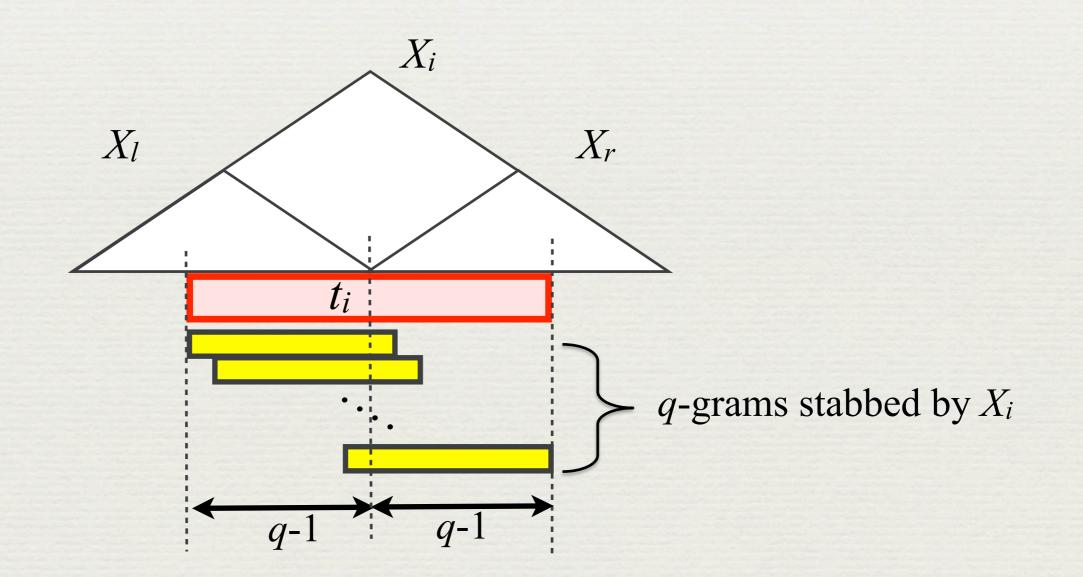


O(qn) Algorithm in 2011

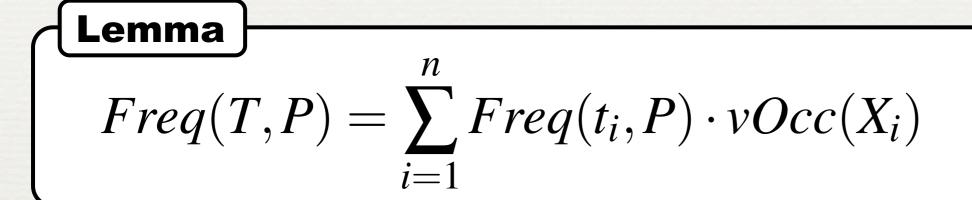
Computing $Freq^{\oplus}(X_i, P)$

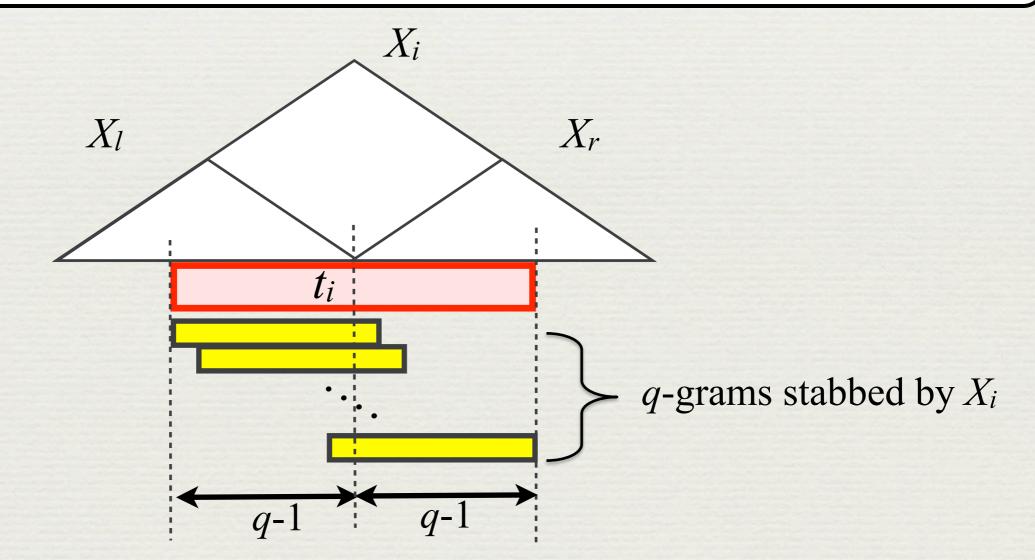
Observation

For any $P \in \Sigma^q$, $Freq^{\oplus}(X_i, P) = Freq(t_i, P)$

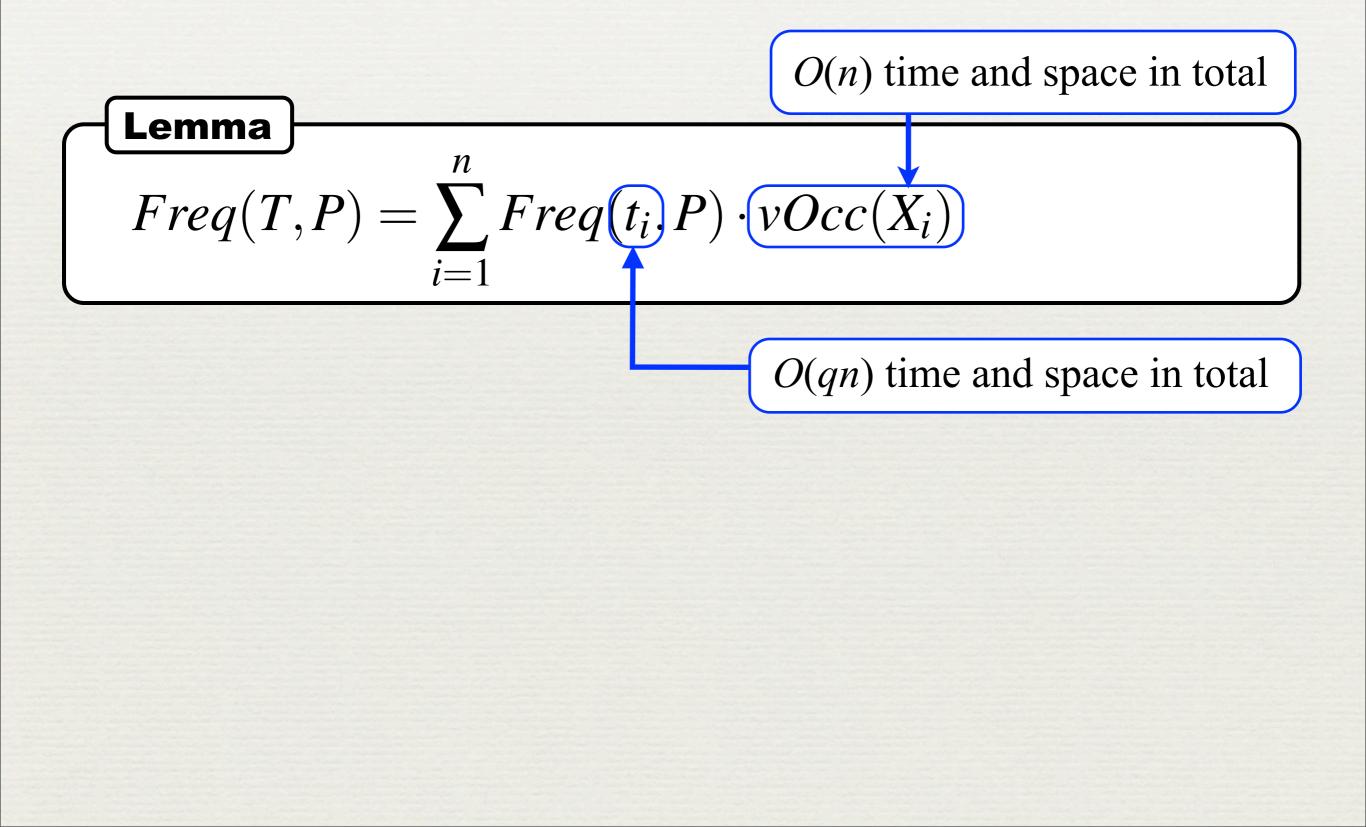


Computing $Freq^{\oplus}(X_i, P)$ by $Freq(t_i, P)$

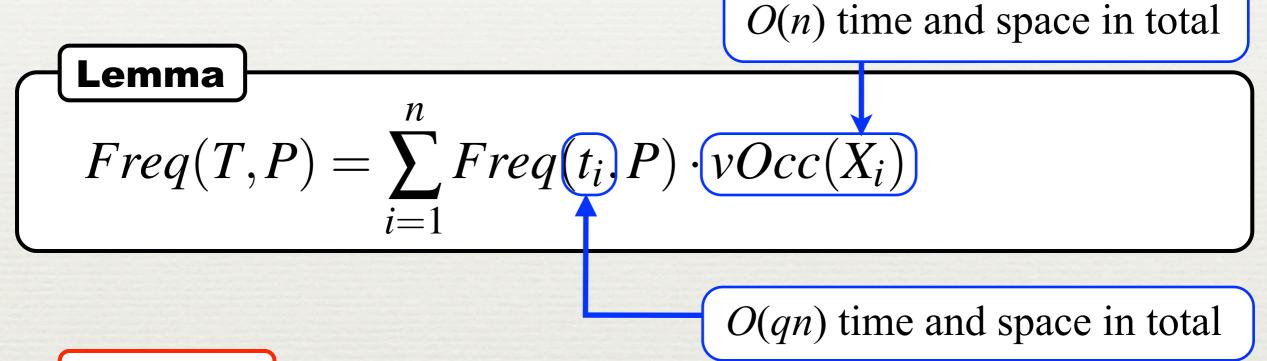




Computing frequencies by $Freq(t_i, P)$ and $vOcc(X_i)$



Computing frequencies by $Freq(t_i, P)$ and $vOcc(X_i)$



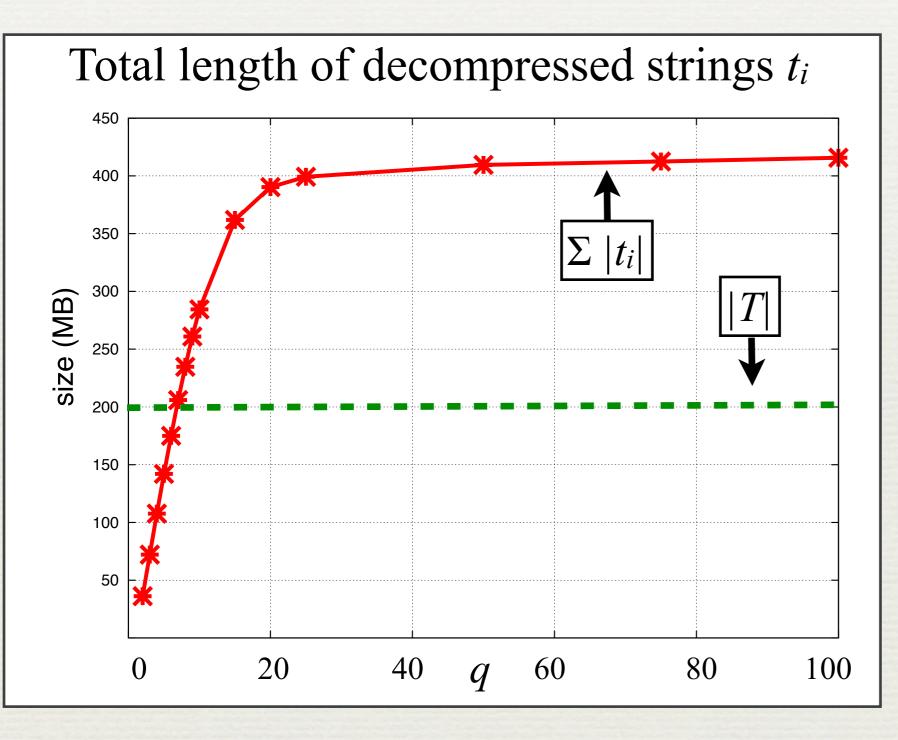
Theorem

SLP q-gram Frequencies Problem can be solved in O(qn) time and space.

Sketch of proof:

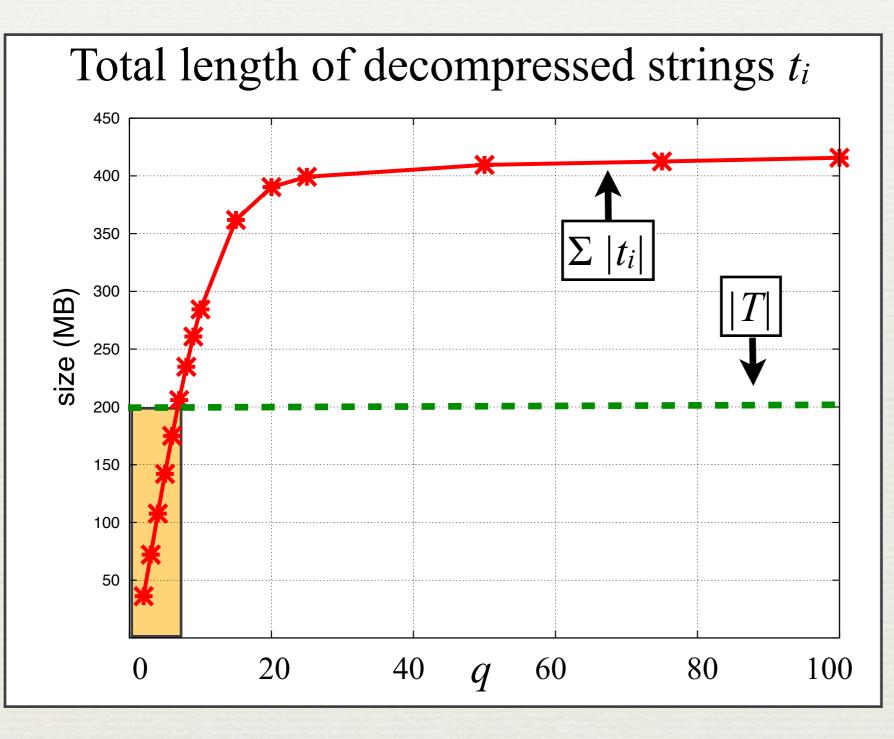
Using the suffix array of the concatenation of all t_i 's, we can compute all q-gram frequencies in O(qn) time and space.

Efficiency & Inefficiency of O(qn) algorithm



ENGLISH data of 200MB from pizza & chili corpus

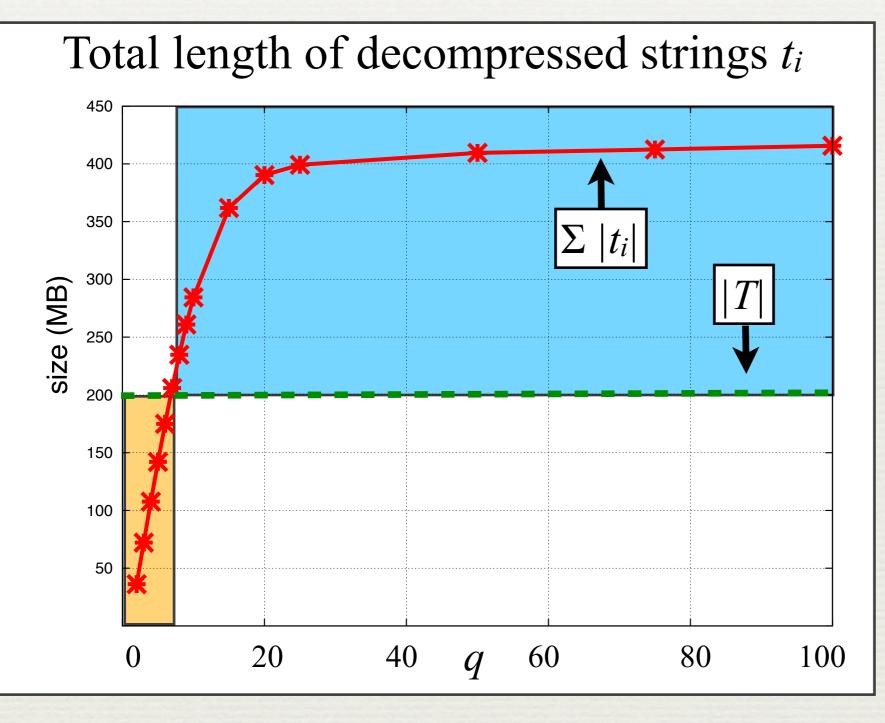
Efficiency & Inefficiency of O(qn) algorithm



•when q is small, the algorithm runs faster

ENGLISH data of 200MB from pizza & chili corpus

Efficiency & Inefficiency of O(qn) algorithm



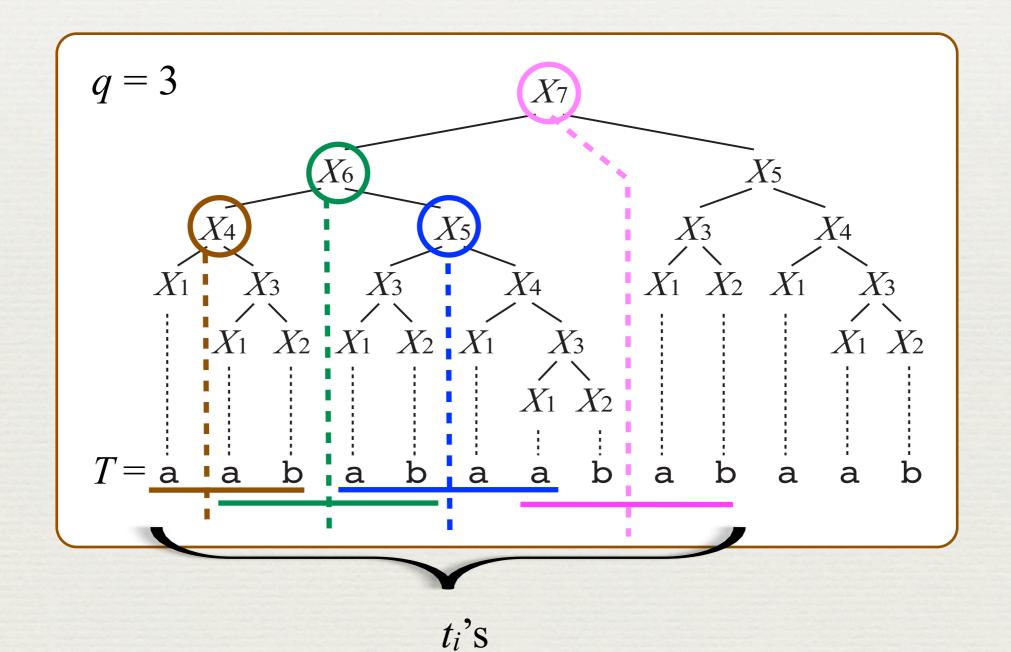
•when q is large, the algorithm runs slower

•when q is small, the algorithm runs faster

ENGLISH data of 200MB from pizza & chili corpus

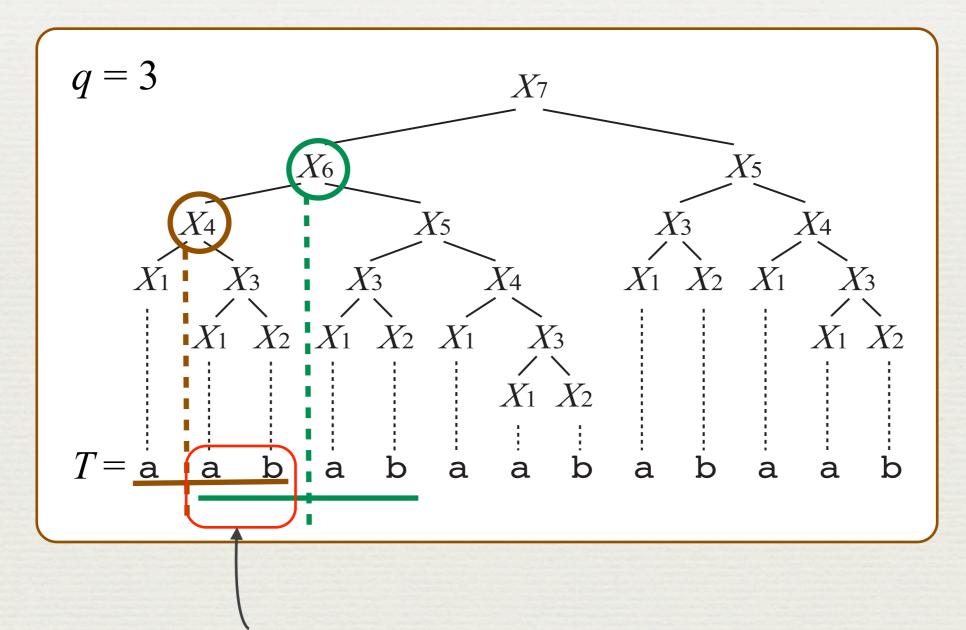
Inefficiency of O(qn) algorithm

+ Total length of decompressed strings t_i can be larger than |T|



Inefficiency of O(qn) algorithm

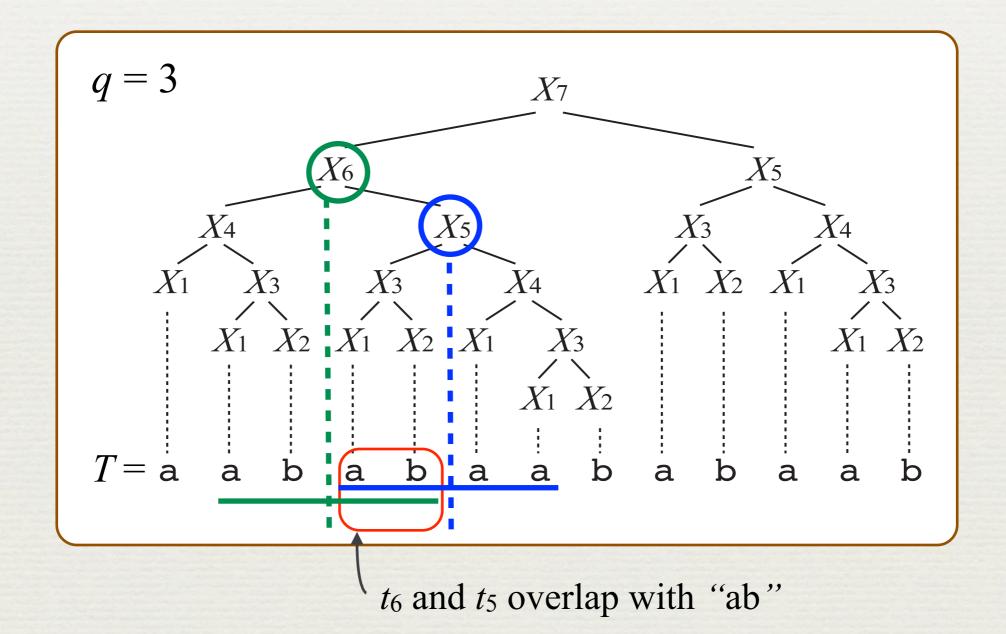
+ There are overlaps between partially decompressed strings t_i



t4 and t6 overlap with "ab"

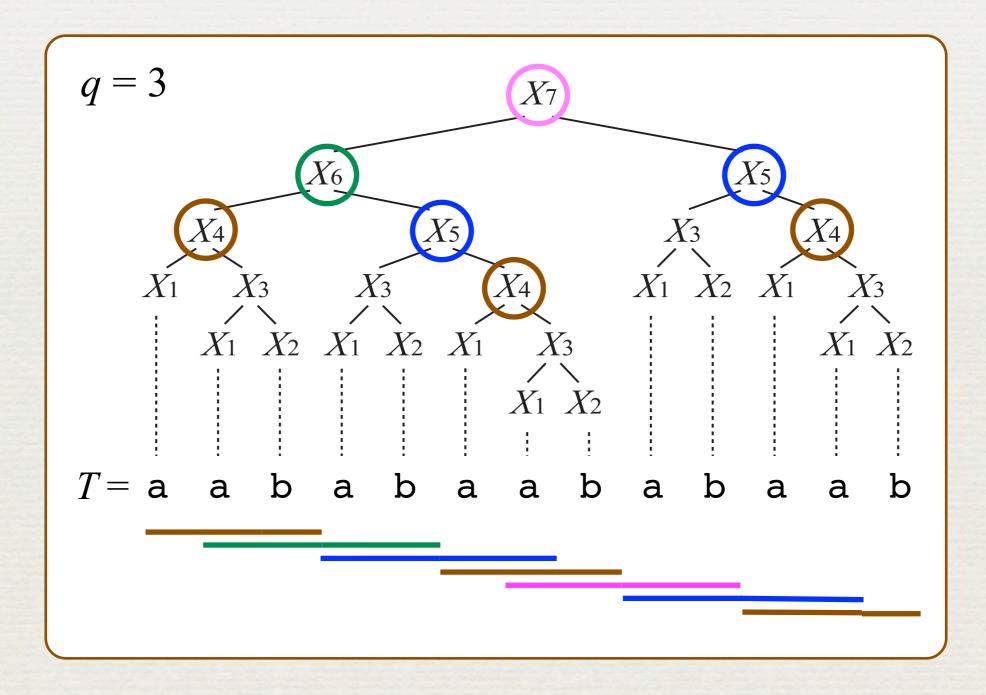
Inefficiency of O(qn) algorithm

+ There are overlaps between partially decompressed strings t_i



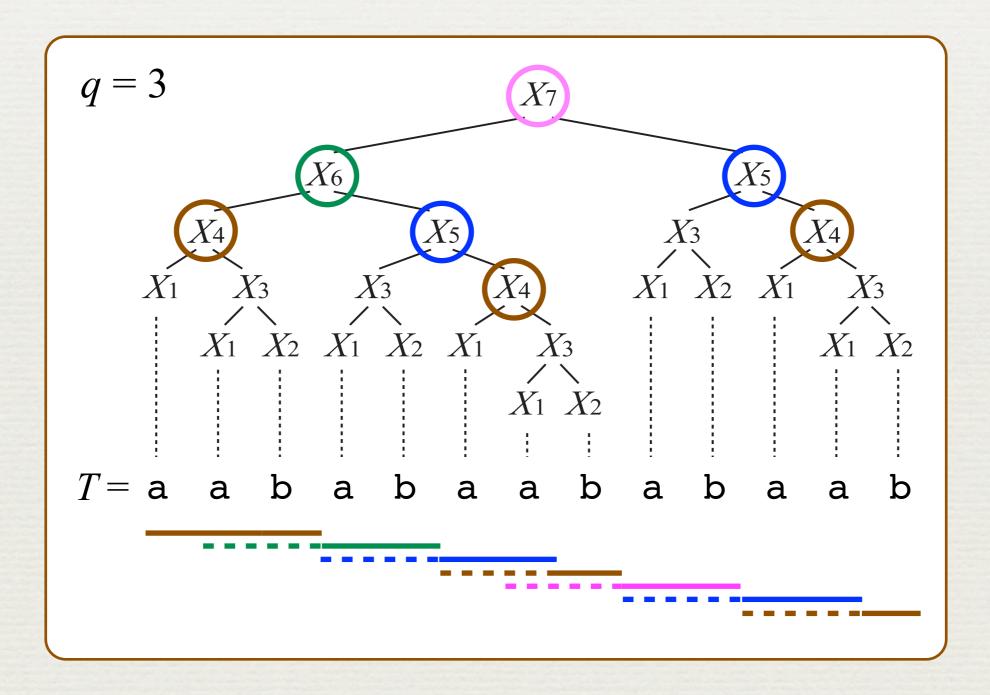
Identifying the redundancies

• Consider all partially decompressed strings t_i in derivation tree



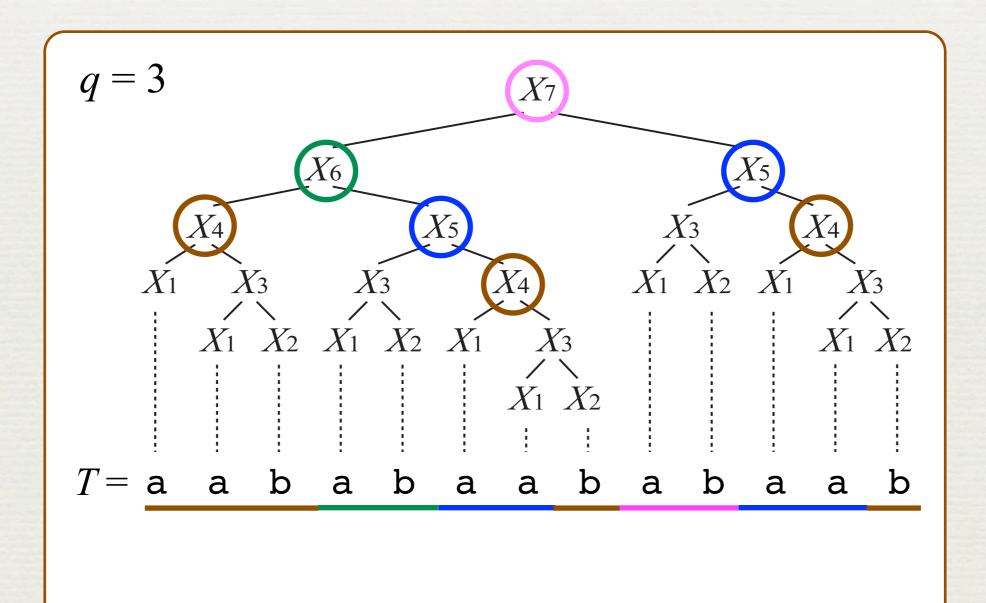
Removing overlaps of neighboring t_i 's

* Eliminate length-(q-1) prefix of all t_i 's except for leftmost one



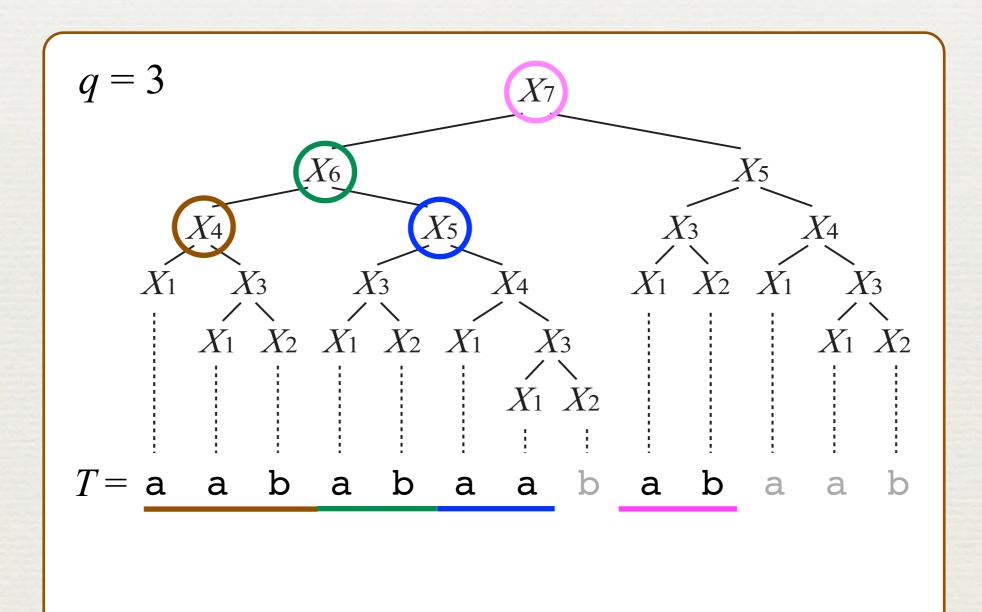
Removing overlaps of neighboring t_i 's

+ Concatenation of remaining strings equals to T

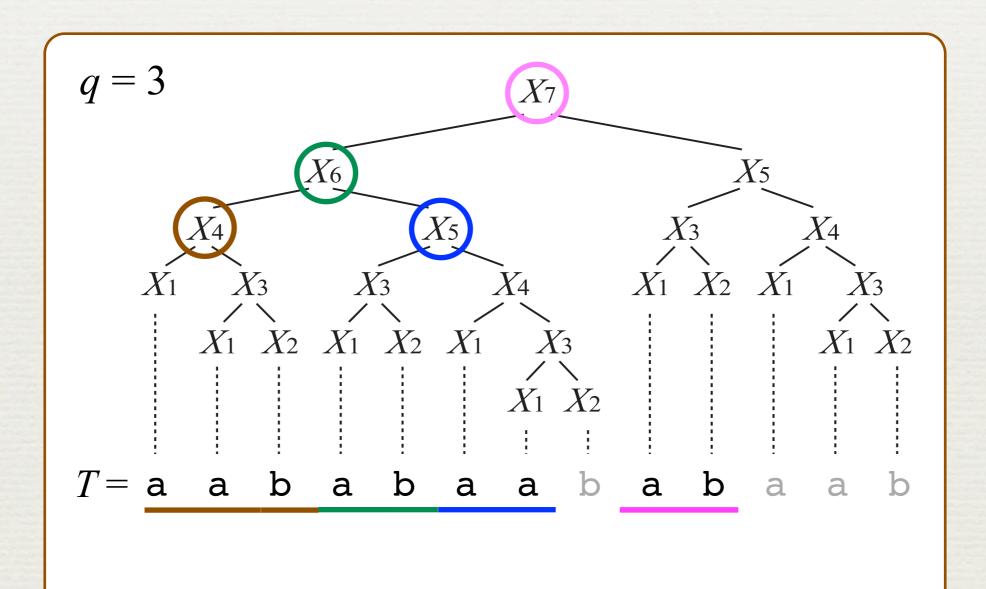


Removing duplicate t_i 's

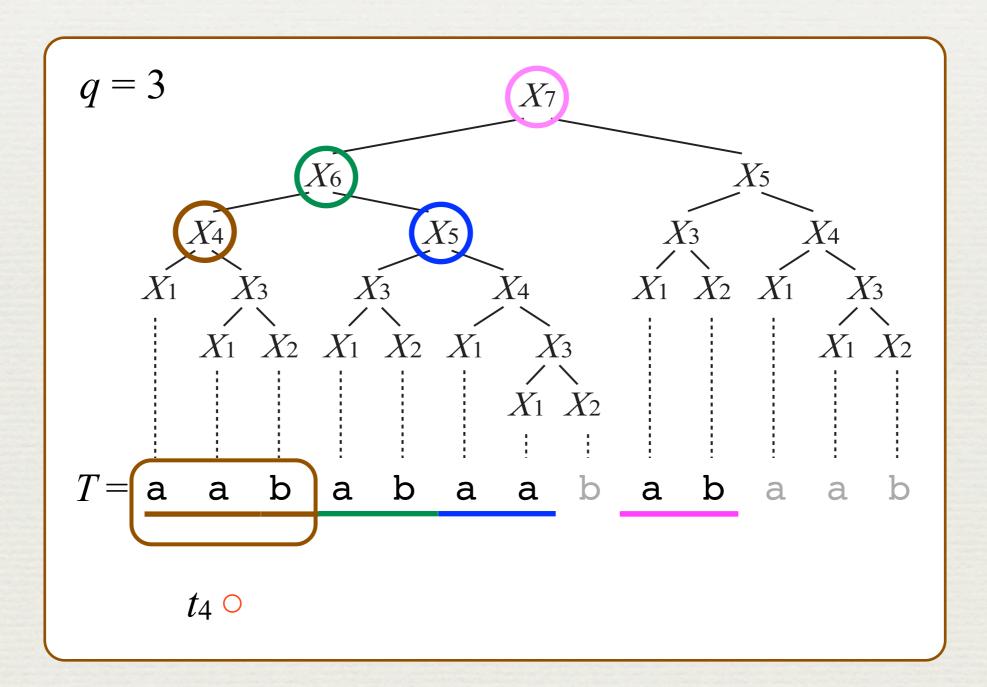
+ For all partially eliminated t_i , remove all but first occurrence



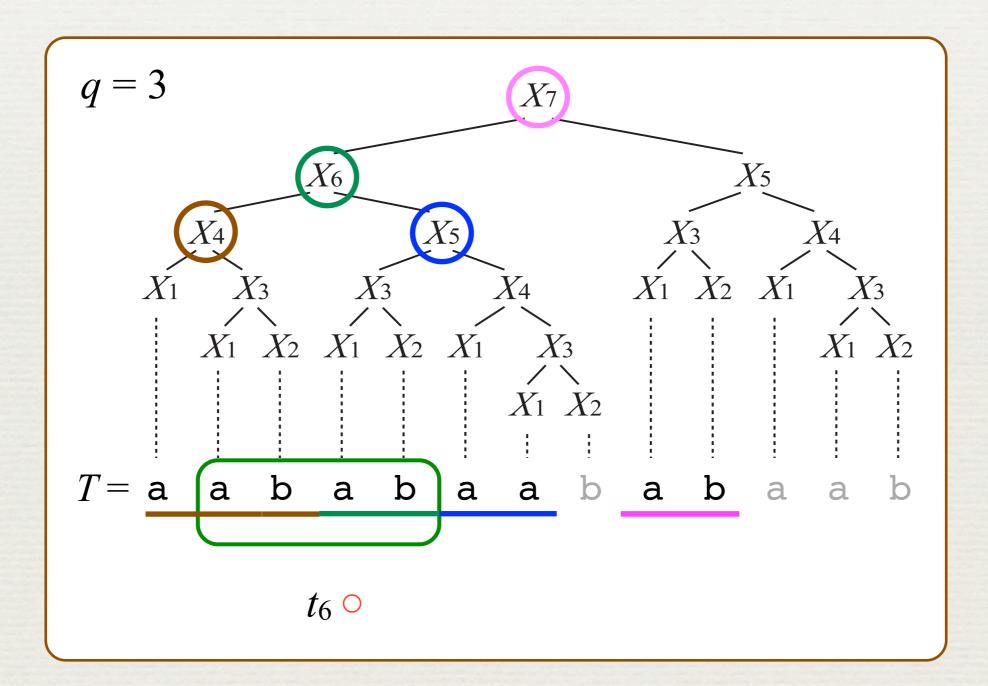
What we have left



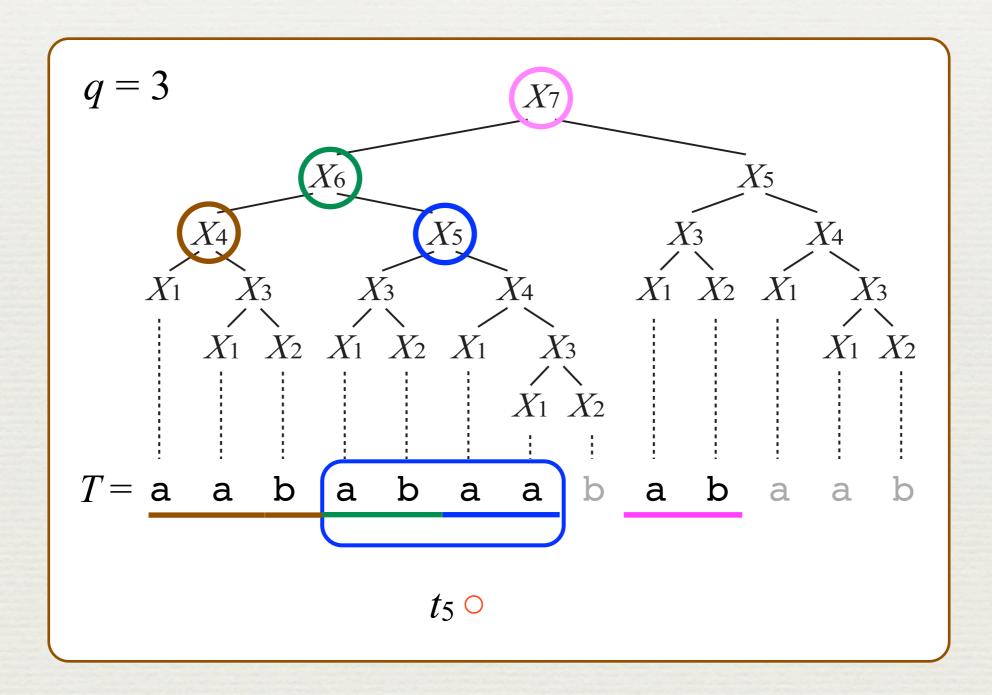
What we have left



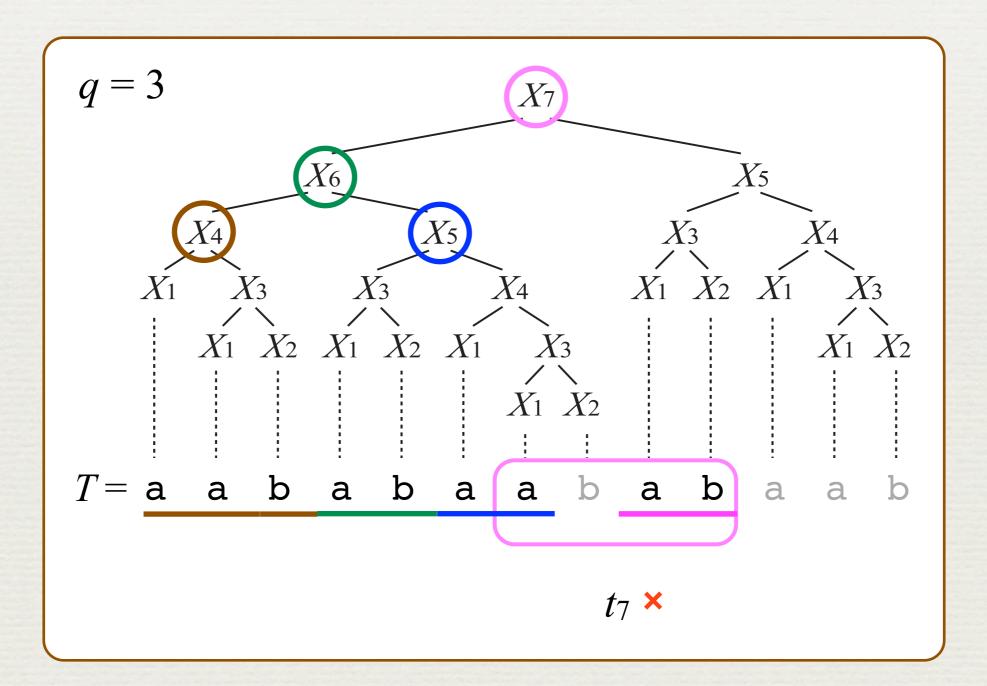
What we have left

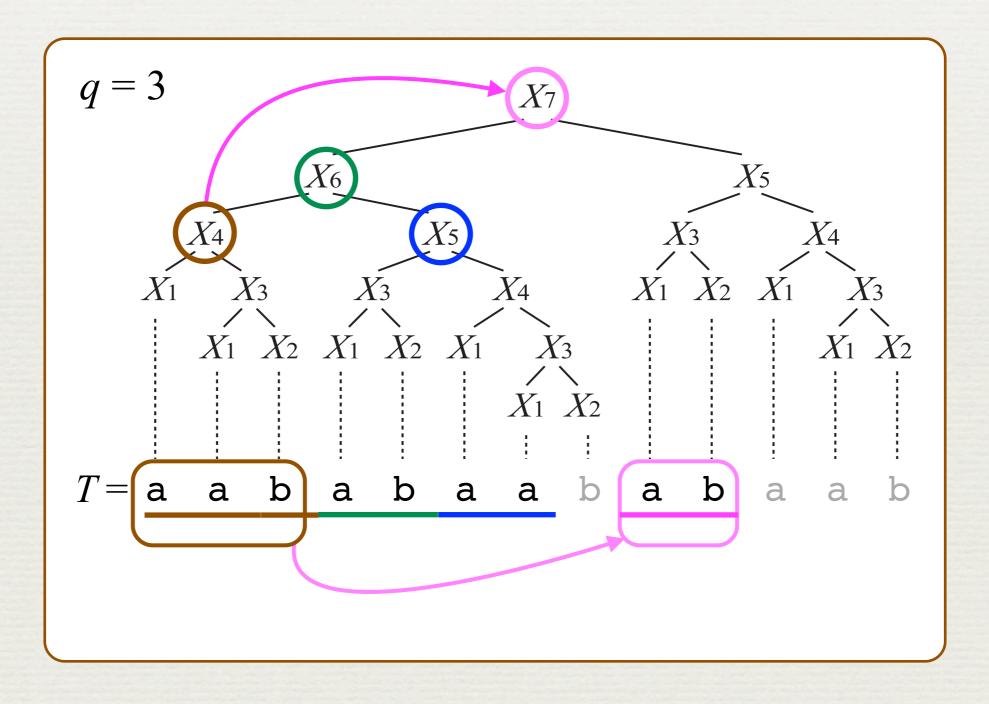


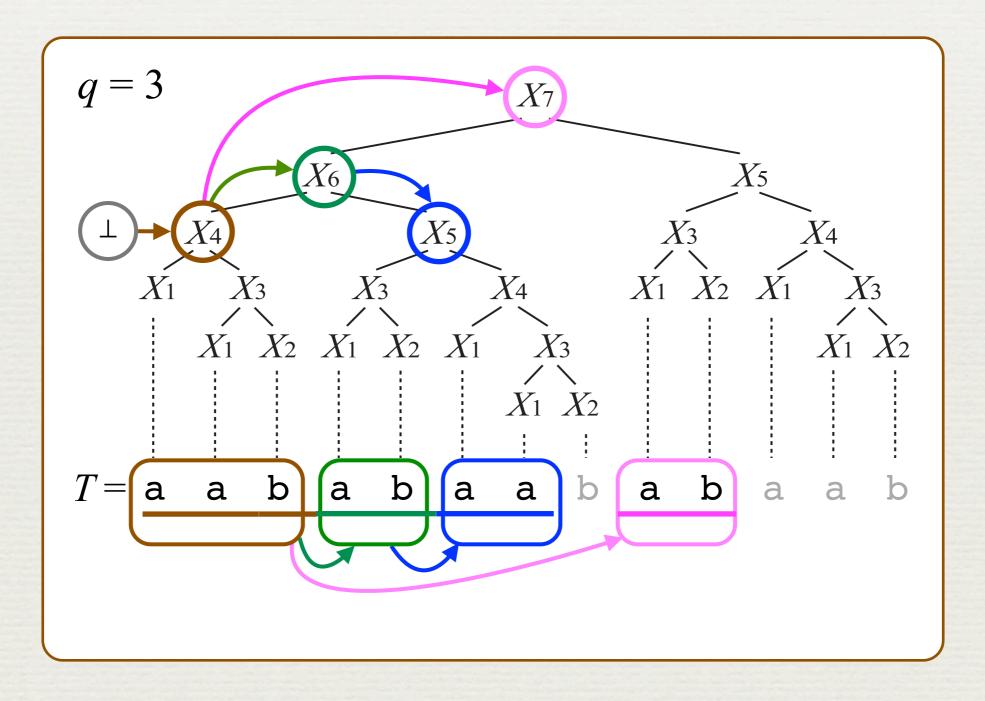
What we have left

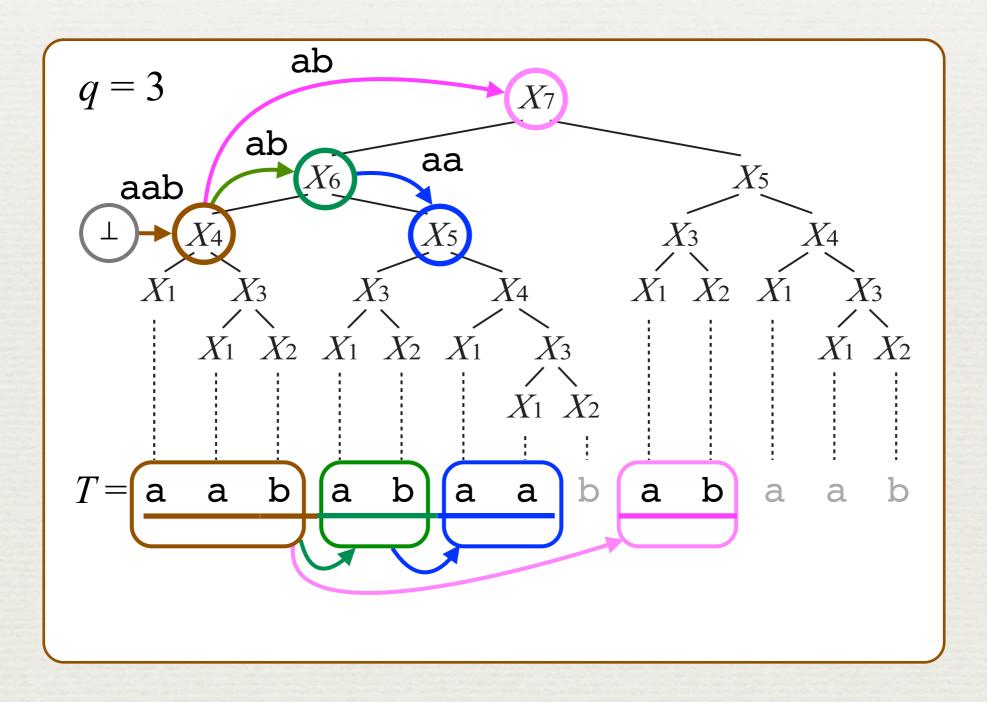


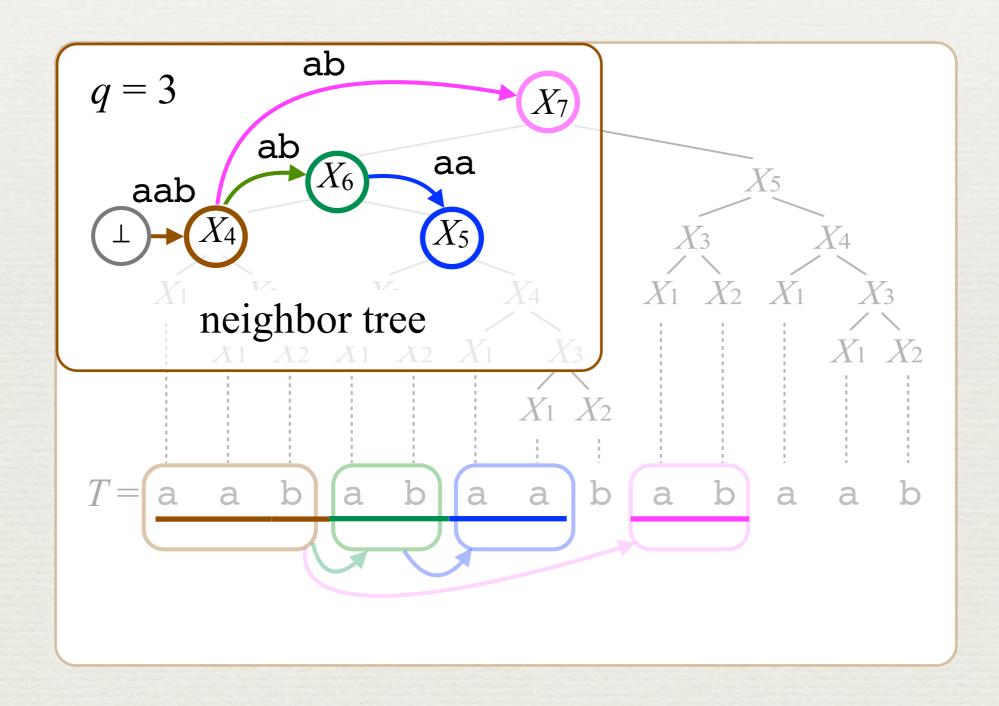
What we have left





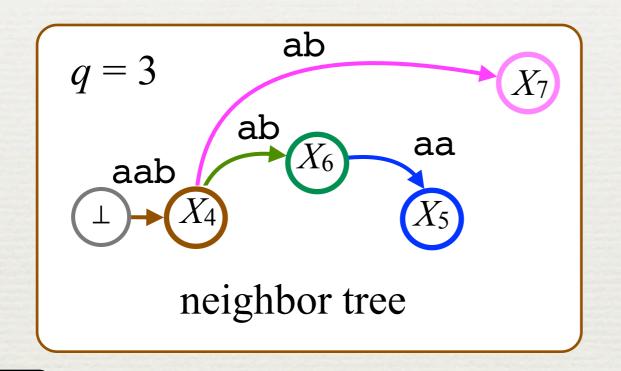






Size of neighbor tree

• Edge from X_i to $X_j \Leftrightarrow t_i$ and t_j are neighboring



Lemma

The total length of edge labels in neighbor tree of G is $(q-1) + \sum \{|t_i| - (q-1) | |X_i| \ge q, i = 1, ..., n\}$ = |T| - dup(q, D)where $dup(q, D) = \sum \{(vOcc(X_i) - 1) \cdot (|t_i| - (q-1)) | |X_i| \ge q, i = 1, ..., n\}$

Summary of Improved algorithm

Lemma

The neighbor tree from SLP *D* can be constructed in $O(\min\{qn, |T|-dup(q, D)\})$

Summary of Improved algorithm

Lemma

The neighbor tree from SLP *D* can be constructed in $O(\min\{qn, |T|-dup(q, D)\})$

Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size

Summary of Improved algorithm

Lemma

The neighbor tree from SLP *D* can be constructed in $O(\min\{qn, |T|-dup(q, D)\})$

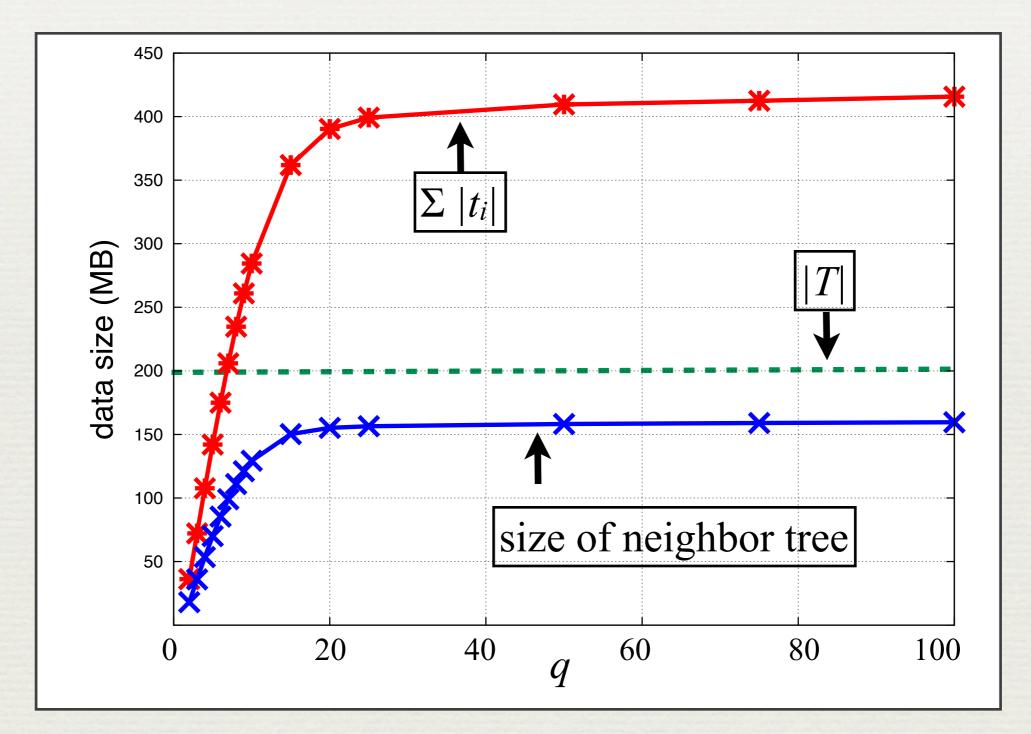
Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size

Theorem

The *q*-gram frequencies problem on a SLP *D* of size *n*, representing string *T* can be solved in $O(\min\{qn, |T|-dup(q, D)\})$ time and space.

Preliminary Experiment (ENGLISH 200MB) size of neighbor tree and $\Sigma |t_i|$



Example of ENGLISH data of 200MB from pizza & chili corpus

Summary

	Uncompressed	SLP	SLP
	String	(SPIRE 2011)	(This work)
<i>q</i> -gram Fre	$O(T) = O(2^n)$ time and space	$\begin{array}{ c } O(qn) \\ time and space \end{array}$	$O(\min\{qn, T -dup(q, D)\})$ time and space

Future work:

Other applications of neighbor tree (e.g. one paper accepted to SPIRE 2012)