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Background: Processing large scale string data

Data compression allows large scale string data to be stored
compactly
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Background: Processing large scale string data

One solution 1s to process compressed strings
without explicit decompression.
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Grammar-Based Compressed String Processing

Problem Previous Work

. Plandowski "94]; Lifshits "07];
Equality Test Schmidt-Schauss 09}

Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04],
Pattern Match Lifshits *06], [Gawrychowski '11]

Approximate Pattern Match [Matsumoto+ "00]; [Navarro+ "O1]
Subsequence Match [Cegielski+ *00]; [Tiskin *09]; [Yamamoto+ *11]

Longest Common Subsequence /
Edit Distance

Pattern Discovery [Inenaga+ *09]; [Matsubara+ *09]

[Tiskin ’07, ’08]; [Hermelin + *09, *11]

g-gram Frequencies [Goto+ *11]; [Goto+ 12]
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Main contribution

Uncompressed SLP SLP
String (SPIRE 2011) (This work)

O(T')) = O2") O(gn) O(minygn, |T-dup(q, D)})

g-gram kreq | . o4 space time and space time and space

T : uncompressed string, » : the size of SLP

dup(q, D) : a quantity that represents the amount of redundancy that
the SLP D captures with respect to g-grams

The algorithm 1s asymptotically always at least as fast and better
in many cases compared to working on the uncompressed string
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where Freq(T, P) 1s # occurrences of P 1in T
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Straight Line Program (SLP)

Definition
Straight Line Program 1s a context free grammar 1n the
Chomsky normal form that derives a single string.
X1=expri, Xo2=expra, ...., Xn= expry

expr; € 2 or
expri =X * Xi (I, r <i)

SLP can represent the output of well-known compression algorithms
+ e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS




Example of SLP
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Example of SLP

D Derivation Tree of D
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Length of the decompressed string can be @(2")




O(gn) algorithm for

g-gram frequencies problem on SLP

|Goto et al., SPIRE 2011]




O(gn) Algorithm in 2011

Important Observation: stabbing

Definition
For X; = X;.X,, X;stabs an occurrence of P < P starts in X7 and ends in X,
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Important Observation: stabbing

Definition
For X;

= X1 X,, Xistabs an occurrence of P < P starts in X; and ends 1n X,
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O(gn) Algorithm in 2011

Important Observation: stabbing

Definition
For X; = X;.X,, X;stabs an occurrence of P < P starts in X7 and ends in X,
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X211 . X1 Xoo X X3
b N
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(-[Observation }

For each occurrence of g-gram P, there exists a unique variable
which stabs the occurrence of P

.




O(gn) Algorithm in 2011

Important 1dea: counting stabbed occurrences

We can compute Freq(T, P) by counting the number of
occurrences of P stabbed by X;, and summing them up for all X;

Freq(T,P)= 2 °

N
X3 X3 X4
/N . /N 1 N\
X1 X2 X1 X2 X1 X3
A R
A (¢




O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,
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O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,

r[ Lemma | ]

Freq(T, P) ZFreq (Xi, P) - vOce(X;)

Freq®(X;, P)=3, Freg®(X;,P)=1
vOce(Xy) =2, vOcc(X;)) =1
Erequency-ofc-—s===0 ==l ==
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Computing Freq™'(X;, P)

X; stabs P < P starts in X7 and ends 1n X

> @g-grams stabbed by X;




O(gn) Algorithm in 2011

Computing Freq™'(X;, P)

r‘[ Observation }
For any P € 34, Freq™(X;, P) = Freq(t:, P)

> @g-grams stabbed by X;




O(gn) Algorithm in 2011

Computing Freq™(X;, P) by Freq(t;, P)

r‘[ Lemma }

Freq(T,P) =Y Freq(t;,P)-vOcc(X;)
=1

l

> @g-grams stabbed by X;




O(gn) Algorithm in 2011

Computing frequencies by Freq(t;, P) and vOcc(X))

\

(O(n) time and space 1n total

r—[ Lemma } ; l <
Freq(T,P) = Z Freq(t;) P) (vOcc(X;))
i=1

\. J

O(gn) time and space 1n total j
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Computing frequencies by Freq(t;, P) and vOcc(X))

\

(O(n) time and space 1n total

r—[ Lemma } ; l <
Freq(T,P) = Z Freq(t;) P) (vOcc(X;))
i=1

\. J

O(gn) time and space 1n total j

r—[ Theorem } )

SLP g-gram Frequencies Problem can be
solved 1n O(gn) time and space.

\.

Sketch of proof:
Using the suffix array of the concatenation of all #’s,
we can compute all g-gram frequencies in O(gn) time and space.
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Efficiency & Inefficiency of O(gn) algorithm
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Efficiency & Inefficiency of O(gn) algorithm

ength of decompressed strings #;

when ¢ 1s large,
the algorithm runs slower

when ¢ 1s small,
the algorithm runs faster

0

ENGLISH data of 200 from pizza & chili corpus
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New Algorithm

Inetticiency of O(gn) algorithm

Total length of decompressed strings # can be larger than |7]
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New Algorithm

Inetticiency of O(gn) algorithm

There are overlaps between partially decompressed strings ¢
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Inetticiency of O(gn) algorithm

There are overlaps between partially decompressed strings ¢
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New Algorithm

Identifying the redundancies

Consider all partially decompressed strings #; in derivation tree
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New Algorithm

Removing overlaps of neighboring #;’s

Eliminate length-(g-1) prefix of all #’s except for leftmost one
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New Algorithm

Removing overlaps of neighboring #;’s

Concatenation of remaining strings equals to 7'
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New Algorithm

For all partially eliminated #;, remove all but first occurrence

Removing duplicate #’s
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New Algorithm

What we have left

Compact representation of all #’s
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What we have lett
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New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring
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New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

-

q=3 —{x
\
X~ P

D@ ® % x
/7 \ PN
X1 X3 X3 X4 X1 X2 X X3
- /7 '\ /7 \ PN ; : : /7 \
X1 Xz X1 Xz X1 X3 : : L X1 X2
; : /7 \ : E E 5 5
X1 Xz

a a b!!a b“a a




New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring
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New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

ab A
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New Algorithm

S1ze of neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

ab A
q — 3 X7
ab

aa
aab

Ol ©

neighbor tree

\

r—[ Lemma }

The total length of edge labels 1n neighbor tree of G 1s
(g-1))+Z {|t| - (g-1) || Xi|=2¢q, i =1, ..., n}
= |11 - dup(q, D)
where dup(q, D) = YA (v0ce(X;) ~ 1) (It — (g — 1)) | 1X]| > q.i=1....

.




New Algorithm

Summary of Improved algorithm

r—[ Lemma }

The neighbor tree from SLP D can be constructed in
O(min{gn, |T-dup(q, D)})

.




New Algorithm

.

r—[ Lemma }

Summary of Improved algorithm

The neighbor tree from SLP D can be constructed in
O(min{gn, |T-dup(q, D)})

.

r—[ Lemma [Shibuya, 2003] } N

The suftfix tree for a trie can be constructed 1n time linear 1n 1ts size
)




New Algorithm

.

Summary of Improved algorithm

r—[ Lemma }

The neighbor tree from SLP D can be constructed in
O(min{gn, |T-dup(q, D)})

.

r—[ Lemma [Shibuya, 2003] }

The suftfix tree for a trie can be constructed 1n time linear 1n 1ts size

~\

J

(_

Theorem

\_

The g-gram frequencies problem on a SLP D of size n,
representing string 7' can be solved in O(min{gn, |1]-dup(q, D)})
time and space.




New Algorithm

Preliminary Experiment (ENGLISH 200MB)
size of neighbor tree and ||

data size (MB)

Example of ENGLISH data of 200M.

B from pi1zza & chili corpus



Uncompressed
String

SLP
(SPIRE 2011)

SLP
(This work)

g-gram Freq

O(|T]) = O2")
time and space

. Olgn)
time and space

O(min{gn, |T|-dup(q, D)})
time and space

Future work:
Other applications of neighbor tree
(e.g. one paper accepted to SPIRE 2012)




