Speeding up g-gram mining on
grammar based compressed text

Kyushu University

(OKeisuke Goto, Hideo Bannai,
Shunsuke Inenaga, Masayuki Takeda

Background: Processing large scale string data

Data compression allows large scale string data to be stored
compactly

Large Scale| " |F5——_y
String Data — R

Background: Processing large scale string data

In order to process such data, we usually decompress them,
which requires a lot of space and time.

Compressed
String Data

Background: Processing large scale string data

In order to process such data, we usually decompress them,
which requires a lot of space and time.

decompress | T arege Scale
Compressed > .
String Data String Data

Background: Processing large scale string data

In order to process such data, we usually decompress them,
which requires a lot of space and time.

HUGE!!

decompress | T arege Scale
Compressed > .
String Data String Data

Background: Processing large scale string data

One solution 1s to process compressed strings
without explicit decompression.

Compressed
String Data

Background: Processing large scale string data

One solution 1s to process compressed strings
without explicit decompression.

without explicitly

decompressing
Compressed
String Data

Grammar-Based Compressed String Processing

Problem Previous Work

. Plandowski "94]; Lifshits "07];
Equality Test Schmidt-Schauss 09}

Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04],
Pattern Match Lifshits *06], [Gawrychowski '11]

Approximate Pattern Match [Matsumoto+ "00]; [Navarro+ "O1]
Subsequence Match [Cegielski+ *00]; [Tiskin *09]; [Yamamoto+ *11]

Longest Common Subsequence /
Edit Distance

Pattern Discovery [Inenaga+ *09]; [Matsubara+ *09]

[Tiskin ’07, ’08]; [Hermelin + *09, *11]

g-gram Frequencies [Goto+ *11]; [Goto+ 12]

Grammar-Based Compressed String Processing

Problem Previous Work

. Plandowski "94]; Lifshits "07];
Equality Test Schmidt-Schauss 09}

Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04],
Pattern Match Lifshits *06], [Gawrychowski '11]

Approximate Pattern Match [Matsumoto+ "00]; [Navarro+ "O1]
Subsequence Match [Cegielski+ *00]; [Tiskin 09]; [Yamamoto+ *11]

Longest Con?mo.n Subsequence / [Tiskin *07, *08]; [Hermelin + *09, *11]
Edit Distance

Pattern Discovery [Inenaga+ *09]; [Matsubara+ *09]

g-gram Frequencies [Goto+ *11]; [Goto+ 12]

Main contribution

Uncompressed SLP SLP
String (SPIRE 2011) (This work)

O(T')) = O2") O(gn) O(minygn, |T-dup(q, D)})

g-gram kreq | . o4 space time and space time and space

T : uncompressed string, » : the size of SLP

dup(q, D) : a quantity that represents the amount of redundancy that
the SLP D captures with respect to g-grams

The algorithm 1s asymptotically always at least as fast and better
in many cases compared to working on the uncompressed string

g-gram frequencies problem

Definition
Input string T, positive integer g
Output - {(P, Freq(T, P)) | P € 24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

g-gram frequencies problem

Definition
Input string T, positive integer g
Output - {(P, Freq(T, P)) | P € 24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

Example ¢g= 3
I =abaababaab

g-gram frequencies problem

Definition
Input string T, positive integer g
Output - {(P, Freq(T, P)) | P € 24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

Example ¢g= 3

I = abaababaab
aba
baa
aab
aba
bab
aba
baa
aab

g-gram frequencies problem

Definition
Input string T, positive integer g
Output - {(P, Freq(T, P)) | P €24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

Freq(T, “aba™) = 3

g-gram frequencies problem

Definition

Input : string 7, positive integer g
Output - {(P, Freq(T, P)) | P €24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

Example ¢g= 3
I'=abaa

baa

aa

babaab

b
bab

baa
aab

Freq(T, “aba™) = 3
Freq(1, “baa™) = 2

g-gram frequencies problem

Definition
Input string T, positive integer g
Output - {(P, Freq(T, P)) | P €24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

Example ¢g= 3
I =abaababaab Freq(T, “aba™) = 3
Freq(1, “baa™) = 2

Freq(1, “aab™) = 2

g-gram frequencies problem

Definition
Input string T, positive integer g
Output - {(P, Freq(T, P)) | P € 24, Freq(T, P)> 0}

where Freq(T, P) 1s # occurrences of P 1in T

Example ¢g= 3

I'=abaababaab Freq(T, “
Freq(T, *
Freq(T, “
Freq(T, *

bab

Straight Line Program (SLP)

Definition
Straight Line Program 1s a context free grammar 1n the
Chomsky normal form that derives a single string.
X1=expri, Xo2=expra,, Xn= expry

expr; € 2 or
expri =X * Xi (I, r <i)

SLP can represent the output of well-known compression algorithms
+ e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS

Example of SLP

Derivation Tree of D
X7

/\

Xo X5

X4 X5 X3 X4
RN T 7/ \ RN
X1 X3 X3 X4 X1 X2 Xi X3
; /7 \ /7 \ RN ; : : /7 \
X1 X2 Xi Xo X1 X3
b N

X1 X

b
3

T:éa a b a a b
1 2 4 5 6 7 8

Example of SLP

- D Derivation Tree of D
X7

a
/\

b Xo Xs

= X1 X — T~
" /X4\ /XS\ /)(3\ /X4\
Xa = X1 X
) L X1 X3 X3 X4 X1 X2 X1 X3

X5 = X3X4 . /N /N N . /N
Xo = XX IR A
X = XX IR P

b b
3 5

b
:

n=|D|=7| |17 %

A\

a a a a
2 L 6 7

Length of the decompressed string can be @(2")

Example of SLP

D Derivation Tree of D

d

b
X1 X2
= X1.X3
= X3 X4
= X4 X5
= X6 X5

n=|D|=7| |17 %

A\

Length of the decompressed string can be @(2")

O(gn) algorithm for

g-gram frequencies problem on SLP

|Goto et al., SPIRE 2011]

O(gn) Algorithm in 2011

Important Observation: stabbing

Definition
For X; = X;.X,, X;stabs an occurrence of P < P starts in X7 and ends in X,

q=3 X7 A

/\

X6 X5
_— T

X4 X3 X4
PN /7 \ PN
X1 X3 X3 1 X4 X1 X2 X X3
- / N\ /N 1 0N - - -

X1 X2 Xi Xoao X X3
: : : L /7 '\

O(gn) Algorithm in 2011

Important Observation: stabbing

Definition
For X;

= X1 X,, Xistabs an occurrence of P < P starts in X; and ends 1n X,

qg=73

I
X4

X6

X7

/\

X5
T

X3

X4

\

PN

X1 X3
: /7 \
X1 Xz

/7 \
X1 X2

PN

X1 X3
: /7 \
X1 Xz

X3
/ \ !
X1

X4
N
XZIXI X3
L 7N\
E : § X1 Xz

O(gn) Algorithm in 2011

Important Observation: stabbing

Definition
For X; = X;.X,, X;stabs an occurrence of P < P starts in X7 and ends in X,

qg=73

X4
AN

X1 X3 X3 X4
. /N . /N 1 0N
X1 X2+ X1 X2 X1 X3
AN
IR R (WP ¢

T= a
1

_

O(gn) Algorithm in 2011

Important Observation: stabbing

Definition
For X; = X;.X,, X;stabs an occurrence of P < P starts in X7 and ends in X,

X3 X4
N Y N
X211 . X1 Xoo X X3
b N
IR R (WP ¢

T= a
1

_

(-[Observation }

For each occurrence of g-gram P, there exists a unique variable
which stabs the occurrence of P

.

O(gn) Algorithm in 2011

Important 1dea: counting stabbed occurrences

We can compute Freq(T, P) by counting the number of
occurrences of P stabbed by X;, and summing them up for all X;

Freq(T,P)= 2 °

N
X3 X3 X4
/N . /N 1 N\
X1 X2 X1 X2 X1 X3
A R
A (¢

O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,

O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,

i (Kushi):

Japanese skewer,
used to stab foods Yakitori Oden

O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,

~

i (Kushi):

Japanese skewer,
used to stab foods

O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,

Freq®(X;, P)=3, Freg®(X;,P)=1
vOce(Xy) =2, vOcc(X;)) =1
Frequency of P=3 - 2+ 1 * 1=7

O(gn) Algorithm in 2011

More formal description

Definition
For each variable Xj,
- Freq™(X;, P) : # occurrences of P stabbed by X;in the string derived from X:.

- vOcc(X;) : # nodes labeled by X; in the derivation tree of the last variable X,

r[Lemma |]

Freq(T, P) ZFreq (Xi, P) - vOce(X;)

Freq®(X;, P)=3, Freg®(X;,P)=1
vOce(Xy) =2, vOcc(X;)) =1
Erequency-ofc-—s===0 ==l ==

O(gn) Algorithm in 2011

Computing Freq"

O(gn) Algorithm in 2011

Computing Freq™'(X;, P)

X; stabs P < P starts in X7 and ends 1n X

> @g-grams stabbed by X;

O(gn) Algorithm in 2011

Computing Freq™'(X;, P)

r‘[Observation }
For any P € 34, Freq™(X;, P) = Freq(t:, P)

> @g-grams stabbed by X;

O(gn) Algorithm in 2011

Computing Freq™(X;, P) by Freq(t;, P)

r‘[Lemma }

Freq(T,P) =Y Freq(t;,P)-vOcc(X;)
=1

l

> @g-grams stabbed by X;

O(gn) Algorithm in 2011

Computing frequencies by Freq(t;, P) and vOcc(X))

\

(O(n) time and space 1n total

r—[Lemma } ; l <
Freq(T,P) = Z Freq(t;) P) (vOcc(X;))
i=1

\. J

O(gn) time and space 1n total j

O(gn) Algorithm in 2011

Computing frequencies by Freq(t;, P) and vOcc(X))

\

(O(n) time and space 1n total

r—[Lemma } ; l <
Freq(T,P) = Z Freq(t;) P) (vOcc(X;))
i=1

\. J

O(gn) time and space 1n total j

r—[Theorem })

SLP g-gram Frequencies Problem can be
solved 1n O(gn) time and space.

\.

Sketch of proof:
Using the suffix array of the concatenation of all #’s,
we can compute all g-gram frequencies in O(gn) time and space.

O(gn) Algorithm in 2011

Efficiency & Inefficiency of O(gn) algorithm

Total length of decompressed strings ¢

450

400 -

350 -

300

250 -

0 20 40 g 60 80 100

ENGLISH data of 200 from pizza & chili corpus

O(gn) Algorithm in 2011

Efficiency & Inefficiency of O(gn) algorithm

Total length of decompressed strings ¢

450

400 -

350 -

300

250 -

200

| 1 | *when ¢ is small,
100 | 1 [the algorithm runs faster

50 |-

0

ENGLISH data of 200 from pizza & chili corpus

O(gn) Algorithm in 2011

Efficiency & Inefficiency of O(gn) algorithm

ength of decompressed strings #;

when ¢ 1s large,
the algorithm runs slower

when ¢ 1s small,
the algorithm runs faster

0

ENGLISH data of 200 from pizza & chili corpus

New algorithm

New Algorithm

Inetticiency of O(gn) algorithm

Total length of decompressed strings # can be larger than |7]

3
q=3 X7
\
X5

T

X3 X4

/7 \ PN

X1 X2 X X3
. . . /\
X1 X2

()
&

a bila a b'a b a a b

|| -ﬁ-ﬁ-ﬁ-ﬁ-ﬁ-ﬁ-ﬁ?ﬁ-

|

J

K
)
w1

New Algorithm

Inetticiency of O(gn) algorithm

There are overlaps between partially decompressed strings ¢

~
X7

\
® x
T~
X5 X3 X4

: T /7 \ PN
X3 X4 X1 X2 X X3

"/ N\ N : , : /7 \

X1 X2 X1 X3 X1 X

1 : : 7\ : : : 5 5
X1 X2

a b aababaab

t4 and ¢ overlap with “ab”

New Algorithm

Inetticiency of O(gn) algorithm

There are overlaps between partially decompressed strings ¢

~
g =3 X7
\
D Xs
T
X3 X4
/7 \ PN

X3 X4 X1 X2 X X3
/N 1 : / N\

X1 X2 X1 X3 X1 X2
R 72 N S S A
X1 X2

a_a b ab a ab

te and s overlap with “ab”

New Algorithm

Identifying the redundancies

Consider all partially decompressed strings #; in derivation tree

~

(X3)
X

X3 X3 X1 X2 X1 X3

7\ 7\ ; ; ; 7\

X1 X2 X1 X2 X1 X3 : : L X1 X2

A A A
X1 X2

7T=a a b a b a a b a b a a b

New Algorithm

Removing overlaps of neighboring #;’s

Eliminate length-(g-1) prefix of all #’s except for leftmost one

~

X3
/7 \

X1 X2 Xi X2 Xi

X3
/7 \

X3
/7 \

X1 X2

X3
/7 \

X1 X2 X

Xy

X3
/7 \

X1 X2

7T=a a b a b a a b a b a a b

New Algorithm

Removing overlaps of neighboring #;’s

Concatenation of remaining strings equals to 7'

(X3)
X

X3 X3 X1 X2 X1 X3

7\ 7\ ; ; ; 7\

X1 X2 X1 X2 X1 X3 : : L X1 X2

A A A
X1 X2

7T=a a b a b a a b a b a a b

New Algorithm

For all partially eliminated #;, remove all but first occurrence

Removing duplicate #’s

q=3 X7
\

X5

X3
/7 \

2
o

X3 X3 X4

/7 \ /7 \ PN
X1 X2 Xi X2 Xi X3
b b N
X1 X2

(X

X1

T=a a b a b a a

T

X4

PN
X1 X2 X

X3
/7 \

X1 X2

~

New Algorithm

What we have left

Compact representation of all #’s

q = 3 X7
\
© x
T~

& @ ¥ x

/7 \ PN

X1 X3 X3 X4 X1 X2 X X3

: /7 '\ /7 \ PN ; : : /7 \

X1 X2 X1 X2 Xa /Xi : : X1 X2
X1 X2

T=a a b a b a a

New Algorithm

What we have left

Compact representation of all #’s

qg=73

X1

X3
/7 \

X1 X2 Xi X2 Xi

X7
\
X5
T

X3 X4

/7 \ PN
X1 X2 Xi X3
! ! ! 7\
X1 Xo

o
(X3
X3 X4
PN

/7 \
X3
/7 \

X1 X2

Tz(é a

b|abaa

[4 O

New Algorithm

What we have left

Compact representation of all #’s

q=3 X7
\

& .
— T

@ ® 5 x
/7 \ PN
X1 X3 X3 X4 X1 X2 X X3
: /7 '\ /7 \ PN ; : : /7 \
X1 X2 Xi X2 X1 X3 L b X1 X2
! ! ! ! : /7 \ : : E : :

X1 X2

T=a|abab|aa a b

le O

New Algorithm

What we have left

Compact representation of all #’s

q=3 X7
\

& .
— T

@ ® 5 x
/7 \ PN
X3 X3 X4 X1 X2 X X3
/7 '\ /7 \ PN ; : : /7 \
X1 X2 Xi X2 X1 X3 L b X1 X2
! ! ! ! : /7 \ : : E : :
X1 X2

Tzéablabaaj

[5 O

New Algorithm

What we have lett

Compact representation of all #’s

q = 3 X7
\
® x
T~
& ® ¥ X
/7 \ PN
X3 X3 X4 X1 X2 X X3
/7 \ /7 \ PN ; : : /7 \
X1 X2 X1 X2 Xa /Xi : : X1 X2
X1 X2

T=a a b a b a a

New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

> X7
s X

~

& ® 5 x

/7 \ PN

X1 X3 X3 X4 X1 X2 X X3

: /7 '\ /7 \ PN ; : : /7 \

X1 X2 Xi X2 X1 X3 L b X1 X2

! ! ! ! : /7 \ : : E : :
X1 X2

T=(éab|abaa

New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

-

q=3 —{x
\
X~ P

D@ ® % x
/7 \ PN
X1 X3 X3 X4 X1 X2 X X3
- /7 '\ /7 \ PN ; : : /7 \
X1 Xz X1 Xz X1 X3 : : L X1 X2
; : /7 \ : E E 5 5
X1 Xz

a a b!!a b“a a

New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

(

5
T~
X3 X4
/7 \ PN
X3 X4 X1 X2 X X3
/7 '\ /7 \ PN ; : : /7 \
X1 Xz X1 Xz X1 /Xi : : X1 X2
X1 Xz

a a b!!a b“a a

New Algorithm

Neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

ab A

q— 3 Xy
aab oa
O-® &

neighbor tree

New Algorithm

S1ze of neighbor tree

Edge from X; to X; < t; and ¢ are neighboring

ab A
q — 3 X7
ab

aa
aab

Ol ©

neighbor tree

\

r—[Lemma }

The total length of edge labels 1n neighbor tree of G 1s
(g-1))+Z {|t| - (g-1) || Xi|=2¢q, i =1, ..., n}
= |11 - dup(q, D)
where dup(q, D) = YA (v0ce(X;) ~ 1) (It — (g — 1)) | 1X]| > q.i=1....

.

New Algorithm

Summary of Improved algorithm

r—[Lemma }

The neighbor tree from SLP D can be constructed in
O(min{gn, |T-dup(q, D)})

.

New Algorithm

.

r—[Lemma }

Summary of Improved algorithm

The neighbor tree from SLP D can be constructed in
O(min{gn, |T-dup(q, D)})

.

r—[Lemma [Shibuya, 2003] } N

The suftfix tree for a trie can be constructed 1n time linear 1n 1ts size
)

New Algorithm

.

Summary of Improved algorithm

r—[Lemma }

The neighbor tree from SLP D can be constructed in
O(min{gn, |T-dup(q, D)})

.

r—[Lemma [Shibuya, 2003] }

The suftfix tree for a trie can be constructed 1n time linear 1n 1ts size

~\

J

(_

Theorem

_

The g-gram frequencies problem on a SLP D of size n,
representing string 7' can be solved in O(min{gn, |1]-dup(q, D)})
time and space.

New Algorithm

Preliminary Experiment (ENGLISH 200MB)
size of neighbor tree and ||

data size (MB)

Example of ENGLISH data of 200M.

B from pi1zza & chili corpus

Uncompressed
String

SLP
(SPIRE 2011)

SLP
(This work)

g-gram Freq

O(|T]) = O2")
time and space

. Olgn)
time and space

O(min{gn, |T|-dup(q, D)})
time and space

Future work:
Other applications of neighbor tree
(e.g. one paper accepted to SPIRE 2012)

