Wavelet Trees for All

Gonzalo Navarro
www.dcc.uchile.cl/gnavarro
gnavarro@dcc.uchile.cl

Department of Computer Science
University of Chile

R. Grossi, A. Gupta, J.S. Vitter.
High-order entropy-compressed text indexes. SODA, Jan 2003.

B. Chazelle. A functional approach to data
structures and its use in multidimensional
searching. SIAM J. Comp. 1988.

Wavelet + Tree = Wavelet Tree?

Wavelet + Tree = Wavelet Tree?

Bl Figure 1

File Edit ‘Wiew Insert Toals Desktop Window

NEade| k| AKTDRA- S

=]

Help

0E

200

Mode Label

i

400

=i}

o || =

Made Action

1000

3

£

Wavelet + Tree = Wavelet Tree?

Repeat Shifting Operation

Wavelet + Tree = Wavelet Tree?

(5

-5

[Ee3

H

i
=
|

HIL,

Wavelet + Tree = Wavelet Tree?

ﬁ HHz
I

+ ! + ¥ It
[HLL] [LHL] [HHL] [LLH;] [HLH,] [LHH)] [HHH; |

Wavelet + Tree = Wavelet Tree?

S

)

[E]

" e s
o o i F
s
o o /\/\ﬂ \w . 0
/ V q

o]

ER T K

Q™

Part I: The Wavelet Tree Structure

Basic Structure

Part I: The Wavelet Tree Structure

Basic Structure

Basic Functionality

Part I: The Wavelet Tree Structure

Basic Structure

Basic Functionality

Compression

Part I: The Wavelet Tree Structure

Basic Structure

Basic Functionality

Compression

Changing Shape

Part Il: Applications

Three Views

Part Il: Applications

Three Views

Applications as Sequences

Part Il: Applications

Three Views
Applications as Sequences

Applications as Reorderings

Part Il: Applications

Three Views
Applications as Sequences
Applications as Reorderings

Applications as Grids

Part I: The Wavelet Tree Structure

Basic Structure

Basic Wavelet Tree Structure

Built on a sequence S[1, n| over alphabet [1, o].

A binary and perfectly balanced tree.

Each node represents a range [a, b] of [1, o].

The root represents the whole [1, o].

The children of a node v split its alphabet range by half.
Each leaf represents some ¢ < [1, o].

v

v

v

v

v

v

Basic Wavelet Tree Structure

» Associate with each node v a sequence S,[1, n,| (not
stored).

» Let [a, b] C [1, 0] the alphabet range of v.

» Then S, is the subsequence of S formed by the characters
in [a, b].

» At each node v we store a bitmap B, [1, n,].

» B,[i] = 0iff S,[/] belongs to the alphabet of the left child.

Basic Wavelet Tree Structure

alabar a |a alabarda
01000100010001000110

A

aaba a a aabaa lrl1lrd

00100000000100 010010
FIEIEL &l Bl RlEIELE [11d
111010101111 1110

A

aaaaaaaaa d I

Basic Space Analysis

v

The tree is balanced, so there are h = [lg o] levels.
We store at most n bits per level.

v

v

Thus there are at most n[lg 0| bits.

Plus O(o Ig n) bits for the tree pointers.

Total: nlgo + O(n) + O(o lg n).

This is close to the space needed to represent S[1, n| in
plain form!

v

v

v

Part I: The Wavelet Tree Structure

Basic Functionality

Basic Functionality: Tracking Symbols

v

Start at a position / at the root bitmap Bo;-
Where has it gone, left or right?

» Depends on whether B,,.:[i] = 0 or 1.
And at which position has it been mapped?

» If it went left, to jy = number of 0s up to / in By
» [f it went right, to /1 = number of 1s up to 7 in Byyo;-

v

v

v

Continue recursively downwards.

When we arrive at the leaf of symbol c, it turns out that
S[i]=c.

v

Basic Functionality: Tracking Symbols

v

Values ip and /; can be defined via operation

rank,(B, i) = number of occurrences of bit bin B[1, /]

v

Operation rank can be computed in constant time...

... by preprocessing B and storing o(|B|) further bits.
Thus we obtain any S[/] in time O(Ig o).

The space raises to nlgo + o(nlg o) + O(n) + O(alg n)

Thus the wavelet tree replaces S, more or less within the
same space.

v

v

v

v

Basic Functionality: Tracking Symbols

alabar a Ij@ alabarda
\0100010001.001000110

aaba a |@ aabaa l rl | rd

0010000.000100 010010
aaa a] aaaa I'11d
111010201111 1110

N\ /\

aaaallaaaa d I

Basic Functionality: Tracking Upwards

v

Similarly, we can start at a position j of the leaf of a symbol
¢ and go upwards.
Where is the current position / in the parent node v?

» If my node is a left child of v, at jy = position where the ith 0
occurs in B,,.

» If my node is a right child of v, at j; = position where the ith
1 occurs in B,.

Continue recursively up to the root.
At the root, we have found the position in S of the jth c.

v

v

v

Basic Functionality: Tracking Upwards

v

Values jp and j; can be defined via operation

selecty(B,j) = position of the jth bin B

v

Operation select can be also computed in constant time...
... by preprocessing B and storing o(|B|) further bits.

v

v

Thus we track upwards also in time O(lg o).

v

Indeed, we solve on S the generalization of select, to
sequences.

Basic Functionality: Tracking Upwards

alabar a la alalbarda
select, (S2) [01000100010001000110

By AW

aaba a a aabaa lrllrd
001000000001]/00 010010
select ; / ‘\\ / \
aaa a a aaaa I1id
111010101111 1110

AN

aaaaaaaaa d I

Some Technical Improvements

» The tree pointers can be eliminated by concatenating all
the bitmaps of the same level: O(c Ig n) disappears from
the space.

» The total space can be reduced to nlgo + o(n) by using
recent low-redudnancy bitmap representations.

» The downward traversal can be sped up to O(lgo/Ig w), in
a machine of w bits, by using multiary trees.

» The upward traversal can be sped up to O(lg“ o), at the
price of O((1/¢)nlg o) bits of space, by using long upward
pointers.

Part I: The Wavelet Tree Structure

Compression

Entropy Compression

» When bitmaps have many more Os that 1s, or viceversa,
they can be compressed.

» If B[1,n] has ny Os and ny 1s, then

n, n n
Ho(B) = Folgn—0+71|g

n
m
» This is lower when ng << nq or viceversa, and maximum
(H()(B) =1) if ng = ny.
» This notion can be extended to sequences S[1, n|:
n n
Ho(S) =). —lg—

n>n
ce[l,0] c

where n. is the frequency of cin S.

» Hy(S) is lower when some symbols are more frequent than
others, and it always holds Hy(S) < Ilgo.

Entropy Compression

» There exist constant-time rank/select capable bitmap
representations that require nHy(B) + o(n) bits.

» What happens if we use them on the bitmaps B, of a
wavelet tree?

» Say Boot[1, 1] has ng Os and ny 1s, then the first level uses

n n .
nolg e +nlg W bits.

Entropy Compression

v

Say v is the left child of the root and v; its right child.

v

Says By, [1, o] has ngp 0s and npq 1s.
Then the bitmap B,, uses

v

n n, .
Noo lg nTi) -+ npylg n7001 bits.

v

Similarly, B,, uses

n mo.
Niolg —- + ny1lg —- bits.
Mo M4

v

Adding up the three bitmaps, we have that the first two
levels use

n n n n :
Noolg — + nNp11g — + Nyglg— + ny11g — bits.
Moo Mo+ Mo M1

v

This would be nHy(S) if o = 4!

Entropy Compression

It is not hard to see that this holds in general: the sum of all
nyH(By) is nHy(S).

The total space can be as good as nH(S) + o(n) bits.
Previous time complexities are maintained.

Thus the wavelet tree represents S in compressed form.

v

v

v

v

Part I: The Wavelet Tree Structure

Changing Shape

Changing Shape

» Zero-order entropy can also be achieved with a radically
different technique.

» Instead of a balanced shape, give the wavelet tree a
Huffman shape.

» Use the frequencies of the symbols in S.
» One can use plain (and faster) bitmap representations.

» The total number of bits represented is less than
n(Ho(S) + 1).

Changing Shape

alabar a la alabarda
01010110110101010110

N

aaaaaaaaa Ibr | brd
11000101100

/\“

Ibllb
10110 100011
[rrd
110

7N

Changing Shape

» Average times are better than O(lg o): they can be
O(1 + Hp(S)) under some conditions.

» Worst case times can worsen, but they can be brought
back to O(lg o) at no asymptotic price, by rebalancing
deep subtrees.

» Huffman shape gives a more practical way to reduce the
redundancy, from o(nlg o) to o(n(Hy(S) + 1), even if in
theory o(n) can be obtained.

» It requires O(c Ig n) bits of space again.

Changing Shape

v

Note that this can be used on any variable-length
encoding, not only Huffman.

For example, a sequence of J-codes.

The Wavelet Tree would require roughly the same number
of bits...

... yet it would allow extracting the code of the ith symbol in
time proportional to its length.

v

v

v

Part Il: Applications

Three Views

Three Views

A wavelet tree on a sequence of symbols can be regarded in
three ways:

» As representing a sequence.

» As representing a reordering.

» As representing a grid of points.

As a Sequence

» As we have presented it till now.
» It represents S[1, n] within compressed space.

» |t supports operations

» access, downward tracking.
» select, upward tracking.
» rank, defined as

rank;(S,i) = number of occurrences of symbol c in S[1,]

As a Sequence: Rank Operation

» Start at a position / at the root bitmap Bo;-
» Where do cs go, left or right?

» If left, continue to left child at position / < i.
» If right, continue to right child at position / < /.

» When we arrive at the leaf of symbol c, i is the answer.

As a Sequence: Rank Operation

rank,,(S,11)

BN - abarda

01000100010001000110
rank

BV SN
aaba a a aabaa

-Ird

00100000000100 010

NG N

SEE B & aeae oo -|d
111010101111

rr

N /\\

aaaaaaaaa d

Q™

As a Reordering

v

We have a sequence on the top...

... and a stable sorting of its elements at the bottom.
The wavelet tree describes the sorting process.

For example, it can represent a permutation = of [1, n
using nlg n+ o(n) bits.

It supports both (/) and 7= (/) in time O(lg n/lglg n).

v

v

v

v

As a Reordering: Permutations

74168352
10011010
12:V \’5678
4132 7685
1010 1010

y y‘l 6556/ \7:8
A AV AN

As a Grid of Points

v

Simplest case: n x n grid with n points.

v

Exactly one point per row and one per column.

More general cases require (easy) mappings from real
coordinates.

The main operation in these applications: count/report the
points in a rectangle.

v

v

As a Grid of Points

[21]7 [12] 9]20[11] 83 [15] 1 [13] 5[17] 4 [16]19]10] 2 [14] 6 | 18]

RN
[] NNV
NN

N

N
N

NN
[] ANV
Py NN

[) NN
NN
ey @
RN

[) NN
PS NN
NNURNRANN

0NN AW =

19 L INNANAN

20 [NN

2l @ NNRNRNARN

As a Grid of Points

» Let (x1,y1), (X2, ¥2),....,(Xn, ¥n) be the points sorted by
x-coordinate.

» Consider the wavelet tree of string S = y1y5 ... yn.

» Then the ith point in x-order is (i, S[i]).

» And the ith point in y-order is (select;(S), i).

As a Grid of Points: Range Queries

v

To count or report the points within [xi, xo| x [y1, V2]

v

Start at the root with interval [x1, x2].

v

Project it into the left and into the right children.
Stop when

» The current interval [x1, x| is empty.
» The current “alphabet” interval does not intersect [y1, ys].
» The current alphabet interval is contained in [y1, y2].

In the latter case, count or report all the elements in [x;, x2].
Counting time: O(lgn/lglg n).
Reporting time O((k + 1) 1g° n).

v

v

v

v

As a Grid of Points: Range Queries

1
[21] 7]12[920[11] 8 [3 15[1]13] 5 [17] 4[16]19]10] 2 [14] 6 [18]

1 [N
2 AR
3 ° MW
4 [) NANANNTNN
5 ° NN
6 Ny @
7 [N
8 [) MMNNEN
9 []
10 [)
11 @
1
[7] Tol Tu8[3] [1[[5[T[4] [10[2] Te]
12 {
13 { J
14 [)
15 o
16 [J
17 ®
18 o
19 FIR
20 [N
2l @ NN

1
(21] T12] [0 [[T13[[13[[17] [ie[19] [[14[[ig]

As a Grid of Points: Range Queries

1
[21] 7[12] 9 [20[11] 8| 3 [15] 1]13] 5]17] 4 [16[19]10] 2 [14] 6 | 18]
[T0107100010101011007120 1]

/,—‘ \

1

[7]9]11]8[3]1[5]4]10/2]6] [21]12]20]15]13[17]16]19]14] 18]
1 (] NN 12 []
2 N 13 °
3 [\\§ 14 [
4 O N 15 (]
5 0 NN 16 []
6 N @ 17 {)
7 @ NN 18 [
8 [N 19 FINN
9/ @ 20 o N
10 ® 21l @ N
11 ®

As a Grid of Points: Range Queries

1
[21] 7]12] 9]20]11] 8 [3[15] 1 [13] 5[17] 4]16]19]10] 2 [14] 6 [18]
[701 0100010107101 100710 1]

/ \

[7]9]11]8]3]1]5]4]10[2]6] [21]12]20]15]13]17]16[19]14]18]
[7 7177100007100 [7 0700710710 1]
— — i
[3[1]514]2]6] [7[o[18fi0] : [2[15[13[16[14] : [21]20[17[19]18]
(0o771071 [00707 :[071070]:[11000
o~ Da V"N /\ 2\
— N e S e W e :

[3[1]2] [5]4]6] [7]9]8][11]10] \12\13\14\\15\16\ [17]19]18]: [21]20]
(1 00] [7170][0710][710] |oo1||o1||o1o||1o|

AN A N AU A T N AN A NEA

\1\2\.\5\4\@\7\8\@.. [12[13] [14] (15 [16] [17]18] [19] [20] [21]
|a1| (7o [01] [0 1]

[7] [8]

Part Il: Applications

Applications as Sequences

Full-text Indexes

v

A data structure over a text T[1, n] supporting pattern
searches.

v

Most classical: suffix trees and suffix arrays.
The latter are simpler and less space-consuming.
(Still they do not support all the functionality of suffix trees.)

v

v

bar

1
[21] 7 [12] 9]20[11] 8|3 [15[1[13] 5]17] 4 [16[19]10] 2 [14] 6 18]

alabar a la alabarda$

Full-text Indexes

v

A way to simulate the suffix array A[1, n] in little space uses
the Burrows-Wheeler Transform (BWT) of T, T2,

It concatenates the symbols preceding each suffix of A.
It is a reversible permutation of the string T.
To reverse it, one needs a limited version of rank on T°%,

v

v

v

alabar a la alabarda$
labar a la alabarda$a
abar a la alabarda$al
bar a la alabarda$ala
ar a la alabarda$alab
r a la alabarda$alaba
a la alabarda$alabar
a la alabarda$alabar
la alabarda$alabar a
la alabarda$alabar a
a alabarda$alabar a |
alabarda$alabar a la
alabardaS$alabar a la
labardaS$alabar a la a
abarda$alabar a la al
barda$alabar a la ala
arda$alabar a la alab
rda$alabar a la alaba
daSalabar a la alabar
a$alabar a la alabard
$alabar a la alabarda

Full-text Indexes

RIS FI[Z[OT[6T T ¥ [LI[S [ET[T [ST[€ [[TT0c[6 [L]ic]

$alabar a la alabarda

_ala alabarda$alabar

_alabarda$alabar a|lg
_la alabarda$alaba
aSalabar a la alabard|
a alabarda$alabar ¢
a la alabarda$alabar
abar a la alabarda$al
abarda$alabar a la al
alabar a la alabardd$
alabarda$alabar a |
ar a la alabarda$algb
ardaS$alabar a la algb
bar a la alabarda$alal
barda$alabar a la alal

da$alabar a la alabar|

la alabarda$alabar

labar a la alabarda$al |

labarda$alabar a laja
r a la alabarda$alabal
rda$alabar a la alabal

¢ 1sta

%

d

T alabar a la alabarda$

T™ araadl 11$ bbaar aaaa

c = L[i]
LF(i) = C[c]+rank (L,i)

Full-text Indexes

» The search on the suffix array can be simulated via the
so-called backward search.

» It uses (the general version of) rank queries on T2,

» The suffix array interval of pattern P is identified in at most
2|P| applications of rank.

Full-text Indexes

wat

T alabar a la alabarda$

araadl 11$ bbaar aaa

C($)=0
c)=1
C(a)=4
C(b)=13
C(d)=15
C(l)=16
C(r)=19

a

/A

[8T1]9 [¥I][T JOI[6I[OT] ¥ [LI[STET][T [ST[€]8II]0T] 6 [TI]L [IT]

v

= m o oo | || 4 T

P

—oe ® R

©»——|

= o e oo

[SIECOE SR

Full-text Indexes

» This index is called the FM-index.

» In its modern version, it is basically a wavelet tree on T°%1,
» It was proved that a wavelet tree,
» Built on 7°%,

» Using zero-order compressed bitmaps.
» So that such compression is “local” (not rare).

» reaches high-order compression of T.

» This is the compression achieved by ppm, bzip2, etc.

» It has to do with the predictability of the next symbol given
k previous symbols.

» This simplifies the implementation of space-efficient
FM-indexes.

Full-text Indexes

a =0, rank0(16) = 10

araadl_1| $_bbaar_aaaa
010011011000000100000
$ ab dir
a=1, rankl(10) = 7.
aaa_$_bbaa_aaaa rdlllr
111000111101111 100001
$N d/\
a =0, rank0(7) =
-5 aaabbaaaaaa dl Il
1011 00011000000 0111

YA VACRERVAN

rank = 5

Positional Inverted Indexes

v

Store the word offsets of each distinct word in a text.

Used to display snippets and to solve phrase and proximity
searches.

Can be compressed to nHy(T) bits (word-based).
Plus the compressed text, makes 2nHy(T).

v

v

v

Positional Inverted Indexes

v

A wavelet tree on the word identifiers uses ~ nH(T) bits.
It represents T: T[i] = access(i).

It represents the inverted index: the ith entry of the list of
word w is select, ().

With rank queries, intersections (for phrases) can be done
more efficiently.

v

v

v

Positional Inverted Indexes

to be or/not/to be

ccess(4)=4

L

to 15 1 23 45 6
’ 1723412
be -Eﬂ \
NA
or 3
not 4

N WN=

Graphs

v

Directed graph G(V, E) with n = |V| nodes and e = |E|
edges.
An adjacency list takes nlog e + elog n bits.
Gives the neighbors of any node v € V efficiently.
Reverse neighbors (i.e., who points to v)?

» Represent the transposed G (and double the space).
Is v connected to u?

» Binary search on the list of v.

v

v

v

v

Graphs
» Concatenate all the adjacency lists
L = L(wvy):L(va):...:L(vp)
» Add sparse bitmap
B = 10/tmlqglt(v2)l — 1olLtva)l

» Space: nlog(e/n) + elog n+ O(n) + o(elog n) (without
compression).

» Neighbors of v;, L(v;):

selecty (B, i) — i
access(L, p + j)

ho]
|

L(vi)li]

Graphs

» Reverse neighbors of v;, R(v;):

p = selecti(L,j)
R(v)l] = selecto(B,p) —p

» Is there a link from v; to v; ?

p1 = selecti(B,i)—i
p> = selecty(B,i+1)—(i+1)
Vi = V; & ranki(L, p2) — rank;(L,py) >0

e D LY =

R YR

24535
10 0 010 01
—]

110

Part Il: Applications

Applications as Reorderings

Permutations

v

Consider a permutation with few increasing runs.

A wavelet-tree-like structure describes a mergesort
process.

This can be arranged in a Hu-Tucker tree shape.

The total number of bits is less than n(H + 2).

Here H = (n;/n)lg(n/n;) < Igp,

where n; is the length of run / and p the number of runs.

v

v

v

v

v

Permutations

101112131415161718192021

123456789
010011011001100100000

SN

13 4 7101114151718192021 256 8 9121316

1110001101111 11111001
7101117 25680916
1011 100001

/oco

(10/7 1117/1 3 4 141518 19 20 21|12 13/5 6 8 9/ 2 16]

Permutations

» Any 7 (/) can be computed with an upward tracking from /.

Any 7—(i) can be computed with a downward tracking
from .

Both can take O(H + 1) on average and O(lg p) in the
worst case.
But... do these permutations with few runs arise in
practice?
» E.g. Function W has o runs of entropy < Hy(T).
» This encoding enables a bidirectional compressed suffix
array.

v

v

v

Permutations

» Function W(i) = A~"[A[/] + 1] is used for compressed suffix
arrays (CSAs).

» Itis the inverse of LF(i) = A~'[A[i] — 1].

» A suffix array search is simulated in O(mlog n)
computations of W.

» It has o increasing runs, with entropy H < Hy(T).

» A representation as a permutation enables, for example,
bidirectional CSAs.

» The space is at most n(Hy(T) + 2) bits.

Permutations

¥ [10[7 [11]17] 1]3 [4 14[15]18[19]20[21[12[13] 5[6|8 [9| 2 [16]

L 2 3 4 s 6 7 8 9= 0 1 12 3 14 15 161:;\]?“19 20 21
A [21]7]12]9]20]11] 8|3 [15] 1 [13]5]17] 4]16]19]10] 2 [14] 6 | 18]
D 110010000000010110010

alabar a la alabarda$

Generic Numeric Sequences

v

Basic algorithmic problems on numeric sequences.
Range quantile query:

» Preprocess array A[1,n] on [1, U] so that, later,

» given [/, r] and k,

» retrieve the kth smallest element in A/, r]
Best solution (after much effort): O(nlg n) bits and
O(lgn/lglg n) time.
We can assume U < n.

v

v

v

Generic Numeric Sequences

» Range quantile query on wavelet trees:

Start at the root v with interval [/, r].

If z = ranky(B, I, r) > k, the answer is on the left child:
— continue on left child, mapping [/, r].

Otherwise, the answer is on the right child:

— continue on the right with kK = k — z, mapping [/, r].

» nlg U+ o(n) bits, replacing the array.
» O(Ig U) time.

vV vy VY VvYYyYy

Generic Numeric Sequences

» Other problems:
» Given [/, r] and v, give the smallest number > v in [/, r]
» Given [/, r] and v, give the leftmost number > v in [/, r]
» They have clear geometric counterparts (e.g., list range
points in order).
» Geometric problems like dominance and visibility reduce to
these.

Generic Numeric Sequences

[21]7 [12] 9]20[11] 83 [15] 1 [13] 5[17] 4 [16]19]10] 2 [14] 6 | 18]

1 () N
2 N
3 () DMANEN
4 [NN
5 [NN
6 Ny @
7 () NN
8 () MR
[]
[)
o
L J
[)
[)
[]
[]
[)
{ J

19 [INNNNAN
20 [NN
2l @ NNRNRNARN

Non-positional Inverted Indexes

» For each term they store the documents where it appears
and its frequency.
» Useful to have them sorted by document identifier:
» For conjunctive queries (intersections).
» Useful to have them sorted by decreasing frequency:
» For ranked queries (bag of words).

Non-positional Inverted Indexes

» A wavelet tree concatenating the lists in frequency order...

» ... can support both orderings simultaneously:

» By decreasing frequency: access to the sequence.
» By increasing doc id: quantile queries.

1 2 & 4
T [1a ma 1l a$] [me m i ma $| [l a 1 ala$] [mi mam a $
Lo 4@ 4% 2 Sma Smesmi Sa Fpa 1 2 4
i P
L 27a? Foi 2 4
m L 4 1 2 2 2 4 3 1 m

L]a 3/,:;111/ Fla 1 3

Non-positional Inverted Indexes

1 2 g 4
T [1a ma 1 a$] [me m i ma $|] [I a 1 a1l a $] [mi mam a $

L 4r2; 1(// (1)

e 2 Sma sme smi sla
Lme 2r/)
L. o0 i ¢ ¢
. @ 1 2]
Ly, 374" L 7
4 10 0 0o 0 1 1 o©

Non-positional Inverted Indexes

» It can also simulate inverted lists of ranges of terms.

» Useful for on-the-fly stemming, prefix searches, thesaurus
expansions.

1 2 3 4
T [1a ma | as$] [me m i ma $] [Ia I a1l a $] [mi mam a $

(2) (1) (1)
41" 2

Sma S Smi Sla
me 2r/) ¢ me

Non-positional Inverted Indexes

1 2 g 4
T [1La ma 1 a$] [me m i ma $|] [I a 1 a1l a $] [mi mam a $

2 1 1
Lma 4()1f/2()

(1)

S S S . S 1
ma me mi a
Lipe 2 i

(1) ,(1)

Ly 274 L | |

Ll am 1f1/

Non-positional Inverted Indexes

1 2 g 4
T [1La ma 1 a$] [me m i ma $|] [I a 1 a1l a $] [mi mam a $

2 1 1
Lma 4()1f/2()

L o fma sme smi sla
mi

er: 2(/) 4(1) ¢ ¢

Ly, 374" L ‘ ‘

Non-positional Inverted Indexes

» |t can intersect lists with a fast native algorithm.
» Backtracking as long as no list is empty.
» Easy to generalize to thresholded queries.

1 2 3 4
T [1a ma |l a$] [me m i ma $] [Ia 1 a1l a $] [mi mam a $
2) (1) (1
Lma (2) (1))
(1) ma me ~mi la
Lipe 2 ¢
L 2r/A4r/A

ma1 2 4

F

EE o 1 1 1 0 1 1 0
m 2 4 e e _—

Non-positional Inverted Indexes

1 2 3 4
T [1a ma | a$] [me m i ma $] [1a 1 al a $] [mi mam a $
L 4(2) 1(1; 2(1) S
e , Sma sme Smi la
Lme o) i
X 2(/14(1)
mi
Ll 3(}; 1(/; L
4 1 /0 0 0 1—1 \0
Fma[1 2 4 2] 1] (4 4 [3]
F.
me 2 o 1 1 1 0 1 1 0
Foi2 4 e e P

Non-positional Inverted Indexes

1 2 3 4
T [La mal a$] me mimas| [Ia 1 a1l a$| [mi mam a $

(2) (1) (1)

Lina 47172 s s S_. S

(1) ma me |, mi la
Lipe 2 i

(1) (1)
mi 2 4
L 3(}; 1(/;
la

0

Fa | 2 4]
Fme 2 0
Foi2 4

Fla

Document Retrieval Indexes

» Document retrieval on general string collections.
» Given a pattern P and a collection of texts T5,..., Tp,

» In which documents does P appear?
» With which frequencies?
» Give me only the k highest-frequency documents.

» One of the main tools: the document array.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T [m i mam a $|[1 a 1 al a $l[me m i ma $j[1 a ma | a$
A B C D

SA [816]24[32]11]27] 3 [19] 7 [15[23[31[10[26[13[29] 5 [18] 2 [21[14]30] 9 [25[12] 6 [22[28[4 [17[1 [20]

D [aAlBlclDlBID/A[C[A[BICID][BID[B[DIAICIA]C]BID[B[DI[BIA[CIDIAICIAIC]

Document Retrieval Indexes

» Document listing (with frequencies) reduces to
backtracking on the wavelet tree.

» O(dlg(D/d) time to report the d documents.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8

T [m i mam a $//1 a 1 al a $/me m i ma $/1 a ma 1 a$
A B c D

SA [816[24[32][11]27] 3[19] 7 [15[23[31[10[26[13]29] 5 [18[2 [21 14[30] 9 [25]12 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

D D D D D D D D D

oo0t10101t001101010101010100O0110 101

4—/\>

D D D DD D DIC D
0110041110011 1000 0ot110011100110100

D DDDODDDD

Document Retrieval Indexes

» Top-k document retrieval via range quantile queries.
» Find consecutively more refined quantiles...

» ... until the kth document seen occurs more times than the
inter-quantile distance explored up to now.

D

o

D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D D D D D D D D D

D D D DD D D D
0110011 100110100

IS

D D/DDDDDD

Document Retrieval Indexes

» Top-k document retrieval via prioritized wavelet tree
traversal.
» Set up a priority queue sorted by interval lengths...

[ABCDBPBDA|] D DD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D DB D \ DBDBD DBD D

oo0t101to01t001101010101010100110101

4/\

D D D DD DDCD
011001110011 1000 0o110011 100110100

D D/DDDDDD

Document Retrieval Indexes

» Extract each new interval and insert its two children in the

queue.
[ABcpbBDBDA|][ABBBA| [cDDD|[BB B]]

1 2 83 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D BCDBD BCDBDBD BDBDB D

00110101001101010101010100T11010 1

5o A[LBEBEBAlAB B B pocEBDBlccDDGCD
011001110011 1000 011001110011 0100

A ‘/\s
Al]

Document Retrieval Indexes

» The leaves come out in the proper order, stop after getting
k.

[ABCDPBPBDA|[ABBBA|[cDBPD||[BBB|[DDD|,| | [c]

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DBD [ABCDBDBDA] BDBDB D

to0o1001101010101010100O0T1 101

B A[AEBBAlAB B B poc[EBBDBlccDDGCD
101 0 0

o110 011100111000 o 110011100 1
Al] b 0[50 jo 0D

00110 0 1

Part Il: Applications

Applications as Grids

Discrete Grids

» Apart from obvious computational geometry applications...

» ... discrete grids model many subproblems in other areas.

» A typical one: pair prefixes and suffixes in grammar-based
and Lempel-Ziv-based compressed indexes.

a.l.ab.ar. .a .la. a.lab.ard.a$

< < - s = & <
A | Iss 000~ &
= 4
_a 7
a
a$ 10
a_ 5
ab P
ar
ard
1 1
la 6

lab 8

Discrete Grids

» More complex geometric problems: points have values in
[1, V].
» Find, in rectangular ranges:
» Sum of values.
Average of values.
Variance of values.
Minima or maxima of values.
Quantiles of values.
Majorities.

v

vV vy VvVYyy

Discrete Grids

» Some are solved by adding one-dimensional structures to
the wavelet tree nodes.

» For example, consider finding the minimum value in a
range, 2D-RMQ.

» We can assume n points on an n x ngrid, and V < n.

» There exists a (1D) RMQ structure that, on array A[1, n] of
numbers,
» Requires 2n+ o(n) bits of space.
» Answers queries in constant time.
» Does not access A.

Discrete Grids

v

Use a wavelet tree for the points.
Store the values aligned to the root bitmap, in V|1, n].
Subsequences V,[1,n,] of V correspond to S,[1, n,].

We store a one-dimensional RMQ structure per wavelet
tree node, for V,[1, ny].

Overall space is O(nlg n)

v

v

v

v

Discrete Grids

» A two-dimensional query range translates into O(lg)
intervals inside wavelet tree nodes.

» The minimum in the two-dimensional range is the minimum
of the minima of those intervals of V|, sequences.

» Use the one-dimensional RMQ structure on each involved
interval.

» Project each one towards the root to find the values, and
choose the minimum.

» Overall time O(lg' *“ n).

Discrete Grids

® N OO G A W N

1.2 3 45 6 7 8

7

1

7.2 15 7 2_4 5

(4256 1 7]

100101

0 1

Discrete Grids

v

A more complicated problem: two-dimensional range
quantiles.

We can build a wavelet tree of grids.
These have only points, not values.

Each wavelet tree node includes the points whose values
are in a range.

Two bitmaps tell which x and y coordinates belong to the
left/right child.

Overall space is O(nlg® n)

Discrete Grids

v

The algorithm is similar to that for one dimension.

We count how many points are in the range mapped to the
left child.

If there are k or more, we go to the left child.
Else, we go to the right child, subtracting the count from k.
O(Ig n) counting queries: O(Ig® n/Iglg n) time.

v

v

v

v

Discrete Grids

» N
~ 0
4} ~
NI
4}
[} /85 85
<
DI 5/4 0
N
~0h o0 o ©)
N
N
: M
\
" L "
L)
N N
() [\
N "
N
~ABTHONG @ o ||
¥ N
N ooy N Of =
N N /
N YN

Discrete Grids

v

Top-k queries on two dimensions.

First find the O(lg n) wavelet tree intervals.

Store them in a priority queue, sorted by minimum value.
Take the minimum, report it, and insert the two subintervals
it splits.

Until having extracted the k minima.

O((k +Ig n)Ig° n) time.

v

v

v

v

v

Binary Relations

» A generalization of graphs.
» We have { pairs relating n objects with o labels.

» We can ask who is related with an object, or with a label, or
if a pair is related.

» We can also ask, e.g., how many connections are there
between a range of objects and a range of labels.

» Or list objects/labels related to a range of labels/objects.

Binary Relations

12345678 910

a 0000101000

b 1000101000

c 0001000001
d 1000000000
e 0000100001
f 0000110000

Binary Relations

» On Web graphs, this gives queries over whole domains.

» On inverted indexes (labels are terms and objects are
documents):

>

>

vV VY VY VY

Ranges of labels: stemming, prefixes, thesaurus expansion.
Ranges of objects: temporal, versioned, hierarchical
collections.

Vertical stripes: vocabulary of (ranges of) documents.

Style and plagiarism analysis?

Horizontal stripes: document frequencies.

Simulate inverted list of a range of words.

List vocabulary of a range of documents.

Binary Relations

Terms

tl
2
3

ti

4

4’

Documents
dl d2 d3 di
°
| - - ®
o o \ ° \o\
O
s
°
°
Y [)
°

Dynamism

v

Can support insertions and deletions of symbols.

All operations take time O((Ilgn/Iglgn)(1 +1go/Iglg n)).
Probably near-optimal since dynamic range counting is
Q((lg n/1glg n)?).

However [N. and Nekrich, arXiv 2012]

If all you want is access, rank, select, and indels...
You can get the optimal O(lg n/Iglg n) time.
Worst-case for queries, amortized for indels.
Zero-order compressed space, as usual.

v

v

v

vV vy vVvyYy

Conclusions

v

Simple and versatile data structure.

Supports different views of the data within the same space.
Enables succinct and compressed representations.

Good (near-log) query times for many problems.

Lots of applications.

Wavelet trees for all!

v

v

v

v

v

1001010011011110011011011

7aeﬂﬂ5///// \\\\\Torstuy

1010000001 100001010110100

7Tj// \\\Tk nTj// \\S?
1110101 010 010101000 010000
0 T2 N IR
10001 01 011010 100 01000

2 U AR N O A AN A

t hanks for your attention
1001010011011110011011011

7aefhi/ \wrstuy

hak f aei t nsoryourttnton
1010000001 100001010110100
fae/ \hik "°V w"
hki nsorornon tyuttt
1110101 010 010101000 010000
% V “/ \“ NS v/ \
i noonon srr tuttt
10001 011010 100 01000

/N /\ \\ /X /X /N

i nnn 000 rr s tttt u

	Map
	Part I
	Basic Structure
	Basic Functionality
	Compression
	Changing Shape

	Part II
	Three Views
	Applications as Sequences
	Applications as Reorderings
	Applications as Grids

