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Basic Wavelet Tree Structure

I Built on a sequence S[1,n] over alphabet [1, σ].
I A binary and perfectly balanced tree.
I Each node represents a range [a,b] of [1, σ].
I The root represents the whole [1, σ].
I The children of a node v split its alphabet range by half.
I Each leaf represents some c ∈ [1, σ].



Basic Wavelet Tree Structure

I Associate with each node v a sequence Sv [1,nv ] (not
stored).

I Let [a,b] ⊆ [1, σ] the alphabet range of v .
I Then Sv is the subsequence of S formed by the characters

in [a,b].
I At each node v we store a bitmap Bv [1,nv ].
I Bv [i] = 0 iff Sv [i] belongs to the alphabet of the left child.



Basic Wavelet Tree Structure
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Basic Space Analysis

I The tree is balanced, so there are h = dlgσe levels.
I We store at most n bits per level.
I Thus there are at most ndlgσe bits.
I Plus O(σ lg n) bits for the tree pointers.
I Total: n lgσ + O(n) + O(σ lg n).
I This is close to the space needed to represent S[1,n] in

plain form!
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Basic Functionality: Tracking Symbols

I Start at a position i at the root bitmap Broot .
I Where has it gone, left or right?

I Depends on whether Broot [i] = 0 or 1.
I And at which position has it been mapped?

I If it went left, to i0 = number of 0s up to i in Broot .
I If it went right, to i1 = number of 1s up to i in Broot .

I Continue recursively downwards.
I When we arrive at the leaf of symbol c, it turns out that

S[i] = c.



Basic Functionality: Tracking Symbols

I Values i0 and i1 can be defined via operation

rankb(B, i) = number of occurrences of bit b in B[1, i]

I Operation rank can be computed in constant time...
I ... by preprocessing B and storing o(|B|) further bits.
I Thus we obtain any S[i] in time O(lgσ).
I The space raises to n lgσ + o(n lgσ) + O(n) + O(σ lg n)

I Thus the wavelet tree replaces S, more or less within the
same space.



Basic Functionality: Tracking Symbols
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Basic Functionality: Tracking Upwards

I Similarly, we can start at a position j of the leaf of a symbol
c and go upwards.

I Where is the current position i in the parent node v?
I If my node is a left child of v , at j0 = position where the i th 0

occurs in Bv .
I If my node is a right child of v , at j1 = position where the i th

1 occurs in Bv .
I Continue recursively up to the root.
I At the root, we have found the position in S of the j th c.



Basic Functionality: Tracking Upwards

I Values j0 and j1 can be defined via operation

selectb(B, j) = position of the j th b in B

I Operation select can be also computed in constant time...
I ... by preprocessing B and storing o(|B|) further bits.
I Thus we track upwards also in time O(lgσ).
I Indeed, we solve on S the generalization of selectb to

sequences.



Basic Functionality: Tracking Upwards

l l r dl r
000

l l d
011

l
1

a a ab a r a a b a d alll ra
0 0 0 0 0 0 0 0 0 0 01 1 0 1 1 1 10 0

_ab dlr

0 0 0 0 0 0 0 0 0 0 0 01 1

_a b

a a b a a a a a b a a

bb
1 1 1 1 1 111 10 0 0

_ a

a a a a a a a a a

a a a a a a a a a

dl r

r r

d l

d l l

select 1

select   (S,2)
’b’

0

l

1 1



Some Technical Improvements

I The tree pointers can be eliminated by concatenating all
the bitmaps of the same level: O(σ lg n) disappears from
the space.

I The total space can be reduced to n lgσ + o(n) by using
recent low-redudnancy bitmap representations.

I The downward traversal can be sped up to O(lgσ/ lg w), in
a machine of w bits, by using multiary trees.

I The upward traversal can be sped up to O(lgε σ), at the
price of O((1/ε)n lgσ) bits of space, by using long upward
pointers.
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Entropy Compression
I When bitmaps have many more 0s that 1s, or viceversa,

they can be compressed.
I If B[1,n] has n0 0s and n1 1s, then

H0(B) =
n0

n
lg

n
n0

+
n1

n
lg

n
n1

I This is lower when n0 << n1 or viceversa, and maximum
(H0(B) = 1) if n0 = n1.

I This notion can be extended to sequences S[1,n]:

H0(S) =
∑

c∈[1,σ]

nc

n
lg

n
nc

where nc is the frequency of c in S.
I H0(S) is lower when some symbols are more frequent than

others, and it always holds H0(S) ≤ lgσ.



Entropy Compression

I There exist constant-time rank/select capable bitmap
representations that require nH0(B) + o(n) bits.

I What happens if we use them on the bitmaps Bv of a
wavelet tree?

I Say Broot [1,n] has n0 0s and n1 1s, then the first level uses

n0 lg
n
n0

+ n1 lg
n
n1

bits.



Entropy Compression
I Say v0 is the left child of the root and v1 its right child.
I Says Bv0 [1,n0] has n00 0s and n01 1s.
I Then the bitmap Bv0 uses

n00 lg
n0

n00
+ n01 lg

n0

n01
bits.

I Similarly, Bv1 uses

n10 lg
n1

n10
+ n11 lg

n1

n11
bits.

I Adding up the three bitmaps, we have that the first two
levels use

n00 lg
n

n00
+ n01 lg

n
n01

+ n10 lg
n

n10
+ n11 lg

n
n11

bits.

I This would be nH0(S) if σ = 4!



Entropy Compression

I It is not hard to see that this holds in general: the sum of all
nv H(Bv ) is nH0(S).

I The total space can be as good as nH0(S) + o(n) bits.
I Previous time complexities are maintained.
I Thus the wavelet tree represents S in compressed form.
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Changing Shape

I Zero-order entropy can also be achieved with a radically
different technique.

I Instead of a balanced shape, give the wavelet tree a
Huffman shape.

I Use the frequencies of the symbols in S.
I One can use plain (and faster) bitmap representations.
I The total number of bits represented is less than

n(H0(S) + 1).



Changing Shape
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Changing Shape

I Average times are better than O(lgσ): they can be
O(1 + H0(S)) under some conditions.

I Worst case times can worsen, but they can be brought
back to O(lgσ) at no asymptotic price, by rebalancing
deep subtrees.

I Huffman shape gives a more practical way to reduce the
redundancy, from o(n lgσ) to o(n(H0(S) + 1), even if in
theory o(n) can be obtained.

I It requires O(σ lg n) bits of space again.



Changing Shape

I Note that this can be used on any variable-length
encoding, not only Huffman.

I For example, a sequence of δ-codes.
I The Wavelet Tree would require roughly the same number

of bits...
I ... yet it would allow extracting the code of the i th symbol in

time proportional to its length.
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Three Views

A wavelet tree on a sequence of symbols can be regarded in
three ways:

I As representing a sequence.
I As representing a reordering.
I As representing a grid of points.



As a Sequence

I As we have presented it till now.
I It represents S[1,n] within compressed space.
I It supports operations

I access, downward tracking.
I select , upward tracking.
I rank , defined as

rankc(S, i) = number of occurrences of symbol c in S[1, i]



As a Sequence: Rank Operation

I Start at a position i at the root bitmap Broot .
I Where do cs go, left or right?

I If left, continue to left child at position i ← i0.
I If right, continue to right child at position i ← i1.

I When we arrive at the leaf of symbol c, i is the answer.



As a Sequence: Rank Operation
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As a Reordering

I We have a sequence on the top...
I ... and a stable sorting of its elements at the bottom.
I The wavelet tree describes the sorting process.
I For example, it can represent a permutation π of [1,n]

using n lg n + o(n) bits.
I It supports both π(i) and π−1(i) in time O(lg n/ lg lg n).



As a Reordering: Permutations
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As a Grid of Points

I Simplest case: n × n grid with n points.
I Exactly one point per row and one per column.
I More general cases require (easy) mappings from real

coordinates.
I The main operation in these applications: count/report the

points in a rectangle.



As a Grid of Points
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As a Grid of Points

I Let (x1, y1), (x2, y2), . . . , (xn, yn) be the points sorted by
x-coordinate.

I Consider the wavelet tree of string S = y1y2 . . . yn.
I Then the i th point in x-order is (i ,S[i]).
I And the i th point in y -order is (selecti(S), i).



As a Grid of Points: Range Queries

I To count or report the points within [x1, x2]× [y1, y2].
I Start at the root with interval [x1, x2].
I Project it into the left and into the right children.
I Stop when

I The current interval [x1, x2] is empty.
I The current “alphabet” interval does not intersect [y1, y2].
I The current alphabet interval is contained in [y1, y2].

I In the latter case, count or report all the elements in [x1, x2].
I Counting time: O(lg n/ lg lg n).
I Reporting time O((k + 1) lgε n).



As a Grid of Points: Range Queries
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As a Grid of Points: Range Queries
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As a Grid of Points: Range Queries
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Full-text Indexes

I A data structure over a text T [1,n] supporting pattern
searches.

I Most classical: suffix trees and suffix arrays.
I The latter are simpler and less space-consuming.
I (Still they do not support all the functionality of suffix trees.)
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Full-text Indexes

I A way to simulate the suffix array A[1,n] in little space uses
the Burrows-Wheeler Transform (BWT) of T , T bwt .

I It concatenates the symbols preceding each suffix of A.
I It is a reversible permutation of the string T .
I To reverse it, one needs a limited version of rank on T bwt .



Full-text Indexes
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Full-text Indexes

I The search on the suffix array can be simulated via the
so-called backward search.

I It uses (the general version of) rank queries on T bwt .
I The suffix array interval of pattern P is identified in at most

2|P| applications of rank .



Full-text Indexes
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Full-text Indexes

I This index is called the FM-index.
I In its modern version, it is basically a wavelet tree on T bwt .
I It was proved that a wavelet tree,

I Built on T bwt .
I Using zero-order compressed bitmaps.
I So that such compression is “local” (not rare).

I reaches high-order compression of T .
I This is the compression achieved by ppm, bzip2, etc.
I It has to do with the predictability of the next symbol given

k previous symbols.
I This simplifies the implementation of space-efficient

FM-indexes.



Full-text Indexes
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Positional Inverted Indexes

I Store the word offsets of each distinct word in a text.
I Used to display snippets and to solve phrase and proximity

searches.
I Can be compressed to nH0(T ) bits (word-based).
I Plus the compressed text, makes 2nH0(T ).



Positional Inverted Indexes

I A wavelet tree on the word identifiers uses ≈ nH0(T ) bits.
I It represents T : T [i] = access(i).
I It represents the inverted index: the i th entry of the list of

word w is selectw (i).
I With rank queries, intersections (for phrases) can be done

more efficiently.



Positional Inverted Indexes
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Graphs

I Directed graph G(V ,E) with n = |V | nodes and e = |E |
edges.

I An adjacency list takes n log e + e log n bits.
I Gives the neighbors of any node v ∈ V efficiently.
I Reverse neighbors (i.e., who points to v )?

I Represent the transposed G (and double the space).
I Is v connected to u?

I Binary search on the list of v .



Graphs
I Concatenate all the adjacency lists

L = L(v1) : L(v2) : . . . : L(vn)

I Add sparse bitmap

B = 10|L(v1)|10|L(v2)| . . . 10|L(vn)|

I Space: n log(e/n) + e log n + O(n) + o(e log n) (without
compression).

I Neighbors of vi , L(vi):

p = select1(B, i)− i
L(vi)[j] = access(L,p + j)



Graphs

I Reverse neighbors of vi , R(vi):

p = selecti(L, j)
R(vi)[j] = select0(B,p)− p

I Is there a link from vi to vj ?

p1 = select1(B, i)− i
p2 = select1(B, i + 1)− (i + 1)

vi → vj ⇔ rankj(L,p2)− rankj(L,p1) > 0



Graphs
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Permutations

I Consider a permutation with few increasing runs.
I A wavelet-tree-like structure describes a mergesort

process.
I This can be arranged in a Hu-Tucker tree shape.
I The total number of bits is less than n(H + 2).
I Here H =

∑
(ni/n) lg(n/ni) ≤ lg ρ,

I where ni is the length of run i and ρ the number of runs.



Permutations
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Permutations

I Any π(i) can be computed with an upward tracking from i .
I Any π−1(i) can be computed with a downward tracking

from i .
I Both can take O(H + 1) on average and O(lg ρ) in the

worst case.
I But... do these permutations with few runs arise in

practice?
I E.g. Function Ψ has σ runs of entropy ≤ H0(T ).
I This encoding enables a bidirectional compressed suffix

array.



Permutations

I Function Ψ(i) = A−1[A[i] + 1] is used for compressed suffix
arrays (CSAs).

I It is the inverse of LF (i) = A−1[A[i]− 1].
I A suffix array search is simulated in O(m log n)

computations of Ψ.
I It has σ increasing runs, with entropy H ≤ H0(T ).
I A representation as a permutation enables, for example,

bidirectional CSAs.
I The space is at most n(H0(T ) + 2) bits.



Permutations
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Generic Numeric Sequences

I Basic algorithmic problems on numeric sequences.
I Range quantile query:

I Preprocess array A[1,n] on [1,U] so that, later,
I given [l , r ] and k ,
I retrieve the k th smallest element in A[l , r ]

I Best solution (after much effort): O(n lg n) bits and
O(lg n/ lg lg n) time.

I We can assume U ≤ n.



Generic Numeric Sequences

I Range quantile query on wavelet trees:
I Start at the root v with interval [l , r ].
I If z = rank0(B, l , r) ≥ k , the answer is on the left child:
I → continue on left child, mapping [l , r ].
I Otherwise, the answer is on the right child:
I → continue on the right with k = k − z, mapping [l , r ].

I n lg U + o(n) bits, replacing the array.
I O(lg U) time.



Generic Numeric Sequences

I Other problems:
I Given [l , r ] and v , give the smallest number ≥ v in [l , r ]
I Given [l , r ] and v , give the leftmost number ≥ v in [l , r ]

I They have clear geometric counterparts (e.g., list range
points in order).

I Geometric problems like dominance and visibility reduce to
these.



Generic Numeric Sequences
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Non-positional Inverted Indexes

I For each term they store the documents where it appears
and its frequency.

I Useful to have them sorted by document identifier:
I For conjunctive queries (intersections).

I Useful to have them sorted by decreasing frequency:
I For ranked queries (bag of words).



Non-positional Inverted Indexes

I A wavelet tree concatenating the lists in frequency order...
I ... can support both orderings simultaneously:

I By decreasing frequency: access to the sequence.
I By increasing doc id: quantile queries.
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes

I It can also simulate inverted lists of ranges of terms.
I Useful for on-the-fly stemming, prefix searches, thesaurus

expansions.
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes

I It can intersect lists with a fast native algorithm.
I Backtracking as long as no list is empty.
I Easy to generalize to thresholded queries.
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes
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Document Retrieval Indexes

I Document retrieval on general string collections.
I Given a pattern P and a collection of texts T1, . . . ,TD,

I In which documents does P appear?
I With which frequencies?
I Give me only the k highest-frequency documents.

I One of the main tools: the document array.
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Document Retrieval Indexes

I Document listing (with frequencies) reduces to
backtracking on the wavelet tree.

I O(d lg(D/d) time to report the d documents.
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Document Retrieval Indexes

I Top-k document retrieval via range quantile queries.
I Find consecutively more refined quantiles...
I ... until the k th document seen occurs more times than the

inter-quantile distance explored up to now.
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Document Retrieval Indexes

I Top-k document retrieval via prioritized wavelet tree
traversal.

I Set up a priority queue sorted by interval lengths...
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Document Retrieval Indexes

I Extract each new interval and insert its two children in the
queue.
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Document Retrieval Indexes

I The leaves come out in the proper order, stop after getting
k .
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Part II: Applications

Three Views

Applications as Sequences

Applications as Reorderings

Applications as Grids



Discrete Grids
I Apart from obvious computational geometry applications...
I ... discrete grids model many subproblems in other areas.
I A typical one: pair prefixes and suffixes in grammar-based

and Lempel-Ziv-based compressed indexes.
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Discrete Grids

I More complex geometric problems: points have values in
[1,V ].

I Find, in rectangular ranges:
I Sum of values.
I Average of values.
I Variance of values.
I Minima or maxima of values.
I Quantiles of values.
I Majorities.



Discrete Grids

I Some are solved by adding one-dimensional structures to
the wavelet tree nodes.

I For example, consider finding the minimum value in a
range, 2D-RMQ.

I We can assume n points on an n × n grid, and V ≤ n.
I There exists a (1D) RMQ structure that, on array A[1,n] of

numbers,
I Requires 2n + o(n) bits of space.
I Answers queries in constant time.
I Does not access A.



Discrete Grids

I Use a wavelet tree for the points.
I Store the values aligned to the root bitmap, in V [1,n].
I Subsequences Vv [1,nv ] of V correspond to Sv [1,nv ].
I We store a one-dimensional RMQ structure per wavelet

tree node, for Vv [1,nv ].
I Overall space is O(n lg n)



Discrete Grids

I A two-dimensional query range translates into O(lg n)
intervals inside wavelet tree nodes.

I The minimum in the two-dimensional range is the minimum
of the minima of those intervals of Vv sequences.

I Use the one-dimensional RMQ structure on each involved
interval.

I Project each one towards the root to find the values, and
choose the minimum.

I Overall time O(lg1+ε n).



Discrete Grids
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Discrete Grids

I A more complicated problem: two-dimensional range
quantiles.

I We can build a wavelet tree of grids.
I These have only points, not values.
I Each wavelet tree node includes the points whose values

are in a range.
I Two bitmaps tell which x and y coordinates belong to the

left/right child.
I Overall space is O(n lg2 n)



Discrete Grids

I The algorithm is similar to that for one dimension.
I We count how many points are in the range mapped to the

left child.
I If there are k or more, we go to the left child.
I Else, we go to the right child, subtracting the count from k .
I O(lg n) counting queries: O(lg2 n/ lg lg n) time.



Discrete Grids
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Discrete Grids

I Top-k queries on two dimensions.
I First find the O(lg n) wavelet tree intervals.
I Store them in a priority queue, sorted by minimum value.
I Take the minimum, report it, and insert the two subintervals

it splits.
I Until having extracted the k minima.
I O((k + lg n) lgε n) time.



Binary Relations

I A generalization of graphs.
I We have t pairs relating n objects with σ labels.
I We can ask who is related with an object, or with a label, or

if a pair is related.
I We can also ask, e.g., how many connections are there

between a range of objects and a range of labels.
I Or list objects/labels related to a range of labels/objects.



Binary Relations
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Binary Relations

I On Web graphs, this gives queries over whole domains.
I On inverted indexes (labels are terms and objects are

documents):
I Ranges of labels: stemming, prefixes, thesaurus expansion.
I Ranges of objects: temporal, versioned, hierarchical

collections.
I Vertical stripes: vocabulary of (ranges of) documents.
I Style and plagiarism analysis?
I Horizontal stripes: document frequencies.
I Simulate inverted list of a range of words.
I List vocabulary of a range of documents.



Binary Relations
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Dynamism

I Can support insertions and deletions of symbols.
I All operations take time O((lg n/ lg lg n)(1 + lgσ/ lg lg n)).
I Probably near-optimal since dynamic range counting is

Ω((lg n/ lg lg n)2).
I However [N. and Nekrich, arXiv 2012]

I If all you want is access, rank , select , and indels...
I You can get the optimal O(lg n/ lg lg n) time.
I Worst-case for queries, amortized for indels.
I Zero-order compressed space, as usual.



Conclusions

I Simple and versatile data structure.
I Supports different views of the data within the same space.
I Enables succinct and compressed representations.
I Good (near-log) query times for many problems.
I Lots of applications.
I Wavelet trees for all!
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