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Basic Wavelet Tree Structure

Built on a sequence S[1, n| over alphabet [1, o].

A binary and perfectly balanced tree.

Each node represents a range [a, b] of [1, o].

The root represents the whole [1, o].

The children of a node v split its alphabet range by half.
Each leaf represents some ¢ < [1, o].
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Basic Wavelet Tree Structure

» Associate with each node v a sequence S,[1, n,| (not
stored).

» Let [a, b] C [1, 0] the alphabet range of v.

» Then S, is the subsequence of S formed by the characters
in [a, b].

» At each node v we store a bitmap B, [1, n,].

» B,[i] = 0iff S,[/] belongs to the alphabet of the left child.



Basic Wavelet Tree Structure
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Basic Space Analysis

v

The tree is balanced, so there are h = [lg o] levels.
We store at most n bits per level.

v

v

Thus there are at most n[lg 0| bits.

Plus O(o Ig n) bits for the tree pointers.

Total: nlgo + O(n) + O(o lg n).

This is close to the space needed to represent S[1, n| in
plain form!
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Basic Functionality: Tracking Symbols

v

Start at a position / at the root bitmap Bo;-
Where has it gone, left or right?

» Depends on whether B,,.:[i] = 0 or 1.
And at which position has it been mapped?

» If it went left, to jy = number of 0s up to / in By
» [f it went right, to /1 = number of 1s up to 7 in Byyo;-

v

v

v

Continue recursively downwards.

When we arrive at the leaf of symbol c, it turns out that
S[i]=c.

v



Basic Functionality: Tracking Symbols

v

Values ip and /; can be defined via operation

rank,(B, i) = number of occurrences of bit bin B[1, /]

v

Operation rank can be computed in constant time...

... by preprocessing B and storing o(|B|) further bits.
Thus we obtain any S[/] in time O(Ig o).

The space raises to nlgo + o(nlg o) + O(n) + O(alg n)

Thus the wavelet tree replaces S, more or less within the
same space.
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Basic Functionality: Tracking Symbols
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Basic Functionality: Tracking Upwards

v

Similarly, we can start at a position j of the leaf of a symbol
¢ and go upwards.
Where is the current position / in the parent node v?

» If my node is a left child of v, at jy = position where the ith 0
occurs in B,,.

» If my node is a right child of v, at j; = position where the ith
1 occurs in B,.

Continue recursively up to the root.
At the root, we have found the position in S of the jth c.
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Basic Functionality: Tracking Upwards

v

Values jp and j; can be defined via operation

selecty(B,j) = position of the jth bin B

v

Operation select can be also computed in constant time...
... by preprocessing B and storing o(|B|) further bits.

v

v

Thus we track upwards also in time O(lg o).

v

Indeed, we solve on S the generalization of select, to
sequences.



Basic Functionality: Tracking Upwards
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Some Technical Improvements

» The tree pointers can be eliminated by concatenating all
the bitmaps of the same level: O(c Ig n) disappears from
the space.

» The total space can be reduced to nlgo + o(n) by using
recent low-redudnancy bitmap representations.

» The downward traversal can be sped up to O(lgo/Ig w), in
a machine of w bits, by using multiary trees.

» The upward traversal can be sped up to O(lg“ o), at the
price of O((1/¢)nlg o) bits of space, by using long upward
pointers.
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Entropy Compression

» When bitmaps have many more Os that 1s, or viceversa,
they can be compressed.

» If B[1,n] has ny Os and ny 1s, then

n, n n
Ho(B) = Folgn—0+71|g

n
m
» This is lower when ng << nq or viceversa, and maximum
(H()(B) =1) if ng = ny.
» This notion can be extended to sequences S[1, n|:
n n
Ho(S) = ). —lg—

n>n
ce[l,0] c

where n. is the frequency of cin S.

» Hy(S) is lower when some symbols are more frequent than
others, and it always holds Hy(S) < Ilgo.



Entropy Compression

» There exist constant-time rank/select capable bitmap
representations that require nHy(B) + o(n) bits.

» What happens if we use them on the bitmaps B, of a
wavelet tree?

» Say Boot[1, 1] has ng Os and ny 1s, then the first level uses

n n .
nolg e +nlg W bits.



Entropy Compression

v

Say v is the left child of the root and v; its right child.

v

Says By, [1, o] has ngp 0s and npq 1s.
Then the bitmap B,, uses

v

n n, .
Noo lg nTi) -+ npylg n7001 bits.

v

Similarly, B,, uses

n mo.
Niolg —- + ny1lg —-  bits.
Mo M4

v

Adding up the three bitmaps, we have that the first two
levels use

n n n n :
Noolg — + nNp11g — + Nyglg— + ny11g —  bits.
Moo Mo+ Mo M1

v

This would be nHy(S) if o = 4!



Entropy Compression

It is not hard to see that this holds in general: the sum of all
nyH(By) is nHy(S).

The total space can be as good as nH(S) + o(n) bits.
Previous time complexities are maintained.

Thus the wavelet tree represents S in compressed form.

v
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Changing Shape

» Zero-order entropy can also be achieved with a radically
different technique.

» Instead of a balanced shape, give the wavelet tree a
Huffman shape.

» Use the frequencies of the symbols in S.
» One can use plain (and faster) bitmap representations.

» The total number of bits represented is less than
n(Ho(S) + 1).



Changing Shape
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Changing Shape

» Average times are better than O(lg o): they can be
O(1 + Hp(S)) under some conditions.

» Worst case times can worsen, but they can be brought
back to O(lg o) at no asymptotic price, by rebalancing
deep subtrees.

» Huffman shape gives a more practical way to reduce the
redundancy, from o(nlg o) to o(n(Hy(S) + 1), even if in
theory o(n) can be obtained.

» It requires O(c Ig n) bits of space again.



Changing Shape

v

Note that this can be used on any variable-length
encoding, not only Huffman.

For example, a sequence of J-codes.

The Wavelet Tree would require roughly the same number
of bits...

... yet it would allow extracting the code of the ith symbol in
time proportional to its length.

v

v
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Three Views

A wavelet tree on a sequence of symbols can be regarded in
three ways:

» As representing a sequence.

» As representing a reordering.

» As representing a grid of points.



As a Sequence

» As we have presented it till now.
» It represents S[1, n] within compressed space.

» |t supports operations

» access, downward tracking.
» select, upward tracking.
» rank, defined as

rank;(S,i) = number of occurrences of symbol c in S[1, ]



As a Sequence: Rank Operation

» Start at a position / at the root bitmap Bo;-
» Where do cs go, left or right?

» If left, continue to left child at position / < i.
» If right, continue to right child at position / < /.

» When we arrive at the leaf of symbol c, i is the answer.



As a Sequence: Rank Operation
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As a Reordering

v

We have a sequence on the top...

... and a stable sorting of its elements at the bottom.
The wavelet tree describes the sorting process.

For example, it can represent a permutation = of [1, n
using nlg n+ o(n) bits.

It supports both (/) and 7= (/) in time O(lg n/lglg n).

v
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As a Reordering: Permutations
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As a Grid of Points

v

Simplest case: n x n grid with n points.

v

Exactly one point per row and one per column.

More general cases require (easy) mappings from real
coordinates.

The main operation in these applications: count/report the
points in a rectangle.

v

v



As a Grid of Points
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As a Grid of Points

» Let (x1,y1), (X2, ¥2),....,(Xn, ¥n) be the points sorted by
x-coordinate.

» Consider the wavelet tree of string S = y1y5 ... yn.

» Then the ith point in x-order is (i, S[i]).

» And the ith point in y-order is (select;(S), i).



As a Grid of Points: Range Queries

v

To count or report the points within [xi, xo| x [y1, V2]

v

Start at the root with interval [x1, x2].

v

Project it into the left and into the right children.
Stop when

» The current interval [x1, x| is empty.
» The current “alphabet” interval does not intersect [y1, ys].
» The current alphabet interval is contained in [y1, y2].

In the latter case, count or report all the elements in [x;, x2].
Counting time: O(lgn/lglg n).
Reporting time O((k + 1) 1g° n).

v
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As a Grid of Points: Range Queries
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As a Grid of Points: Range Queries
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As a Grid of Points: Range Queries
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Part Il: Applications

Applications as Sequences



Full-text Indexes

v

A data structure over a text T[1, n] supporting pattern
searches.

v

Most classical: suffix trees and suffix arrays.
The latter are simpler and less space-consuming.
(Still they do not support all the functionality of suffix trees.)

v

v
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Full-text Indexes

v

A way to simulate the suffix array A[1, n] in little space uses
the Burrows-Wheeler Transform (BWT) of T, T2,

It concatenates the symbols preceding each suffix of A.
It is a reversible permutation of the string T.
To reverse it, one needs a limited version of rank on T°%,

v

v

v
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Full-text Indexes

» The search on the suffix array can be simulated via the
so-called backward search.

» It uses (the general version of) rank queries on T2,

» The suffix array interval of pattern P is identified in at most
2|P| applications of rank.



Full-text Indexes
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Full-text Indexes

» This index is called the FM-index.

» In its modern version, it is basically a wavelet tree on T°%1,
» It was proved that a wavelet tree,
» Built on 7°%,

» Using zero-order compressed bitmaps.
» So that such compression is “local” (not rare).

» reaches high-order compression of T.

» This is the compression achieved by ppm, bzip2, etc.

» It has to do with the predictability of the next symbol given
k previous symbols.

» This simplifies the implementation of space-efficient
FM-indexes.



Full-text Indexes
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Positional Inverted Indexes

v

Store the word offsets of each distinct word in a text.

Used to display snippets and to solve phrase and proximity
searches.

Can be compressed to nHy( T) bits (word-based).
Plus the compressed text, makes 2nHy(T).
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Positional Inverted Indexes

v

A wavelet tree on the word identifiers uses ~ nH(T) bits.
It represents T: T[i] = access(i).

It represents the inverted index: the ith entry of the list of
word w is select, ().

With rank queries, intersections (for phrases) can be done
more efficiently.

v
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Positional Inverted Indexes
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Graphs

v

Directed graph G(V, E) with n = |V| nodes and e = |E|
edges.
An adjacency list takes nlog e + elog n bits.
Gives the neighbors of any node v € V efficiently.
Reverse neighbors (i.e., who points to v)?

» Represent the transposed G (and double the space).
Is v connected to u?

» Binary search on the list of v.

v

v
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Graphs
» Concatenate all the adjacency lists
L = L(wvy):L(va):...:L(vp)
» Add sparse bitmap
B = 10/tmlqglt(v2)l — 1olLtva)l

» Space: nlog(e/n) + elog n+ O(n) + o(elog n) (without
compression).

» Neighbors of v;, L(v;):

selecty (B, i) — i
access(L, p + j)

ho]
|

L(vi)li]



Graphs

» Reverse neighbors of v;, R(v;):

p = selecti(L,j)
R(v)l] = selecto(B,p) —p

» Is there a link from v; to v; ?

p1 = selecti(B,i)—i
p> = selecty(B,i+1)—(i+1)
Vi = V; & ranki(L, p2) — rank;(L,py) >0
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Part Il: Applications

Applications as Reorderings



Permutations

v

Consider a permutation with few increasing runs.

A wavelet-tree-like structure describes a mergesort
process.

This can be arranged in a Hu-Tucker tree shape.

The total number of bits is less than n(H + 2).

Here H = (n;/n)lg(n/n;) < Igp,

where n; is the length of run / and p the number of runs.

v
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Permutations
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Permutations

» Any 7 (/) can be computed with an upward tracking from /.

Any 7—(i) can be computed with a downward tracking
from .

Both can take O(H + 1) on average and O(lg p) in the
worst case.
But... do these permutations with few runs arise in
practice?
» E.g. Function W has o runs of entropy < Hy(T).
» This encoding enables a bidirectional compressed suffix
array.

v
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Permutations

» Function W(i) = A~"[A[/] + 1] is used for compressed suffix
arrays (CSAs).

» Itis the inverse of LF(i) = A~'[A[i] — 1].

» A suffix array search is simulated in O(mlog n)
computations of W.

» It has o increasing runs, with entropy H < Hy(T).

» A representation as a permutation enables, for example,
bidirectional CSAs.

» The space is at most n(Hy(T) + 2) bits.



Permutations
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Generic Numeric Sequences

v

Basic algorithmic problems on numeric sequences.
Range quantile query:

» Preprocess array A[1,n] on [1, U] so that, later,

» given [/, r] and k,

» retrieve the kth smallest element in A/, r]
Best solution (after much effort): O(nlg n) bits and
O(lgn/lglg n) time.
We can assume U < n.

v

v
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Generic Numeric Sequences

» Range quantile query on wavelet trees:

Start at the root v with interval [/, r].

If z = ranky(B, I, r) > k, the answer is on the left child:
— continue on left child, mapping [/, r].

Otherwise, the answer is on the right child:

— continue on the right with kK = k — z, mapping [/, r].

» nlg U+ o(n) bits, replacing the array.
» O(Ig U) time.

vV vy VY VvYYyYy



Generic Numeric Sequences

» Other problems:
» Given [/, r] and v, give the smallest number > v in [/, r]
» Given [/, r] and v, give the leftmost number > v in [/, r]
» They have clear geometric counterparts (e.g., list range
points in order).
» Geometric problems like dominance and visibility reduce to
these.



Generic Numeric Sequences
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Non-positional Inverted Indexes

» For each term they store the documents where it appears
and its frequency.
» Useful to have them sorted by document identifier:
» For conjunctive queries (intersections).
» Useful to have them sorted by decreasing frequency:
» For ranked queries (bag of words).



Non-positional Inverted Indexes

» A wavelet tree concatenating the lists in frequency order...

» ... can support both orderings simultaneously:

» By decreasing frequency: access to the sequence.
» By increasing doc id: quantile queries.
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes

» It can also simulate inverted lists of ranges of terms.

» Useful for on-the-fly stemming, prefix searches, thesaurus
expansions.
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes

» |t can intersect lists with a fast native algorithm.
» Backtracking as long as no list is empty.
» Easy to generalize to thresholded queries.
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Non-positional Inverted Indexes
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Non-positional Inverted Indexes
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Document Retrieval Indexes

» Document retrieval on general string collections.
» Given a pattern P and a collection of texts T5,..., Tp,

» In which documents does P appear?
» With which frequencies?
» Give me only the k highest-frequency documents.

» One of the main tools: the document array.
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Document Retrieval Indexes

» Document listing (with frequencies) reduces to
backtracking on the wavelet tree.

» O(dlg(D/d) time to report the d documents.
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Document Retrieval Indexes

» Top-k document retrieval via range quantile queries.
» Find consecutively more refined quantiles...

» ... until the kth document seen occurs more times than the
inter-quantile distance explored up to now.
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Document Retrieval Indexes

» Top-k document retrieval via prioritized wavelet tree
traversal.
» Set up a priority queue sorted by interval lengths...
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Document Retrieval Indexes

» Extract each new interval and insert its two children in the

queue.
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Document Retrieval Indexes

» The leaves come out in the proper order, stop after getting
k.
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Part Il: Applications

Applications as Grids



Discrete Grids

» Apart from obvious computational geometry applications...

» ... discrete grids model many subproblems in other areas.

» A typical one: pair prefixes and suffixes in grammar-based
and Lempel-Ziv-based compressed indexes.
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Discrete Grids

» More complex geometric problems: points have values in
[1, V].
» Find, in rectangular ranges:
» Sum of values.
Average of values.
Variance of values.
Minima or maxima of values.
Quantiles of values.
Majorities.
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Discrete Grids

» Some are solved by adding one-dimensional structures to
the wavelet tree nodes.

» For example, consider finding the minimum value in a
range, 2D-RMQ.

» We can assume n points on an n x ngrid, and V < n.

» There exists a (1D) RMQ structure that, on array A[1, n] of
numbers,
» Requires 2n+ o(n) bits of space.
» Answers queries in constant time.
» Does not access A.



Discrete Grids

v

Use a wavelet tree for the points.
Store the values aligned to the root bitmap, in V|1, n].
Subsequences V,[1,n,] of V correspond to S,[1, n,].

We store a one-dimensional RMQ structure per wavelet
tree node, for V,[1, ny].

Overall space is O(nlg n)
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Discrete Grids

» A two-dimensional query range translates into O(lg )
intervals inside wavelet tree nodes.

» The minimum in the two-dimensional range is the minimum
of the minima of those intervals of V|, sequences.

» Use the one-dimensional RMQ structure on each involved
interval.

» Project each one towards the root to find the values, and
choose the minimum.

» Overall time O(lg' *“ n).



Discrete Grids
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Discrete Grids

v

A more complicated problem: two-dimensional range
quantiles.

We can build a wavelet tree of grids.
These have only points, not values.

Each wavelet tree node includes the points whose values
are in a range.

Two bitmaps tell which x and y coordinates belong to the
left/right child.

Overall space is O(nlg® n)



Discrete Grids

v

The algorithm is similar to that for one dimension.

We count how many points are in the range mapped to the
left child.

If there are k or more, we go to the left child.
Else, we go to the right child, subtracting the count from k.
O(Ig n) counting queries: O(Ig® n/Iglg n) time.
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Discrete Grids
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Discrete Grids

v

Top-k queries on two dimensions.

First find the O(lg n) wavelet tree intervals.

Store them in a priority queue, sorted by minimum value.
Take the minimum, report it, and insert the two subintervals
it splits.

Until having extracted the k minima.

O((k +Ig n)Ig° n) time.
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Binary Relations

» A generalization of graphs.
» We have { pairs relating n objects with o labels.

» We can ask who is related with an object, or with a label, or
if a pair is related.

» We can also ask, e.g., how many connections are there
between a range of objects and a range of labels.

» Or list objects/labels related to a range of labels/objects.



Binary Relations
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Binary Relations

» On Web graphs, this gives queries over whole domains.

» On inverted indexes (labels are terms and objects are
documents):
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Ranges of labels: stemming, prefixes, thesaurus expansion.
Ranges of objects: temporal, versioned, hierarchical
collections.

Vertical stripes: vocabulary of (ranges of) documents.

Style and plagiarism analysis?

Horizontal stripes: document frequencies.

Simulate inverted list of a range of words.

List vocabulary of a range of documents.



Binary Relations
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Dynamism

v

Can support insertions and deletions of symbols.

All operations take time O((Ilgn/Iglgn)(1 +1go/Iglg n)).
Probably near-optimal since dynamic range counting is
Q((lg n/1glg n)?).

However [N. and Nekrich, arXiv 2012]

If all you want is access, rank, select, and indels...
You can get the optimal O(lg n/Iglg n) time.
Worst-case for queries, amortized for indels.
Zero-order compressed space, as usual.
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Conclusions

v

Simple and versatile data structure.

Supports different views of the data within the same space.
Enables succinct and compressed representations.

Good (near-log) query times for many problems.

Lots of applications.

Wavelet trees for all!
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