
1 

Gene regulation, protein 
networks and disease –  

a computational perspective 
Ron Shamir 

School of Computer Science 
Tel Aviv University 

 
CPM Helsinki July 3 2012 

 

1 

http://www.tau.ac.il/�


Outline 
• Finding regulatory 

motifs I, II, III 
 

• Utilizing case-control 
expression profiles and 
networks I, II 
 

• Chromosomal 
aberrations in cancer 
 

DEGAS 
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Regulation of Transcription 
• A gene’s ranscription regulation is 

mainly encoded in the DNA in a region 
called the promoter 

• Each promoter contains several short 
DNA subsequences, called binding sites 
(BSs) that are bound by specific 
proteins called transcription factors 
(TFs)  

TF TF 
Gene 5’ 3’ 

BS BS 
                    promoter               
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Position Weight Matrix 
(PWM) 

0 0.2 0.7 0 0.8 0.1 A 

0.6 0.4 0.1 0.5 0.1 0 C 

0.1 0.4 0.1 0.5 0 0 G 

0.3 0 0.1 0 0.1 0.9 T 

   ATGCAGGATACACCGATCGGTA     0.0605 
       GGAGTAGAGCAAGTCCCGTGA  0.0605 
    AAGACTCTACAATTATGGCGT     0.0151 

 

Score: product of 
base probabilities. 

 Need score 
threshold for hits. 
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I. Finding Regulatory Motifs 
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C. Linhart, Y. Halperin Genome Research 08 
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Cluster I 

Cluster II 

Cluster III 

Gene expression 
microarrays 

Clustering 

Location analysis 
(ChIP-chip, …) 

Functional group 
(e.g., GO term) 

Motif discovery:  
The two-step strategy 

Promoter 
sequences 

Motif 
discovery 

Co-regulated gene set 
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Amadeus  
A Motif Algorithm for Detecting Enrichment in 

mUltiple Species 
 Supports diverse motif discovery tasks: 

1. Find over-represented motifs in given sets of genes. 
2. Identify motifs with global spatial features given only 

the genomic sequences. 

 How? 
 A general pipeline architecture for enumerating motifs. 
 Different statistical scoring schemes of motifs for 

different motif discovery tasks.  
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Motif search algorithm 
 

 Pipeline of refinement phases of increased complexity 
 

     k-mer 

          Preprocess      Mismatch 

    List of k-mers 

   Merge  PWM  
  Optimization 

Cutoff = 0.005 

    PWM  Motif Model: 

 Phases: 
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 Input: Target set (size T) = co-regulated genes       
 Background (BG) set (size B) = entire genome 

 Motif enrichment scoring: 
 Hyper-geometric 

 
 Binned enrichment score 
 Binomial 

 

Scoring over-represented motifs 

B 

T 
b 

t 
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Length 

GC-content 

B1 

T1 b1 
B2 

b2 

B3 

T3 b3 T4 b4 

T2 

B4 

20-40%      40-60% 0.4-0.7kbp      0.7-1kbp 
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Metazoan motif discovery 
benchmark: 

 
42 target sets of 26 TFs, 8 miRNAs from 29 studies 
(expression, Chip-ChIP,..) in human, mouse, fly, worm. 
 
All motifs are experimentally verified 
 
Average target set size: 400 genes (383 Kbp)  
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Amadeus – Global spatial analysis 

Promoter 
sequences 

Output 

Motif(s) 

Gene expression 
microarrays 

Location analysis (ChIP-chip, …) 

Functional group (e.g., GO term) 

Co-regulated gene set 
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Task II: Global analyses 
 

 Localization w.r.t the TSS 

 Strand-bias 

 Chromosomal preference 

TSS 

5’ 

Scores for spatial features of motif occurrences 
 

Input: Sequences  (no target-set / expression data) 

Motif scoring: 
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Global analysis: 
Chromosomal preference in C. elegans 
Input:  
  All worm promoters 

(~18,000)  
 Score: chromosomal 

preference 
 

 

Results:  
 Novel motif on chrom IV  
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Global analysis: 
Chromosomal preference in C. elegans 
Input:  
  All worm promoters (~18,000)  
 Score: chromosomal preference 

 
 

Results:  
 Novel motif on chrom IV  
 

16 

http://www.tau.ac.il/�


II. Finding Transcriptional 
Programs 
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Y. Halperin, C. Linhart, I. Ulitsky NAR 1 0 
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Goal 

Given expression profiles, find 
the transcriptional programs 

active in them: 
- the co-regulated genes, 

- the motifs that govern their co-
regulation 
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Our goal: bypass the two-step approach 

Cluster I 

Cluster II 

Cluster III 

Gene 
expression 

microarrays 
Clustering 

Promoter 
sequences 

Expression data 

Output 

Motif(s) 

Co-regulated gene set 
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Simultaneous 
inference of the 
motifs and the 
exp profiles of 
their targets 
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Allegro: expression model 
 Discretization of expression patterns 

e1=Up      (U)  
e2=Same (S)  
e3=Down (D)  

≥1.0 
(-1.0, 1.0) 
≤-1.0  

cm … c2 c1 
1.5 -0.8 -2.3 g 

cm … c2 c1 
U … S D g 

Expression pattern 
Discrete expression 

Pattern (DEP) 

 Condition frequency matrix (CFM) 

 Condition weight matrix (CWM) 

cm … c2 c1 
0.78 … 0.1 0.05 U 
0.14 … 0.2 0.9 S 
0.08 … 0.7 0.05 D 

F =

( ) logW ij

ij

fF r
  
  

  
=   ( R={rij} is the BG CFM) 

⇒ Log-likelihood ratio (LLR) score 20 
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Allegro  
overview 
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Yeast osmotic shock pathway  

 Allegro can discover multiple motifs with diverse expression patterns, 
even if the response is in a small fraction of the conditions 

 Extant two-step techniques recovered only 4 of the above motifs: 
 K-means/CLICK + Amadeus/Weeder: RRPE, PAC, MBF, STRE 
 Iclust + FIRE: RRPE, PAC, Rap1, STRE 

 ~6,000 genes, 133 conditions [O’Rourke et al. ’04] 
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3’ UTR analysis: Human stem cells  

 ~14,000 genes, 124 conditions (various types of 
proliferating cells) [Mueller  et. al, Nature’08] 

 Biases in length / GC-content of 3’ UTRs, e.g.: 
  100 highly-expressed genes in… 3’ UTR:  length      GC 
  Embryoid bodies        584        47% 
  Undifferentiated ESCs           774        44% 
  ESC-derived fibroblasts       1240       39% 
  Fetal NSCs        1422       43% 
 

 (ESCs = embryonic stem cells,   NSCs = neural stem cells) 
 

 Extant methods / Allegro with HG score: report 
only false positives  23 
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Human stem cells: results using binned score 

Most highly 
expressed 
miRNAs in 
human/mouse 
ESCs 

Current 
knowledge 

Abundant & 
functional in 
neural cell 
lineage 

Expressed 
specifically in 
neural lineage; 
active role in 
neurogenesis 

miRNA 
expression 

targets 
expression 

miRNA expression from [Laurent ’08] 24 
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Yaron 
Orenstein 

Chaim Linhart  
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Yonit Halperin 

Igor Ulitsky 
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Open questions 

 Better PWM inference: new scores, algs 
 Richer models for in vivo / in vitro data – really 

helpful or diminishing return? 
 How to evaluate model quality: match to 

literature? Ranking based? In vivo? In vitro?  
 Integration of motif finding & expression 
 Principled means to find motif pairs 
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Using expression profiles 
and protein networks to 

understand cancer I 

I. Ulitsky, R. M. Karp RECOMB 09 
I. Ulitsky, A. Krishnamurthy, R. M. Karp PLoS One 1 0 
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DNA chips / Microarrays 

• Simultaneous measurement of 
expression levels of all genes. 

• Global view of cellular 
processes.  

• > 800,000 profiles available in 
ArrayExpress 
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Protein-protein interactions (PPIs) 
• A regulates/binds to B 
• High throughput: abundant, noisy 
• Large, readily available resource 
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Case/control studies 
• A typical study: 100s 

expression profiles of 
sick  (case) & healthy 
(control) individuals 
 

• Classification: Given a 
partition of the samples 
into types, classify the 
types of new samples 
 

• Can the network help? 

samples 

ge
ne

s 
sick healthy ? 
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The network angle  

• Integrate case-control profiles with 
network information 

• Extract dysregulated pathways specific to 
the cases 

• Account for heterogeneity among cases 
• Meaningful pathway: connected 
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Preprocessing 

• For each gene, use the 
distribution of values 
among the controls to 
decide if the gene is  
dysregulated in each of 
the cases 

C
on

tro
l 1

 

C
on

tro
l 2

 

A 

B 

C 

D 

E 

C
on

tro
l 3

 

C
on

tro
l 4

 

C
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e 
1 

C
as

e 
2 

C
as

e 
3 

1 0 1 A 

1 1 0 B 

0 0 1 C 

0 0 1 D 

1 1 1 E 

C
as

e 
1 

C
as

e 
2 

C
as

e 
3 

Case 1 

Case 2 

Case 3 

B 

A 

C 

E 

D 
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Case 1 

Case 2 

Case 3 

B 

A 

C 

E 

D 

Dysregulated pathway 
• Input: 

– Bipartite graph: genes, cases  
– Edge (gene g, case c) if g is 

dysregulated in c 
– A network over the genes 

• Dysregulated pathway (DP): 
smallest connected subnetwork s.t. 
sufficiently many       genes are 
dysregulated in all but few     cases 

• Small pathway  focused disease 
explanation 

• Min connected set cover problem  

Case 1 

Case 2 

Case 3 

B 

A 

C 

E 

D 

k=2,l=1 

≤l 
≥k 
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Complexity 

• Set cover problem: Given sets of elements, 
find fewest sets that cover all elements 
 
 
 
 

• All are NP-Hard 
• Devised approximation and heuristic algs 

k l G Problem 
1 0 Clique Set cover 
k 0 Clique Set k-cover 
1  >0 Clique Partial set cover  
1 0 Any Connected set cover (Shuai & Hu 06) 

DysrEgulated Gene set 
Analysis via Subnetworks DEGAS 34 
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Huntington Disease down-
regulated pathway 

• Brain exp profiles of 38 patients, 32 controls 
(Hodges et al 06) 

• The most significant pathway    
found for k=25 (p < 0.005) 

• Enriched with: 
– HD modifiers 
– HD relevant genes 
– Calcium signaling 

 
 

Huntingtin 
outlier 
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Breast cancer meta-analysis 

• 6 breast cancer studies comparing poor and good 
prognosis 
– Van’t Veer et al. Nature 2002 
– Van de Vijver et al. NEJM 2002  
– Wang et al. Lancet 2005  
– Minn et al. Nature 2005  
– Sotiriou et al. PNAS 2003 
– Pawitan et al. Breast Cancer Research 2005  

• Poor prognosis = metastases within 5 years 
• 1,004 patients in total 
• Elements = studies 
• Discovered 2 significant DPs associated with poor 

prognosis and one associated with good prognosis 
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Poor prognosis network 1 
• k = 40, l = 2, 

p<0.005 
• Enriched with 

cell-cycle 
associated 
genes 
(p=2·10−26) & 
YY1 targets 
(p=2.42·10−16) 

• Enriched with 
genes localized 
to the nucleus 
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Poor prognosis network 2 

– Only DP2 
network is 
strongly 
enriched with 
stem cell genes 

– DP2 enriched 
with cytoplasmic 
genes 

• HMMR: recently 
discovered 
breast cancer 
risk factor  
 

• Found by removing network 1 and repeating the search 
(k=50; p < 0.005)  

• Also significantly enriched with cell cycle genes 
• Not merely a segmentation of a single network: 
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Summary 
• A method for finding subnetworks of 

dysregulated genes 
• Specific to cases, but allows outliers 

and exception 
• Connected set cover paradigm 
• Better approximations?? 
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