
Polynomial-Time Approximation Algorithms for
Weighted LCS Problem

Marek Cygan1, Marcin Kubica1, Jakub Radoszewski1,
Wojciech Rytter1,2 and Tomasz Waleń1

1University of Warsaw, Poland

2Copernicus University, Toruń, Poland

CPM 2011, 2011–06–29

1/23



Definitions

Definition of a weighted sequence

A weighted sequence X = x1x2 . . . xn of length |X | = n over an
alphabet Σ = {σ1, σ2, . . . , σK} is a sequence of sets of pairs of the
form:

xi = {(σj , p
(X )
i (σj)) : j = 1, 2, . . . ,K}.

Here pi (σj) is the occurrence probability of the character σj at the
position i , these values are non-negative and sum up to 1 for a
given i .
WS(Σ) is the set of all weighted sequences over the alphabet Σ.
We assume that |Σ| = O(1).
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Definitions

Example

x1 x2 x3 x4

p1(a) = 1/3 p2(a) = 1 p3(a) = 0 p4(a) = 1/2
p1(b) = 1/3 p2(b) = 0 p3(b) = 1/2 p4(b) = 1/4
p1(c) = 1/3 p2(c) = 0 p3(c) = 1/2 p4(c) = 1/4

A weighted sequence X = x1x2x3x4 over the alphabet Σ = {a, b, c}
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Background

Weighted sequences are also referred to in the literature as
p-weighted sequences or Position Weighted Matrices (PWM)
[Amir et al. 2010, Thompson et al. 1994].
The notion of a weighted sequence was introduced as a tool
for motif discovery and local alignment, and is extensively used
in computational molecular biology.
Multiple algorithmic results related to combinatorics of
weighted sequences, i.e., repetitions, regularities and pattern
matching, have already been presented.
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Definitions

Definition (Occurence of subsequence s in weighted sequence X )

|s| = d , π = (i1, i2, . . . , id ), 1 ≤ i1 < i2 < . . . < id ≤ |X |,

PX (π, s) =
d∏

k=1

p(X )
ik

(sk).

SUBS(X , α) =
{
s ∈ Σ∗ : ∃

(
π ∈ Seq|X ||s|

)
PX (π, s) ≥ α

}
.

In other words SUBS(X , α) is the set of deterministic strings which
match a subsequence of X with probability at least α.
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Problems

α-LCWS problem

Input: Two weighted sequences X ,Y ∈ WS(Σ) and a cut-off
probability α.
Output: The longest string s ∈ Σ∗ such that

∃
(
π ∈ Seq|X ||s| , π

′ ∈ Seq|Y ||s|
)
PX (π, s) · PY (π′, s) ≥ α.

Equivalently, s is the longest string in
SUBS(X , α1) ∩ SUBS(Y , α2) for some α1 · α2 ≥ α.

(α1, α2)-LCWS2 problem

Input: Two weighted sequences X ,Y and two cut-off probabilities
α1, α2.
Output: The longest string s ∈ SUBS(X , α1) ∩ SUBS(Y , α2).
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Example: α-LCWS problem

X 1 2 3 4 5

a 0.9 0.2 1.0 0.3 0.9

b 0.1 0.8 0.0 0.7 0.1

Y 1 2 3 4 5

a 0.9 0.5 0.1 0.2 0.8

b 0.1 0.5 0.9 0.8 0.2

(s, π, π′) is the solution for α-
LCWS problem for α = 0.23.

s = abba
π = (1, 2, 4, 5)
π′ = (1, 3, 4, 5)
PX (π, s) = 0.9 · 0.8 · 0.7 · 0.9 =
0.4536
PY (π′, s) = 0.9 · 0.9 · 0.8 · 0.8 =
0.5184
PX (π, s)·PY (π′, s) = 0.23514624
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Example: (α1, α2)-LCWS2 problem

X 1 2 3 4 5

a 0.9 0.2 1.0 0.3 0.9

b 0.1 0.8 0.0 0.7 0.1

Y 1 2 3 4 5

a 0.9 0.5 0.1 0.2 0.8

b 0.1 0.5 0.9 0.8 0.2

Solution for (α1, α2)-LCWS2 for
α1 = 0.7, α2 = 0.6.

s = aba
π = (1, 2, 3)
π′ = (1, 3, 5)

PX (π, s) = 0.9 · 0.8 · 1.0 = 0.72
PY (π′, s) = 0.9·0.9·0.8 = 0.648
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Results summary

Previous results for α-LCWS [Amir et al. 2010]

The α-LCWS problem can be solved in O(n3) time and O(n2)
space. If we are only interested in the length of the output, the
problem can be solved in O(Ln2) time, where L is the length of the
solution.

NP-hardness for integer version of (α1, α2)-LCWS2

Previous work Our results
unbounded alphabet |Σ| = 2

Approximation results for (α1, α2)-LCWS2

Previous work Our results
(1/|Σ|) 0.5 (O(n5) time, O(n2) space)

PTAS (O(n5) space)
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(α1, α2)-LCWS2 and α-LCWS2 problems

Definition (α-LCWS2 problem)

Input: Two weighted sequences X ,Y ∈ WS(Σ) and a cut-off
probability α.
Output: The longest string s ∈ SUBS(X , α) ∩ SUBS(Y , α).

The following lemma shows that the (α1, α2)-LCWS2 and
α-LCWS2 problems are equivalent.

Lemma

The (α1, α2)-LCWS2 problem can be reduced in linear time to the
α-LCWS2 problem (with α = min(α1, α2)).
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(α1, α2)-LCWS2 and α-LCWS2 problems

Proof.
Solution: just rescale probabilities, and add special symbol # that
will sum new probabilities to 1.
Let α1 < α2, and γ = logα2 α1.

p(X
′)

i (σj) = p(X )
i (σj), p(X

′)
i (#) = 0

p(Y
′)

i (σj) = p(Y )
i (σj)

γ , p(Y
′)

i (#) = 1−
k∑

j=1

p(Y
′)

i (σj).
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NP-hardness

Definition
Define an I-weighted sequence X over the alphabet
Σ = {σ1, σ2, . . . , σK} as a sequence of sets of pairs of the form:

xi = {(σj , w
(X )
i (σj)) : j = 1, 2, . . . ,K}, where w (X )

i (σj) ∈ Z+.

Definition

For an I-weighted sequence X and s ∈ Σd , define:

WX (π, s) =
d∑

k=1

w (X )
ik

(sk) for π = (i1, . . . , id ) ∈ Seq|X |d .

For an I-weighted sequence X and α ∈ Z+, denote:

SUBS(X , α) =
{
s ∈ Σ∗ : ∃

(
π ∈ Seq|X ||s|

)
WX (π, s) ≤ α

}
.

12/23



NP-hardness

Definition (α-LCIWS2 problem)

Input: Two I-weighted sequences X ,Y and a cut-off value α ∈ Z+.
Output: The longest string s ∈ SUBS(X , α) ∩ SUBS(Y , α).

Definition (Partition problem)

Input: A finite set S , S ⊆ Z+.
Binary output: Is there a subset S ′ ⊆ S such that∑

S ′ =
∑

S \ S ′.
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NP-hardness

Theorem
LCIWS2 problem over a binary alphabet is NP-hard.

Proof.
For instance of Partition Problem, set S = {q1, q2, . . . , qn} we
construct I-weighted sequences X = x1x2 . . . xn and Y = y1y2 . . . yn
over the alphabet Σ = {a, b} with the following weights of letters
from Σ:

w (X )
i (a) = qi + c , w (X )

i (b) = c , w (Y )
i (a) = c , w (Y )

i (b) = qi + c .

Here c > 0 is an arbitrary positive integer. Finally let
α = 1

2
∑

S + nc .
The Partition problem for an instance S has a positive answer iff
the length of the solution to α-LCIWS2 for X and Y is n.
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Approximation results

Theorem (Amir et al. 2010)

The α-LCWS problem can be solved in O(n3) time and O(n2)
space. If we are only interested in the length of the output, the
problem can be solved in O(Ln2) time, where L is the length of the
solution.

Theorem
We can compute a solution to the α-LCWS2 problem for
X ,Y ∈ WS(Σ) of length at least bOPT(X ,Y , α)/2c in O(n3)
time and O(n2) space.

Proof idea

Solve α2-LCWS in O(n3) time, and then extract a solution for
α-LCWS2 of size bOPT(X ,Y , α)/2c.
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Approximation results

Proof sketch

Let (s, π, π′) be the solution of α2-LCWS

PX (π, s) · PY (π′, s) ≥ α2. (1)

We can split this solution to two parts. Let g =
⌊d

2

⌋
. Obtaining

partial probabilities:

A =

g∏
j=1

p(X )
ij (sj), B =

g∏
j=1

p(Y )
i ′j

(sj),

C =
d∏

j=g+1

p(X )
ij (sj), D =

d∏
j=g+1

p(Y )
i ′j

(sj).

Observe that only one of A,B,C ,D can be smaller then α. So
either (A,B) or (C ,D) forms a solution with weight ≥ α.
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Approximation results

Theorem
There exists a (1/2)-approximation algorithm for the α-LCWS2
problem which runs in O(n5) time and O(n2) space.

Proof.
Basically it is a consequence of previous lemma. To obtain the
exact approximation ratio, we have to deal with the odd n case
(this causes an O(n2) increase in the time complexity).
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Approximation results: PTAS

Definition
Let X ,Y ∈ WS(Σ), n = max(|X |, |Y |), and α ∈ (0, 1]. We say
that an instance (X ,Y , α) of the α-LCWS2 problem is a
(γ,T )-power if all the non-zero weights in the sequence X are
powers of γ, where 0 < γ < 1 and γT−1 ≥ α > γT .

Lemma

The α-LCWS2 problem for (γ,T )-power instances can be solved in
O(n3T ) time and space.

Proof idea
We can use dynamic programming.
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Approximation results: PTAS

Algorithm details
Our approach is a generalisation of the standard LCS algorithm.
We have O(n3T ) states, each described by a tuple (a, b, `, t),
where:

a is the position in the sequence X , 1 ≤ a ≤ n;
b is the position in the sequence Y , 1 ≤ b ≤ m;
` is the length of the subsequence already chosen, 0 ≤ ` ≤ m;
t is a γ-based logarithm of the product of pi (σj) values of the
chosen subsequence of X ; by the definition of the
(γ,T )-power, we only consider integral values of t from the
interval [0,T − 1].

Each state can be handled in O(1) time.
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Approximation results: PTAS

Lemma

For any ε > 0 we can compute in O(n4/ε) time and space a string
which is an α1+ε-subsequence of X and an α-subsequence of Y of
length at least OPT(X ,Y , α).

Proof.

Let T = n
ε and γ = α1/T . For all i , j we set:

p′i (σj) = γblogγ(p
(X )
i (σj ))c.

Use the algorithm from the previous lemma (note that the new
weight p′ is not a probability distribution, but the algorithm does
not use that assumption).
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Approximation results: PTAS

Lemma

Let (X ,Y , α) be an instance of the LCWS2 problem. In O(n5)
time and space one can find a string s which is an
(α, d − 1)-subsequence of both X and Y such that no
(α, d + 1)-subsequence of both X and Y exists.

Proof.
Set ε = 1/n and use the algorithm from the previous lemma. Then
remove a single character (which has the smallest value of
p(X )
ik

(zk)).
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Approximation results: PTAS

Theorem
For any real value ε ∈ (0, 1] there exists a (1− ε)-approximation
algorithm for the LCWS2 problem which runs in polynomial time
and uses O(n5) space. Consequently the LCWS2 problem admits a
PTAS.

Proof
Using the algorithm from the previous lemma find a positive integer
d and an (α, d − 1)-subsequence.

If d ≥ 1/ε then we are done since in that case we have
(d − 1)/d = 1− 1/d ≥ 1− ε which means that we have found
a (1− ε)-approximation.
If d < 1/ε then we search for an (α, d)-subsequence using a
brute-force approach, i.e., we try all

(|X |
d

)
,
(|Y |

d

)
subsets of

positions in each sequence.
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Thank you for your attention!
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