Polynomial-Time Approximation Algorithms for Weighted LCS Problem

Marek Cygan¹, Marcin Kubica¹, Jakub Radoszewski¹, Wojciech Rytter^{1,2} and **Tomasz Waleń**¹

¹University of Warsaw, Poland

²Copernicus University, Toruń, Poland

CPM 2011, 2011-06-29

Definition of a weighted sequence

A weighted sequence $X = x_1 x_2 \dots x_n$ of length |X| = n over an alphabet $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_K\}$ is a sequence of sets of pairs of the form:

$$x_i = \{(\sigma_j, \ p_i^{(X)}(\sigma_j)) \ : \ j = 1, 2, \dots, K\}.$$

Here $p_i(\sigma_j)$ is the occurrence probability of the character σ_j at the position *i*, these values are non-negative and sum up to 1 for a given *i*.

 $\mathcal{WS}(\Sigma)$ is the set of all weighted sequences over the alphabet Σ . We assume that $|\Sigma| = O(1)$.

Example

A weighted sequence $X = x_1 x_2 x_3 x_4$ over the alphabet $\Sigma = \{a, b, c\}$

- Weighted sequences are also referred to in the literature as p-weighted sequences or Position Weighted Matrices (PWM) [Amir et al. 2010, Thompson et al. 1994].
- The notion of a weighted sequence was introduced as a tool for motif discovery and local alignment, and is extensively used in computational molecular biology.
- Multiple algorithmic results related to combinatorics of weighted sequences, i.e., repetitions, regularities and pattern matching, have already been presented.

- Weighted sequences are also referred to in the literature as p-weighted sequences or Position Weighted Matrices (PWM) [Amir et al. 2010, Thompson et al. 1994].
- The notion of a weighted sequence was introduced as a tool for motif discovery and local alignment, and is extensively used in computational molecular biology.
- Multiple algorithmic results related to combinatorics of weighted sequences, i.e., repetitions, regularities and pattern matching, have already been presented.

- Weighted sequences are also referred to in the literature as p-weighted sequences or Position Weighted Matrices (PWM) [Amir et al. 2010, Thompson et al. 1994].
- The notion of a weighted sequence was introduced as a tool for motif discovery and local alignment, and is extensively used in computational molecular biology.
- Multiple algorithmic results related to combinatorics of weighted sequences, i.e., repetitions, regularities and pattern matching, have already been presented.

Definition (Occurrence of subsequence s in weighted sequence X)

$$|s| = d$$
, $\pi = (i_1, i_2, \dots, i_d)$, $1 \le i_1 < i_2 < \dots < i_d \le |X|$,

$$\mathcal{P}_X(\pi,s) = \prod_{k=1}^d p_{i_k}^{(X)}(s_k).$$

$$SUBS(X, \alpha) = \left\{ s \in \Sigma^* : \exists \left(\pi \in \operatorname{Seq}_{|s|}^{|X|} \right) \ \mathcal{P}_X(\pi, s) \geq \alpha \right\}.$$

In other words $SUBS(X, \alpha)$ is the set of deterministic strings which match a subsequence of X with probability at least α .

$\alpha\text{-}\mathsf{LCWS}$ problem

Input: Two weighted sequences $X, Y \in WS(\Sigma)$ and a cut-off probability α .

Output: The longest string $s \in \Sigma^*$ such that

$$\exists \left(\pi \in \operatorname{Seq}_{|s|}^{|X|}, \ \pi' \in \operatorname{Seq}_{|s|}^{|Y|}\right) \quad \mathcal{P}_{X}(\pi, s) \cdot \mathcal{P}_{Y}(\pi', s) \geq \alpha$$

Equivalently, s is the longest string in $SUBS(X, \alpha_1) \cap SUBS(Y, \alpha_2)$ for some $\alpha_1 \cdot \alpha_2 \ge \alpha$.

(α_1, α_2) -LCWS2 problem

Input: Two weighted sequences X, Y and two cut-off probabilities α_1, α_2 . **Output:** The longest string $s \in SUBS(X, \alpha_1) \cap SUBS(Y, \alpha_2)$.

$\alpha\text{-}\mathsf{LCWS}$ problem

Input: Two weighted sequences $X, Y \in WS(\Sigma)$ and a cut-off probability α .

Output: The longest string $s \in \Sigma^*$ such that

$$\exists \left(\pi \in \operatorname{Seq}_{|\boldsymbol{s}|}^{|\boldsymbol{X}|}, \ \pi' \in \operatorname{Seq}_{|\boldsymbol{s}|}^{|\boldsymbol{Y}|}\right) \quad \mathcal{P}_{\boldsymbol{X}}(\pi, \boldsymbol{s}) \cdot \mathcal{P}_{\boldsymbol{Y}}(\pi', \boldsymbol{s}) \geq \alpha.$$

Equivalently, s is the longest string in $SUBS(X, \alpha_1) \cap SUBS(Y, \alpha_2)$ for some $\alpha_1 \cdot \alpha_2 \ge \alpha$.

(α_1, α_2) -LCWS2 problem

Input: Two weighted sequences X, Y and two cut-off probabilities α_1, α_2 . **Output:** The longest string $s \in SUBS(X, \alpha_1) \cap SUBS(Y, \alpha_2)$.

Example: α -LCWS problem

Example: (α_1, α_2) -LCWS2 problem

Previous results for α -LCWS [Amir et al. 2010]

The α -LCWS problem can be solved in $O(n^3)$ time and $O(n^2)$ space. If we are only interested in the length of the output, the problem can be solved in $O(Ln^2)$ time, where L is the length of the solution.

NP-hardness for integer version of (α_1, α_2) -LCWS2

Previous work	Our results
unbounded alphabet	$ \Sigma = 2$

Approximation results for (α_1, α_2) -LCWS2

Previous work	Our results
$(1/ \Sigma)$	0.5 $(O(n^5)$ time, $O(n^2)$ space)
	PTAS $(O(n^5)$ space)

Definition (α -LCWS2 problem)

Input: Two weighted sequences $X, Y \in WS(\Sigma)$ and a cut-off probability α . **Output:** The longest string $s \in SUBS(X, \alpha) \cap SUBS(Y, \alpha)$.

The following lemma shows that the (α_1, α_2) -LCWS2 and α -LCWS2 problems are equivalent.

Lemma

The (α_1, α_2) -LCWS2 problem can be reduced in linear time to the α -LCWS2 problem (with $\alpha = \min(\alpha_1, \alpha_2)$).

Proof.

Solution: just rescale probabilities, and add special symbol # that will sum new probabilities to 1.

Let $\alpha_1 < \alpha_2$, and $\gamma = \log_{\alpha_2} \alpha_1$.

$$p_{i}^{(X')}(\sigma_{j}) = p_{i}^{(X)}(\sigma_{j}), \quad p_{i}^{(X')}(\#) = 0$$

$$p_{i}^{(Y')}(\sigma_{j}) = p_{i}^{(Y)}(\sigma_{j})^{\gamma}, \quad p_{i}^{(Y')}(\#) = 1 - \sum_{j=1}^{k} p_{i}^{(Y')}(\sigma_{j}).$$

NP-hardness

Definition

Define an *I-weighted sequence* X over the alphabet $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_K\}$ as a sequence of sets of pairs of the form:

$$x_i = \{(\sigma_j, w_i^{(X)}(\sigma_j)) : j = 1, 2, \dots, K\}, \text{ where } w_i^{(X)}(\sigma_j) \in \mathbb{Z}_+.$$

Definition

For an I-weighted sequence X and $s \in \Sigma^d$, define:

$$\mathcal{W}_X(\pi, s) = \sum_{k=1}^d w_{i_k}^{(X)}(s_k) \quad \text{for } \pi = (i_1, \dots, i_d) \in \operatorname{Seq}_d^{|X|}.$$

For an I-weighted sequence X and $\alpha \in \mathbb{Z}_+$, denote:

$$SUBS(X, \alpha) = \left\{ s \in \Sigma^* : \exists \left(\pi \in \operatorname{Seq}_{|s|}^{|X|} \right) \ W_X(\pi, s) \leq \alpha \right\}.$$

Definition (α -LCIWS2 problem)

Input: Two I-weighted sequences X, Y and a cut-off value $\alpha \in \mathbb{Z}_+$. **Output:** The longest string $s \in SUBS(X, \alpha) \cap SUBS(Y, \alpha)$.

Definition (Partition problem)

Input: A finite set $S, S \subseteq \mathbb{Z}_+$. **Binary output:** Is there a subset $S' \subseteq S$ such that $\sum S' = \sum S \setminus S'$.

Theorem

LCIWS2 problem over a binary alphabet is NP-hard.

Proof.

For instance of Partition Problem, set $S = \{q_1, q_2, \ldots, q_n\}$ we construct I-weighted sequences $X = x_1 x_2 \ldots x_n$ and $Y = y_1 y_2 \ldots y_n$ over the alphabet $\Sigma = \{a, b\}$ with the following weights of letters from Σ :

$$w_i^{(X)}(a) = q_i + c, \ w_i^{(X)}(b) = c, \ w_i^{(Y)}(a) = c, \ w_i^{(Y)}(b) = q_i + c.$$

Here c > 0 is an arbitrary positive integer. Finally let $\alpha = \frac{1}{2} \sum S + nc$. The Partition problem for an instance S has a positive answer iff the length of the solution to α -LCIWS2 for X and Y is n.

Theorem (Amir et al. 2010)

The α -LCWS problem can be solved in $O(n^3)$ time and $O(n^2)$ space. If we are only interested in the length of the output, the problem can be solved in $O(Ln^2)$ time, where L is the length of the solution.

Theorem

We can compute a solution to the α -LCWS2 problem for $X, Y \in WS(\Sigma)$ of length at least $\lfloor OPT(X, Y, \alpha)/2 \rfloor$ in $O(n^3)$ time and $O(n^2)$ space.

Proof idea

Solve α^2 -LCWS in $O(n^3)$ time, and then extract a solution for α -LCWS2 of size $\lfloor OPT(X, Y, \alpha)/2 \rfloor$.

Approximation results

Proof sketch

Let (s, π, π') be the solution of α^2 -LCWS

$$\mathcal{P}_{X}(\pi, s) \cdot \mathcal{P}_{Y}(\pi', s) \geq \alpha^{2}.$$
 (1)

We can split this solution to two parts. Let $g = \lfloor \frac{d}{2} \rfloor$. Obtaining partial probabilities:

$$A = \prod_{j=1}^{g} p_{i_j}^{(X)}(s_j), \quad B = \prod_{j=1}^{g} p_{i'_j}^{(Y)}(s_j),$$
$$C = \prod_{j=g+1}^{d} p_{i_j}^{(X)}(s_j), \quad D = \prod_{j=g+1}^{d} p_{i'_j}^{(Y)}(s_j).$$

Observe that only one of A, B, C, D can be smaller then α . So either (A, B) or (C, D) forms a solution with weight $\geq \alpha$.

Theorem

There exists a (1/2)-approximation algorithm for the α -LCWS2 problem which runs in $O(n^5)$ time and $O(n^2)$ space.

Proof.

Basically it is a consequence of previous lemma. To obtain the exact approximation ratio, we have to deal with the odd n case (this causes an $O(n^2)$ increase in the time complexity).

Definition

Let $X, Y \in \mathcal{WS}(\Sigma)$, $n = \max(|X|, |Y|)$, and $\alpha \in (0, 1]$. We say that an instance (X, Y, α) of the α -LCWS2 problem is a (γ, T) -power if all the non-zero weights in the sequence X are powers of γ , where $0 < \gamma < 1$ and $\gamma^{T-1} \ge \alpha > \gamma^{T}$.

Lemma

The α -LCWS2 problem for (γ, T) -power instances can be solved in $O(n^3T)$ time and space.

Proof idea

We can use dynamic programming.

Algorithm details

Our approach is a generalisation of the standard LCS algorithm. We have $O(n^3T)$ states, each described by a tuple (a, b, ℓ, t) , where:

- *a* is the position in the sequence *X*, $1 \le a \le n$;
- b is the position in the sequence Y, $1 \le b \le m$;
- ℓ is the length of the subsequence already chosen, $0 \leq \ell \leq m$;
- t is a γ-based logarithm of the product of p_i(σ_j) values of the chosen subsequence of X; by the definition of the (γ, T)-power, we only consider integral values of t from the interval [0, T 1].

Each state can be handled in O(1) time.

Lemma

For any $\epsilon > 0$ we can compute in $O(n^4/\epsilon)$ time and space a string which is an $\alpha^{1+\epsilon}$ -subsequence of X and an α -subsequence of Y of length at least $OPT(X, Y, \alpha)$.

Proof.

Let
$$T = \frac{n}{\epsilon}$$
 and $\gamma = \alpha^{1/T}$. For all i, j we set:

$$p_i'(\sigma_j) = \gamma^{\lfloor \log_{\gamma}(p_i^{(X)}(\sigma_j)) \rfloor}.$$

Use the algorithm from the previous lemma (note that the new weight p' is not a probability distribution, but the algorithm does not use that assumption).

Lemma

Let (X, Y, α) be an instance of the LCWS2 problem. In $O(n^5)$ time and space one can find a string s which is an $(\alpha, d - 1)$ -subsequence of both X and Y such that no $(\alpha, d + 1)$ -subsequence of both X and Y exists.

Proof.

Set $\epsilon = 1/n$ and use the algorithm from the previous lemma. Then remove a single character (which has the smallest value of $p_{i_k}^{(X)}(z_k)$).

Theorem

For any real value $\epsilon \in (0, 1]$ there exists a $(1 - \epsilon)$ -approximation algorithm for the LCWS2 problem which runs in polynomial time and uses $O(n^5)$ space. Consequently the LCWS2 problem admits a PTAS.

Proof

Using the algorithm from the previous lemma find a positive integer d and an $(\alpha, d-1)$ -subsequence.

- If $d \ge 1/\epsilon$ then we are done since in that case we have $(d-1)/d = 1 1/d \ge 1 \epsilon$ which means that we have found a (1ϵ) -approximation.
- If d < 1/ε then we search for an (α, d)-subsequence using a brute-force approach, i.e., we try all (|X|) (|Y|) (|Y|) subsets of positions in each sequence.

Thank you for your attention!