

Frequent Submap Discovery

Stéphane GOSSELIN, Guillaume DAMIAND, and Christine SOLNON

LIRIS

Université de Lyon, France

Motivations

- Combinatorial maps are nice structures for modeling images
 - Partition of images in regions
 - Model the topology of these regions
- There exist efficient algorithms for:
 - Deciding of submap isomorphism
 - Searching for a map in a database of maps
- But comparing and classifying maps are challenging issues

Contribution

Algorithm for extracting frequent patterns from maps ~ May be used to compare and classify maps

Combinatorial maps

- 2 Extraction of frequent submaps
- 3 Experimental results
- 4 Conclusion

S. Gosselin, G. Damiand, C. Solnon

Very short (and incomplete) history of combinatorial maps...

- Introduced in 2D / planar graphs [Edmonds60, Tutte63, Jacques70, Cori73]
- Extended in 3D

[ArquesKoch88, Lienhardt88, Spehner91]

Generalized in *n*D

[Lienhardt89]

Basic idea

- Subdivision of an nD space into cells ~ Vertices (0D), Edges (1D), Faces (2D), Volumes (3D), ...
- Model the topology of these cells Adjacency and incidence relationships

This talk introduces ideas and algorithms for 2D maps \rightsquigarrow Refer to the paper for an extension to nD

From 2D objects to 2D maps

- 2D object ~> faces, edges and vertices
- Each edge is decomposed in 2 adjacent darts
- Darts are related by 2 functions: let x be a dart,
 - $\beta_1(x) \rightsquigarrow$ dart which follows x when turning around the face
 - β₂(x) → dart adjacent to x (in the face adj. to the face of x)

darts	а	b	С	d	е	f	g	h	
β_1	b	С	d	а	f	g	е	i	
β_2	I	е	i	h	b	k	j	d	

Definition of 2D maps

A 2D map is defined by $M = (D, \beta_1, \beta_2)$ such that

- 1. D is a finite set of darts;
- 2. β_1 is a permutation on D;
- 3. β_2 is an involution on *D*.

Previous work used in this talk

- Algorithm for deciding of submap Isomorphism [CVIU 2011]
 - Input: a connected pattern map M and a target map M'
 - Output: decide if there exists a copy of M in M'
 - Time complexity: $\mathcal{O}(|D| \cdot |D'|)$
- Map signatures [TCS 2011]
 - Construction of the signature of a map M in $\mathcal{O}(|D|^2)$
 - Search for a map M given a set of k signatures in $\mathcal{O}(|D|^2)$

- 2 Extraction of frequent submaps
- 3 Experimental results
- 4 Conclusion

S. Gosselin, G. Damiand, C. Solnon

8/18

Definition of our frequent pattern extraction problem

- Input: a database S of maps and a real $0 < \sigma \le 1$
- Output: set of all frequent patterns
 - Pattern ~> Set of connected faces
 - Frequent → Occurs in at least σ · |S| maps of S

Bad news

Good news

- Submap isomorphism is in P
- Anti-monotonicity: $M \notin$ Freq. \Rightarrow Supermaps of $M \notin$ Freq.
- ~> Extraction in incremental polynomial time

```
Algorithm 1 mSpan(S: a base of maps, \sigma \in [0; 1])
```

```
F_1 \leftarrow \text{all frequent patterns composed of 1 face}
F \leftarrow F_1
while F_1 \neq \emptyset do
    Choose a pattern f in F_1
    Cand \leftarrow \{f\}
    while Cand \neq \emptyset do
        Choose a pattern p in Cand
        F_p \leftarrow grow(p, F_1)
        Cand \leftarrow Cand \cup F_n
      F \leftarrow F \cup F_n
    /* All frequent patterns which contain f are in F
                                                                                */
    remove f from F_1
return F
```


Frequency sigma = 2/3

S. Gosselin, G. Damiand, C. Solnon

Frequent Submap Discovery

10/18

Introduction

Frequency sigma = 2/3

S. Gosselin, G. Damiand, C. Solnon

Frequent Submap Discovery

10/18

Frequent Submap Discovery

Frequent Submap Discovery

S. Gosselin, G. Damiand, C. Solnon

Frequent Submap Discovery

10/18

1 Combinatorial maps

- 2 Extraction of frequent submaps
- 3 Experimental results
- 4 Conclusion

S. Gosselin, G. Damiand, C. Solnon

Comparison with gSpan [Yan, Han 2002]

- State-of-the-art for frequent subgraph extraction
- mSpan and gSpan solve different problems
- Extract frequent connected subgraphs from dual graphs

Comparison with gSpan [Yan, Han 2002]

- State-of-the-art for frequent subgraph extraction
- mSpan and gSpan solve different problems
- Extract frequent connected subgraphs from dual graphs

Connected subgraph ~ Connected set of faces
 But face topology is ignored

Primal graph

Dual graph

Comparison with gSpan [Yan, Han 2002]

- State-of-the-art for frequent subgraph extraction
- mSpan and gSpan solve different problems
- Extract frequent connected subgraphs from dual graphs
 - Connected subgraph ~> Connected set of faces

But face topology is ignored

Primal graph

Dual labeled graph

Comparison with gSpan [Yan, Han 2002]

- State-of-the-art for frequent subgraph extraction
- mSpan and gSpan solve different problems
- Extract frequent connected subgraphs from dual graphs
 - Connected subgraph ~> Connected set of faces
 - But face topology is ignored

Мар

Primal graph

Dual labeled graph

Scale-up properties w.r.t. map sizes

Datasets

- Each dataset = 1000 randomly generated connected maps
- Increase the number of faces from 4 to 350
- **Set** σ to 0.9

Scale-up properties w.r.t. σ

Datasets

- Each dataset = 1000 randomly generated connected maps
- Set the number of faces to 60
- increase σ from 0.1 to 1

Time wrt σ

Number of frequent patterns wrt σ

Example of application: Image classification

Modelling images by means of frequent patterns

- Segment images and associate image regions to map faces
- Extract frequent patterns
- Model each image by a vector V: ~ V[i] number of occurrences of the ith pattern

Use classification/clustering tools defined on vector spaces

Ex.: classification of the Pascal dataset with decision trees (C4.5)

Frequent Submap Discovery

1 Combinatorial maps

- 2 Extraction of frequent submaps
- 3 Experimental results
- 4 Conclusion

S. Gosselin, G. Damiand, C. Solnon

Contributions

- Algorithm for frequent submap extraction
 - Incremental polynomial-time
- Experimental results on synthetic databases
 - Topology allows mSpan to extract less patterns than gSpan
- First experimental results on images
 - Frequent submaps ~> model images by numerical vectors
 - Numerous analysis tools defined on vector spaces

Further work

- On the algorithmic side:
 - Design incremental signatures
- On the applicative side:
 - Image: Combine frequent submaps with other image features
 - Other applications: Aperiodic tillings, 3D and 3D+t objects, ...

Submap isomorphism [CVIU 2011]

- Input: a connected pattern map M and a target map M'
- Output: decide if there exists a copy of M in M'
- Basic principle:
 - choose a dart of M
 - for each dart of M':
 - Perform a traversal of *M*/*M*['] and match corresponding darts
 - Answer yes if the matching preserves β_i functions
 - Answer No
- Time complexity: $\mathcal{O}(|D| \cdot |D'|)$

Map signatures [TCS 2011]

Construction of the signature of a database of maps

- Input: a set S of k maps of at most t darts
- Solution \mathbb{I} Output: lexicographic tree of the signatures of the maps of S
- Complexity: time in $\mathcal{O}(k \cdot t^2)$ and space in $\mathcal{O}(k \cdot t)$

Search for a map in a database of maps

Input:

- lex. tree T of the signatures of the maps of a database
- a new map M
- Output: decide if there is a map in T isomorphic to M
- Time complexity: $\mathcal{O}(t^2)$ where t = number of darts of M

Experimental results

Conclusion

Storing all occurrences of a pattern

Store the dart associated with dart 1 for each occurrence $\rightsquigarrow \mathcal{O}(k)$ where k = # occurrences

Pattern P

Occurrences of P =

Experimental results

Conclusion

Storing all occurrences of a pattern

Store the dart associated with dart 1 for each occurrence $\rightsquigarrow \mathcal{O}(k)$ where k = # occurrences

Pattern P

LIRIS

Experimental results

Conclusion

Storing all occurrences of a pattern

Store the dart associated with dart 1 for each occurrence $\rightsquigarrow \mathcal{O}(k)$ where k = # occurrences

Pattern P

Experimental results

Conclusion

Storing all occurrences of a pattern

Store the dart associated with dart 1 for each occurrence $\rightsquigarrow \mathcal{O}(k)$ where k = # occurrences

Pattern P

Occurrences of P = q, i, j

S. Gosselin, G. Damiand, C. Solnon

Frequent Submap Discovery

21 / 18

Experimental results

Conclusion

Storing all occurrences of a pattern

Store the dart associated with dart 1 for each occurrence $\rightsquigarrow \mathcal{O}(k)$ where k = # occurrences

Pattern P

Occurrences of P = q,i,j,a

S. Gosselin, G. Damiand, C. Solnon

Frequent Submap Discovery

21 / 18

Experimental results

Conclusion

Storing all occurrences of a pattern

Store the dart associated with dart 1 for each occurrence $\rightsquigarrow \mathcal{O}(k)$ where k = # occurrences

Pattern P

Occurrences of P = q, i, j, a, p

