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1 What are Maximum Graph Orientations?



What are Maximum Graph Orientations?

Problem (MAXIMUM-GRAPH-ORIENTATION)

Input Mixed graph and source-target vertex pairs

Solution Oriented graph and satisfied pairs

Objective Maximize number of satisfied pairs



2 Graph Orientations in Network Biology



Infer Directions of Protein-Protein Interactions
Protein-Protein Interaction Networks
• Interactions are directed in nature
• Directions are not known for all interactions
• Many causal relations are known
• Task: Infer unknown directions from causal relations

Yeast protein-protein interactions and cause-effect pairs
[Silverbush et al., 2011]



3 How to Approximate Maximum Graph Orientations?



Orienting Undirected Graphs

• Previous work focused on undirected graphs
• Corresponds to protein-protein interaction networks

without any directionality information

Theorem (Hardness of Approximation [Medvedovsky et al., 2008])
MAXIMUM-GRAPH-ORIENTATION on undirected graphs is
NP-hard to approximate within any factor larger than 11/12.

Theorem (Approximation Upper Bound [Gamzu et al., 2010])
MAXIMUM-GRAPH-ORIENTATION on undirected graphs can be
approximated in polynomial time within the sub-logarithmic
asymptotic factor log log |vertices|/ log |vertices|.



Hardness of Orienting Mixed Graphs

Theorem (Hardness of Approximation)
MAXIMUM-GRAPH-ORIENTATION is NP-hard to approximate
within any factor larger than 7/8.

Proof by Reduction.
• Reduce from MAXIMUM-3-SATISFIABILITY

(x1∨¬x2∨x3)∧ . . .
to MAXIMUM-GRAPH-ORIENTATION

x1 ¬x1 x2 ¬x2

x3 ¬x3

source1 . . .

target1
. . .

[Arkin and Hassin, 2002]

• Inapproximability of MAXIMUM-3-SATISFIABILITY [Håstad, 2001]



Approximation of Mixed Graph Orientations

Main Theorem (Approximation Upper Bound)
There exists a polynomial-time algorithm that approximates
MAXIMUM-GRAPH-ORIENTATION within the sub-linear
asymptotic factor

1
(|vertices|+ |pairs|)0.71 log |vertices|

.

Proof by Algorithm and Analysis
1 Preprocessing that makes the input graph acyclic
2 Greedily satisfy single pairs
3 Satisfy pairs through junction vertex



Approximation of Mixed Graph Orientations
1 Preprocessing that makes the input graph acyclic

Computation Mixed graph and pairs

1 Orient cycles

2 Contract strongly connected subgraphs

Analysis Transform solutions back and forth



Approximation of Mixed Graph Orientations
2 Greedily satisfy single pairs

Computation Acyclic mixed graph and pairs

1 do
2 Pick pair with shortest path and orient it

3 Delete disconnected pairs

4 while (vertices are only crossed by few pairs)

Analysis In every iteration
win
loss

≥ 1
path length×#vertex crossing pairs



Approximation of Mixed Graph Orientations
3 Satisfy pairs through junction vertex

Computation Graph with junction vertex and pairs

1 Compute spanning forward and backward trees

2 Generalize undirected tree orientation from
Medvedovsky et al. (2008) to mixed trees

Analysis
|crossing pairs|

log |vertices|
pairs are satisfied



Better Approximations for Tree-Like Instances
Definition (Skeleton graph)

Input graph Skeleton graph

Theorem
If skeleton graphs have . . .
• . . . feedback vertex number k ∈ N, then we can satisfy
|pairs|/(4(k +1) log |vertices|) pairs.

• . . . tree width k ∈ N, then we can satisfy
|pairs|/(4(k +1) log2 |vertices|) pairs.

Proof Idea.
• Decompose into a constant and logarithmic number of

junction instances, respectively



Summary and Open Problems

We . . .
• . . . studied the approximability of orienting mixed graphs; a

problem from network biology.
• . . . proved a sub-linear approximation ratio.
• . . . proved logarithmic and poly-logarithmic approximation

ratios for structures instances.

Open Problem
Prove matching upper and lower bounds for orienting
undirected and mixed graphs?
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