Finding Approximate and Constrained Motifs in Graphs

<u>Riccardo Dondi</u>¹ Guillaume Fertin ² Stéphane Vialette ³

¹Università di Bergamo, ²Université de Nantes, ³Université Paris-Est

CPM 2011, June 29, 2011

Dondi, Fertin, Vialette Finding Approximate and Constrained Motifs in Graphs

ヘロン 人間 とくほ とくほ とう

ъ

Outline

Introduction

- Biological Motivations
- GRAPH MOTIF
- 2 Extensions of GRAPH MOTIF
- MIN-SUB and MIN-ADD
 - Computational Complexity
 - Parameterized Complexity
- 4 CGM
 - CGM Parameterized Complexity

Conclusion

Biological Motivations GRAPH Мотіг

Outline

→ Ξ →

ъ

Biological Motivations GRAPH MOTIF

Network Querying Problem

Network analysis (protein-protein interaction, metabolic networks):

- given a query Q (a small network), and a network N
- identify subnetworks of N similar to Q

Approach relies on precise information on the query network \rightarrow information is often missing

イロト イポト イヨト イヨト

Biological Motivations GRAPH MOTIF

GRAPH MOTIF

[Lacroix, Fernandes, Sagot, TCBB 2006; Bruckner et al, JCB 2010] introduced queries that do not rely on the conservation of the topology:

- network: a vertex-colored graph G
- Query: a motif $\mathcal{M}(a \text{ multiset of colors})$
- identify a subgraph of G similar to \mathcal{M}

イロト イ理ト イヨト イヨト

÷.

Biological Motivations GRAPH MOTIF

GRAPH MOTIF - Combinatorial Problem

Problem (GRAPH MOTIF)

Input: a vertex-colored graph G and a colored motif \mathcal{M} (a multiset of colors). **Output:** a connected component G' = (V', E') of G so that $\mathcal{C}(V') = \mathcal{M}$.

G' is an occurrence of \mathcal{M} in G

When $\mathcal M$ is a set $\to \mathcal M$ is colorful

ヘロト ヘ回ト ヘヨト

1

Biological Motivations GRAPH MOTIF

GRAPH MOTIF - Combinatorial Problem

 $\mathcal{M} = \{ \text{red}, \text{yellow}, \text{blue}, \text{green} \}$ An occurrence of \mathcal{M} : $\{ v_1, v_2, v_4, v_6 \}$

Biological Motivations GRAPH MOTIF

GRAPH MOTIF - Computational Complexity

GRAPH MOTIF is **NP**-complete:

- even if \mathcal{M} is colorful and the graph G is a tree and each colors has at most 3 occurrences in G [Fellows et al, JCSS 2011]
- even if \mathcal{M} consists of two colors, and the graph is bipartite with maximum degree 4 [Fellows et al, JCSS 2011]

ヘロン 人間 とくほ とくほ とう

1

Biological Motivations GRAPH MOTIF

GRAPH MOTIF - Parameterized Complexity

Previous results:

• GRAPH MOTIF is in FPT, when parameterized by $k = |\mathcal{M}|$ [Fellows et al, JCSS 2011; Betzler et al, TCBB 2011; Guillemot, Sikora, MFCS 2010]

In [Betzler et al, TCBB 2011] colorful recoloring
technique:

Lemma (Betzler et al, TCBB 2011)

Given a motif \mathcal{M} , the number of trials to achieve a colorful recoloring of \mathcal{M} with an error probability of ε is $|\ln(\varepsilon)| \cdot O(e^{|\mathcal{M}|})$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline

< 🗇 🕨

- 신문 () - 신문

Extensions of GRAPH MOTIF

 $\mathcal{M} = \{\text{red}, \text{yellow}, \text{blue}, \text{green}\}$ Measurement errors: the GRAPH MOTIF problem too stringent

Extensions of GRAPH MOTIF

 $\mathcal{M} = \{\text{red}, \text{yellow}, \text{blue}, \text{green}\}$ Previous knowledge on the structure of motif: mandatory vertices

Extensions of GRAPH MOTIF

Variants GRAPH MOTIF:

- MIN-CC, MAXIMUM MOTIF [Dondi, Fertin, Vialette, JDA 2011]
- approximate occurrence of *M*: substitutions (MIN-SUB), additions (MIN-ADD) [Bruckner et al, JCB 2010]
- exact occurrence of ${\cal M}$ containing mandatory vertices: CGM

MIN-SUB and MIN-ADD

Problem (MIN-SUB)

Input: a vertex-colored graph G and a colored motif \mathcal{M} . **Output:** a connected subgraph G' = (V', E') of G, such that C(V') can be obtained with at most p substitutions from \mathcal{M} .

Problem (MIN-ADD)

Input: a vertex-colored graph G and a colored motif \mathcal{M} . **Output:** a connected subgraph G' = (V', E') of G, such that $C(V') \supseteq \mathcal{M}$ and $|C(V') \setminus \mathcal{M}| \le p$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problem (CGM)

Input: a vertex-colored graph G = (V, E), a set of mandatory vertices $V_M \subseteq V$ and a colored motif \mathcal{M} . **Output:** a connected subgraph G' = (V', E') of G, such that $C(V') = \mathcal{M}$ and $V_M \subseteq V'$.

Optinal occurrences= $\mathcal{M} \setminus c(V_M)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Computational Complexity Parameterized Complexity

Outline

< 🗇 🕨

- ∢ ⊒ →

Conclusion

Computational Complexity Parameterized Complexity

MIN-SUB and MIN-ADD - Computational Complexity

Theorem

MIN-SUB and MIN-ADD are **NP**-hard, even when the graph is a tree T of maximum degree 4, M is colorful, each color has at most 2 occurrences in T.

Proof.

Reductions from Minimum Vertex Cover on cubic graphs.

イロト イ理ト イヨト イヨト

Computational Complexity Parameterized Complexity

MIN-SUB and MIN-ADD- Parameterized Complexity

MIN-SUB and MIN-ADD are **NP**-hard when the size of the solution is a constant

MIN-ADD is in FPT when parameterized by $|\mathcal{M}|$ [Guillemot, Sikora, MFCS 2010; Bruckner et al, JCB 2010]

Lemma

MIN-SUB is in **FPT** when parameterized by $|\mathcal{M}|$.

ヘロン 人間 とくほ とくほ とう

1

Conclusion

Computational Complexity Parameterized Complexity

MIN-SUB and MIN-ADD- Parameterized Complexity

Lemma

MIN-SUB is in **FPT** when parameterized by $|\mathcal{M}|$.

Proof.

Colorful case:

- Visit the vertices of a connected component of *G*, allowing to visit some vertices more than once.
- Each color visited more than once \rightarrow substitution.

General case:

Combination with colorful recoloring.

- 신문 () - 신문

CGM - Parameterized Complexity

Outline

Conclusion

< 🗇 🕨

- < ≣ → <

Conclusion

CGM - Parameterized Complexity

CGM - FPT Algorithm

Theorem

The CGM problem is in FPT, when parameterized by the number of optional occurrences k and by the treewidth δ of the input graph.

Proof.

FPT algorithm for the colorful case:

- nice tree decomposition of the input graph
- each bag of the nice tree decomposition has size at most $\delta+1$

イロト イ理ト イヨト イヨト

CGM - Parameterized Complexity

Conclusion

CGM - FPT Algorithm

FPT algorithm for the colorful case:

- each subset X_i' of a bag X_i is partitioned in at most δ connected components: at most δ^{δ+1} possible partitions
- each partition must be feasible

Definition

A partition *P* of $X'_i \subseteq X_i$ is *feasible* when

$$1 X_i \cap V_M \subseteq X'_i;$$

- **②** for each pair of vertices $u, v \in X'_i$, c(u) ≠ c(v);
- **(3)** each set of *P* is a maximal connected component of $G[X'_i]$.

・ロト ・回ト ・ヨト ・ヨト

CGM - Parameterized Complexity

Conclusion

CGM - Hardness of Parameterization

Theorem

The CGM problem, parameterized by the number of optional occurrences, is W[2]-hard, even when the input graph is of diameter 2.

Proof.

Parameterized preserving reduction from MIN SET COVER.

ヘロト ヘアト ヘビト ヘビト

1

Outline

→ Ξ →

ъ

< 🗇 🕨

Future directions:

- More efficient fixed-parameter algorithms for MIN-SUB and MIN-ADD
- Efficient heuristics for MIN-SUB, MIN-ADD, CGM
- New variants of GRAPH MOTIF

・ 同 ト ・ 三 ト ・

ъ

Conclusion:

- GRAPH MOTIF and biological motivations
- Extensions of GRAPH MOTIF \Rightarrow MIN-SUB, MIN-ADD, CGM
- Hardness results for MIN-SUB and MIN-ADD
- MIN-SUB is in FPT
- CGM is in FPT for graphs of bounded treewidth
- CGM is W[2]-hard for graphs of maximum diameter 2
- Future directions

イロト イポト イヨト イヨト