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Types of quasiperiodicity

a b a a b a a b a a a b a a

Cover:

every letter of the string is covered by some occurrence
of the cover

a a b a

Seed:

every letter of the string is covered by some occurrence
of the seed, occurrences may be external
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Main related problems

Problem: Cover computation
find the shortest cover (all the covers) of a string u

Solution:
Apostolico, Farach, and Iliopoulos (1991), Moore and Smyth
(1994), O(n) time algorithms.
Harder problem: Cover array
compute C[1. . n], where C[i ] is the shortest cover of the string
u[1. . i ]
Solution:
Breslauer (1992), O(n) time algorithm.
Another problem: Seed computation
find the shortest seed (all the seeds) of a string
Solution:
Iliopoulos, Moore & Park (1996), O(n log n) time algorithm.
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Main contributions

1. Left seeds
We introduce a natural intermediate notion between seeds and
covers and give O(n) time algorithms for computing the
shortest left seed and the left seed array.
2. Seed array
We show how to compute the seed array in O(n2) time.
3. New (simpler) seeds computation
We present a novel approach to seed computation. Our
algorithm works in o(n log n) time for some cases.
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Left/right seeds

a b a a b a a b a a a b a a

Cover:

a b a a b a a b a a a b a aa a b a

Seed:

a b a a b a a b a a a b a a b a

Left seed:

is a prefix of the string, however its occurrence
may exceed the right end of the string

a a b a a b a a b a a a b a a

Right seed:

is a suffix of the string, however its occurrence
may exceed the left end of the string

a b a a b a a b a a a b a a b a

Left seed:

is a prefix of the string, however its occurrence
may exceed the right end of the string
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Left seeds computation

Problem: Left seed computation
find the shortest lest seed of a string u

Harder problem: Left seed array
compute LSeed[1. . n], where LSeed[i ] is the shortest left seed
of the string u[1. . i ]
Solution:
We present O(n) time algorithms solving both the problems.
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Left seeds computation

The period of a string
We say that a positive integer p is the (shortest) period of a string
u = u1 . . . un (notation: p = per(u)) if p is the smallest positive number,
such that ui = ui+p, for i = 1, . . . , n − p.

Lemma. The length of the shortest left seed of u equals:
min{C[j ] : per(u) ≤ j ≤ |u|}

where C[1. . n] is the cover array of u.

Corollary. The left seed of a string can be computed in O(n)
time.
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The proof
Lemma. The length of the shortest left seed of u equals:

min{C[j ] : per(u) ≤ j ≤ |u|}
where C[1. . n] is the cover array of u.

Proof.
Assume that s is a left seed of u.

u

s s s s

1 n

jj

Then s is a cover of u[1. . j ] for some j .
The string u has a border ≥ n − j , hence per(u) ≤ j .
(Recall that per(u) + border(u) = |u|).
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The proof
Lemma. The length of the shortest left seed of u equals:

min{C[j ] : per(u) ≤ j ≤ |u|}
where C[1. . n] is the cover array of u.

Proof (cont).
We have proved that the shortest left seed of u corresponds to
one of the covers C[j ] for j ≥ per(u).
We need to show that each value C[j ] for j ≥ per(u)
corresponds to some left seed of u.
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The proof
Lemma. The length of the shortest left seed of u equals:

min{C[j ] : per(u) ≤ j ≤ |u|}
where C[1. . n] is the cover array of u.

Proof (cont).
Assume that s is a cover of v = u[1. . j ] for some j ≥ per(u).

v
s

per(u)

1 j n

v v

Then v is a left seed of u.
Hence, s is also a left seed of u.
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Left seeds computation

Lemma. The length of the shortest left seed of u equals:
min{C[j ] : per(u) ≤ j ≤ |u|}

where C[1. . n] is the cover array of u.

Corollary 2. The left seed array can be computed as follows:
LSeed[i ] = min{C[j ] : P[i ] ≤ j ≤ i}

where P[1. . n] is the period array (recall that it can be
computed in O(n) time).

The problem reduces to RMQ on the C array — O(n) time
algorithm.
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Seed array

Problem: Seed array
compute Seed[1. . n], where Seed[i ] is the shortest seed of the
string u[1. . i ]

A naive method yields O(n2 log n) time.
We present an O(n2) time algorithm.
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The solution

ALGORITHM SeedArray(u)

1: Seed[1] := 1;
2: for i := 2 to n do
3: Seed[i ] := Seed[i − 1];
4: while u[1. . i ] does not have a seed of length Seed[i ] do
5: Seed[i ] := Seed[i ] + 1;
6: return Seed[1. . n];

We develop an O(n) time test:
SeedsOfAGivenLength(u, k)

which checks if u has a seed of length k .

(This test uses the suffix arrays of u.)
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Seed computation

We present a new O(n log n) time algorithm for seed
computation.

It can be used to check if u has the shortest seed of length
≥ m in O(n log (n/m)) time. Hence, finding the shortest seed
of length m = Θ(n) can be done in O(n) time.
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Links between the notions

Seed:

a a a b a a b a a b a a a b a a b a

cover

left seed

right seed

The string s is a cover of u[i . . j ] if maxgap(s) ≤ |s|.
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The suffix tree

a b
$

6

3

ab$ b

aab$ $

1 4

aab$ $

2 5

It suffices to compute maxgaps for all the explicit nodes of the
suffix tree. E.g., maxgap(ab) = maxgap({1, 4}) = 3,
maxgap(a) = maxgap({1, 3, 4}) = 2.

It is easier to compute prefix maxgaps (i.e., the maxima of the
maxgap values in the path from a node to the root).
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Prefix maxgaps
We show how to compute all the prefix maxgaps in a path
down the suffix tree in linear time.

root

T1

T2

T3

T4

We obtain a recursive algorithm.
Each time we choose the heaviest path in the suffix tree. We
obtain O(log n) levels of recursion and O(n log n) total time.

If we search for the shortest seed of length ≥ m then it
suffices to consider several subtrees of the tree, each of size
O(n/m). We obtain an O(n log (n/m)) time algorithm.
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Summary

Cover O(n)
Cover array O(n)

Left seed O(n)
Left seed array O(n)

Seed O(n log n)
[ O(n log(n/m)) ]

Seed array O(n2)

Thank you for your attention!
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