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Straight Line Program (SLP)
!  Grammar in Chomsky Normal Form deriving single string 
!  Can model outputs of various compression algorithms
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Algorithm 1: Counting Minimal Crossing Subsequence Occurrences.
Input: SLP variable Xi = X!Xr, pattern P , auxiliary tables L, R.

Output: The number of minimal crossing subsequence occurrences C(!, r).

C ← 0 ; rmin ← R(!, 0) ;1

for k ← 1 to m − 1 do2

if rmin > R(!, k) and L(r,m − k) < L(r,m − k − 1) then3

C ← C + 1 ;4

rmin ← R(!, k) ;5

return C ;6

Lemma 6. Given a pattern P of length m, an SLP T of size n, and L(i, j), R(i, j) for

i = 1, . . . , n, j = 0, . . . , m, C(!, r) for all variables of form Xi = X!Xr, can be computed

in total of O(nm) time.

Proof. A pseudo-code of our algorithm which computes C(!, r) is shown in Algorithm 1

(see also Fig. ?? in Appendix). The time complexity is clearly O(m) for each Xi = X!Xr,

and hence O(nm) in total. The correctness is due to Lemma 5.

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an SLP T of size n representing text

T , the number of minimal subsequence occurrences of P in T can be calculated in O(nm)

time.

2.3 Window Subsequence Matching.

Cégielski et al. [3] introduced several window-accumulated variants of subsequence

pattern matching on compressed texts. The principal problem is: Given an SLP T

generating text T , a pattern P , and non-negative integer w, count the number of minimal

subsequence occurrences (u, v) of P in T such that v − u + 1 ≤ w.

Our algorithm for counting minimal occurrences can readily be extended to this

window-accumulated variant. See Algorithm 1. By simply adding “R(!, k)+L(r,m−k) ≤

w” in the if-condition of line 3, we can solve the problem in the same complexity O(nm).
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Subsequences
! String P is a subsequence of string T 
! ∃i0, ..., im–1 s.t.  

     0 ! i0 < """ < im–1 ! |T| 
     P[j] = T[ij] for all j = 0, ..., m – 1 
 (i0, im–1) is called an occurrence 
 of subsequence P in T 

T = ����	��	��
��
(i0, i1, i2) = (2,6,11) 
(i0, i2)= (2,11)P = �
�

0 1 2 3 4 5 6 7 8 9 
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Minimal Subsequence Occurrences

! An occurrence (i0, im–1) of subsequence  
P in T is minimal, if there is no occurrence 
of P in T[i0 : im–1–1] or T[i0+1 : im–1] 

P = �
�

T = ����	��	��
�
����		��
minimal！

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 

(2,11)

(2,13)
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Window Subsequence Problems on SLP  
[Cégielski et al. 2006]

Several variations, e.g.: 
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Input  : SLP of size n representing string T , string P 
Output : # of minimal occurrences of subsequence P in T

Minimal Subsequence Occurrences

Input     : SLP of size n representing T, string P, integer w 
Output : # of minimal occurrences (i0, im–1) of subsequence 

    P in T, where im–1 – i0 < w

Bounded Minimal Subsequence Occurrences



Window subsequence problems in  
Extensions to pattern matching with Fixed/Variable  
Length Don’t Care Symbols in 

Decomp.&[Troní"ek 2001]   # 
 
[Cégielski et al. 2006]    #  
 
[Tiskin 2009]        # 
 
[Tiskin 2011]        # 
 

O(nm2 logm)

O(nm1 . 5 )

O(nmlogm)

O(nm)
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This Work 

O(nm)

Window Subsequence Problems on SLP  

O(Nm)



串：Crossing Occurrences
For Xi = Xl Xr , an occurrence (u, v) of P is a crossing 
occurrence in Xi when: 

  0 ! u < |Xl | ! v < |Xi |  

Xi

Xl Xr

u v

u' v'

串 is the Chinese character meaning “skewer”, 
pronounced “KUSHI” in Japanese (Similar to the Greek letter #) 
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Counting Minimal Subsequence 
Occurrences on SLP

!  Mi   : # of minimal occurrences of P in Xi

!  M串(l, r): # of crossing minimal occurrences of P in Xi=XlXr 

�������������������
crossing minimal 
occurrences

Xi
Xl Xr

Mi = 4 

M串(l, r) = 2

Ml = 1 Mr = 1

Mn is the solution to our Problem

P=����

Mi = Ml + Mr + M串(l, r) 

•  If Xi = a   ( a∈$ ) •  If Xi = Xl Xr  ( l , r < i )

Mi = 0　if  m %1  or  P[ j ]% a 
1 　if  m =1 and P[ j ] = a 

Computing Mi 
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Computing M串(l, r)
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P=������ Xl
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shortest suffix of Xl 
containing P[0:m-k-1]

shortest prefix of Xr 
containing P[m-k:m-1]
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Computing M串(l, r)
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shortest suffix of Xl 
containing P[0:m-k-1]

shortest prefix of Xr 
containing P[m-k:m-1]

there are at most m – 1  
crossing minimal 
occurrences 
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C := 0, rmin := R(l, 0) 
for k := 1 to m – 1 
　if  rmin>R(l,k)  and L(r,m - k)<L(r,m - k - 1)  then 
　　C := C + 1 
　　rmin := R(l, k) 
　end if 
end for 
M串(l, r) := C 

Computing M串(l, r)
M串(l, r) for all  Xi = Xl Xr can be computed in 
total of O(nm) time using L, R 

rmin

R(l, k) L(r, m-k)

L(r, m-k-1)

Xl Xr

Xi
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L(i,j) : Length of shortest prefix of Xi s.t. P[j:m-1] is subsequence 
R(i,j) : Length of shortest suffix of Xi s.t. P[0:m-j-1] is subsequence 
 



Computing Q (to compute L)

Xi
Xl Xr

'''

Q(l, j) characters Q(r, j' ) characters 

( j' = j + Q(l, j ))

•  If Xi = a  ( a∈$ ) •  If Xi = Xl Xr  ( l , r < i )

Q(i, j) = 0　 if  P [ j]% a 
1 　if  P [ j] = a 

Q(i, j) = Q(l, j) + Q(r, j' )

Computing Q(i, j)

''' ''' '''

Q(i,j):  Length of longest prefix of P[j:] that is  
      a subsequence of Xi  (i = 1,...,n,  j = 0,...,m)

j'j
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Computing Q (to compute L)

� � � � � � � � � � � � �

Xi

Q(l, j) = 2

j' := j + Q(l, j)

Q(r, j' ) = 3

Q(i, j) := Q(l, j) + Q(r, j' ) 

= 2 + 3 = 5 

Xl Xr

For all i = 1,...,n, j = 0,...,m 
Q(i, j) can be calculated in O(nm) time using DP. 

Q(n, 0) =m 　　　 　P is a subsequence of
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Algorithm 1: Counting Minimal Crossing Subsequence Occurrences.
Input: SLP variable Xi = X!Xr, pattern P , auxiliary tables L, R.

Output: The number of minimal crossing subsequence occurrences C(!, r).

C ← 0 ; rmin ← R(!, 0) ;1

for k ← 1 to m − 1 do2

if rmin > R(!, k) and L(r,m − k) < L(r,m − k − 1) then3

C ← C + 1 ;4

rmin ← R(!, k) ;5

return C ;6

Lemma 6. Given a pattern P of length m, an SLP T of size n, and L(i, j), R(i, j) for

i = 1, . . . , n, j = 0, . . . , m, C(!, r) for all variables of form Xi = X!Xr, can be computed

in total of O(nm) time.

Proof. A pseudo-code of our algorithm which computes C(!, r) is shown in Algorithm 1

(see also Fig. ?? in Appendix). The time complexity is clearly O(m) for each Xi = X!Xr,

and hence O(nm) in total. The correctness is due to Lemma 5.

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an SLP T of size n representing text

T , the number of minimal subsequence occurrences of P in T can be calculated in O(nm)

time.

2.3 Window Subsequence Matching.

Cégielski et al. [3] introduced several window-accumulated variants of subsequence

pattern matching on compressed texts. The principal problem is: Given an SLP T

generating text T , a pattern P , and non-negative integer w, count the number of minimal

subsequence occurrences (u, v) of P in T such that v − u + 1 ≤ w.

Our algorithm for counting minimal occurrences can readily be extended to this

window-accumulated variant. See Algorithm 1. By simply adding “R(!, k)+L(r,m−k) ≤

w” in the if-condition of line 3, we can solve the problem in the same complexity O(nm).

P[ j:]=������ P[ j':]=����

⇐⇒

1

15



Computing L
L(i, j): Length of shortest prefix of Xi s.t. P[ j:]  is subsequence  

      (i = 1,...,n,  j = 0,...,m)　(& if P[j:] is not subsequence of Xi)

Xi
Xl Xr

''' ''''''

Computing L(i, j)

If Xi = a ( a∈$ )

L(i, j) =
0　 if  j = m 
1　 if  P [ j : ] = a 
&　if  P [ j : ]% a 

L(i, j) =
L(l, j)　　　　if  j'=m 
|Xl | + L(r, j' )　if  j'<m 

( j' = j + Q(l, j ))

If Xi = Xl Xr•   　 •   　

L(r, j' )| Xl |

L(i, j) = |Xl| + L(r,j' )

j j'
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Computing L

val(Xl) =������������� = val(Xr) 

|Xl | = 6 
L(i, j)= |Xl |+L(r, j' ) 

Q(l, j)=3 

L(l, j)=& 

L(r, j' )=5 

= 11

j' := j + 3 

Xi 
Xl Xr 

L(i, j) can be computed for all i=1,...,n, j=0,...,m, 
in total of O(nm) time using Q(i, j)

P[ j:] = �������

P[ j' :]=����

[Cégielski et al., 2007] 
O(nm2 log m)
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Input  : SLP of size n representing string T , string P 
Output : # of minimal occurrences of subsequence P in T

Minimal Subsequence Occurrences

Given SLP of size n and a subsequence pattern of size m, 
Minimal Subsequence Occurrences can be solved in  
O(nm) time and space 

Theorem

Counting Minimal Subsequence 
Occurrences: Summary

O(Nm)     Decomp.&[Troní"ek 2001]  

O(nm2 logm)  [Cégielski  et al. 2007] 
O(nm1.5) 　　 [Tiskin 2009] 

O(nm log m)   [Tiskin 2011] 

O(nm)
June 27-29, CPM 2011 @ Palermo 18



MATCHING WITH DON’T 
CARE SYMBOLS
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Fixed Length Don’t Care
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P = ��$�$�
� T = ������������

Observation: Bounded Minimal Subsequence Occurrences 
Problem with w = |P| ! substring matching 

$: don't care symbol

��$�$�

Input     : SLP of size n representing T, string P, integer w 
Output : # of minimal occurrences (i0, im–1) of subsequence 

    P in T, where im–1 – i0 < w

Bounded Minimal Subsequence Occurrences



Fixed Length Don’t Care
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P = ��$�$�
� T = ������������

Observation: Bounded Minimal Subsequence Occurrences 
Problem with w = |P| ! substring matching 

Extend algorithm to handle don't care symbol ‘$’  
# Just modify base cases for Q and L, 
     computation of M and M串 are the same 

Solution

$: don't care symbol

��$�$�



Variable Length Don’t Care
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P 
sj 
m' 
m 

VLDC Pattern (★ s0 ★ s1 ★ ''' ★ sm'–1★) 
Segment (sj�$+, j=0,...,m'–1 ) 
# of segments 
pattern length ( m = |s0| + |s1| + '''+ |sm' – 1 | ) 

P occurs in T ∈ $* !∃(i1,..., im') s.t. 
 T [i0] = s0[0],..., T [i0 + |s0| – 1] = s0[|s0| – 1], ''' , 
 T [im-1] = sm'-1[0],..., T [im'-1 + |sm'-1| – 1] = sm'-1 [|sm'-1| – 1], 
  i0 < i0 + |s0| ! i1 < ''' ! im'-2 < im'-2 + |sm'-2| ! im'-1 

sm'-1s0 s1
★ ★ ★ '''★ ★

T

i0 im'-1+|sm'-1| –1 i1 i0+|s0|–1 im'-1 

(i0 , im'-1+|sm'-1| –1) is an 
occurrence of  P in T 



VLDC Pattern Matching

All Occ串(Xi, sj) can be computed in  
total of O(nm) time. Each Occ串(Xi, sj)  
is an arithmetic progression, and can be 
represented in O(1) space 

'''★ ★ '''
'''★ ★ '''

'''★ ★ '''

Xi

Let Occ串(Xi ,sj) denote the crossing occurrences 
of segment sj in Xi   (i=1,...,n,  j=0,...,m' )

Occ串(Xi, sj) = {k | Xl [|Xl | –k : |Xl | –1] = sj[0 :k–1] 

　　　　　　　　　　 ∧ Xr [0 : |sj| –k–1] = sj[k : |sj| –1] 

　　　　　　　　　　 ∧ |Xl | ( k ∧ |Xr| ( |sj| –k } 
Xl Xr

Length k suffix of Xl = Length k prefix of sj

Length |sj| – k suffix of  Xr = Length |sj| – k suffix sj
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[Kida et al., 2003]
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Computing Q and L for VLDC

★★ ★ ★ ★

sj

k

sj[k:]
sj'-1

j' := j + Q(l, j, k) 

k'
★ ★

L(r, j', k')
Xi

case: Q(l, j, k) ( 1  or  k = 0

Q(i, j,k) and L(i, j,k) can 
be computed in O(nm) 
time using Occ串(Xi, sj) 

sj'

k' := max{x | x∈Occ串(Xi, sj'), x + L(l, j,k) ! |Xl|} 

L(l, j, k)

Occ串(Xi, sj')

Q(i, j,k) = Q(l, j,k)+Q(r, j',k' )
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Summary
Presented O(nm) algorithms on SLPs for: 
! Window subsequence problems 
! Fixed/Variable Length Don't Care Matching 
 
Open Problems: 
! Faster Longest Common Subsequence? 
! Compressed Index for subsequence 

matching? 
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