
Faster Subsequence and Don’t-Care
Pattern Matching on Compressed Texts

Takanori Yamamoto, Hideo Bannai,
Shunsuke Inenaga, Masayuki Takeda

Department of Informatics,
Kyushu University, JAPAN

June 27-29, CPM 2011 @ Palermo 1

Outline
! Background
! Preliminaries
! Algorithms
! Minimum Subsequence Occurrences on SLP
!  Fixed Length Don’t Care Matching on SLP
! Variable Length Don’t Care Matching on SLP

! Summary

June 27-29, CPM 2011 @ Palermo 2

June 27-29, CPM 2011 @ Palermo

Compressed
String

Background

Overload!!

BIG
String

compress

decompress

String
Processing

 Processing compressed strings without
explicit decompression can save time and space

OK

Process
Compressed
Representation

3

June 27-29, CPM 2011 @ Palermo

Straight Line Program (SLP)
!  Grammar in Chomsky Normal Form deriving single string
!  Can model outputs of various compression algorithms

X1 = �
X2 = ��

X3 = X1 X1
X4 = X1 X2

X5

X1

X6

X4

X4

X1 X2

X1 X2

X4

X1 X2

X3

X1 X1

X5

X3

X1

X7

� � � �� � � � � �

X5 = X3 X4
X6 = X5 X4

X7 = X5 X6
SLP , n=7

12

Algorithm 1: Counting Minimal Crossing Subsequence Occurrences.
Input: SLP variable Xi = X!Xr, pattern P , auxiliary tables L, R.

Output: The number of minimal crossing subsequence occurrences C(!, r).

C ← 0 ; rmin ← R(!, 0) ;1

for k ← 1 to m − 1 do2

if rmin > R(!, k) and L(r,m − k) < L(r,m − k − 1) then3

C ← C + 1 ;4

rmin ← R(!, k) ;5

return C ;6

Lemma 6. Given a pattern P of length m, an SLP T of size n, and L(i, j), R(i, j) for

i = 1, . . . , n, j = 0, . . . , m, C(!, r) for all variables of form Xi = X!Xr, can be computed

in total of O(nm) time.

Proof. A pseudo-code of our algorithm which computes C(!, r) is shown in Algorithm 1

(see also Fig. ?? in Appendix). The time complexity is clearly O(m) for each Xi = X!Xr,

and hence O(nm) in total. The correctness is due to Lemma 5.

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an SLP T of size n representing text

T , the number of minimal subsequence occurrences of P in T can be calculated in O(nm)

time.

2.3 Window Subsequence Matching.

Cégielski et al. [3] introduced several window-accumulated variants of subsequence

pattern matching on compressed texts. The principal problem is: Given an SLP T

generating text T , a pattern P , and non-negative integer w, count the number of minimal

subsequence occurrences (u, v) of P in T such that v − u + 1 ≤ w.

Our algorithm for counting minimal occurrences can readily be extended to this

window-accumulated variant. See Algorithm 1. By simply adding “R(!, k)+L(r,m−k) ≤

w” in the if-condition of line 3, we can solve the problem in the same complexity O(nm).

4

T =
N = 10

Subsequences
! String P is a subsequence of string T
! ∃i0, ..., im–1 s.t.

 0 ! i0 < """ < im–1 ! |T|
 P[j] = T[ij] for all j = 0, ..., m – 1
 (i0, im–1) is called an occurrence
 of subsequence P in T

T = ����	��	��
��
(i0, i1, i2) = (2,6,11)
(i0, i2)= (2,11)P = �
�

0 1 2 3 4 5 6 7 8 9

June 27-29, CPM 2011 @ Palermo 5

0 1 2

Minimal Subsequence Occurrences

! An occurrence (i0, im–1) of subsequence
P in T is minimal, if there is no occurrence
of P in T[i0 : im–1–1] or T[i0+1 : im–1]

P = �
�

T = ����	��	��
�
����		��
minimal！

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

(2,11)

(2,13)

June 27-29, CPM 2011 @ Palermo 6

Window Subsequence Problems on SLP
[Cégielski et al. 2006]

Several variations, e.g.:

June 27-29, CPM 2011 @ Palermo 7

Input : SLP of size n representing string T , string P
Output : # of minimal occurrences of subsequence P in T

Minimal Subsequence Occurrences

Input : SLP of size n representing T, string P, integer w
Output : # of minimal occurrences (i0, im–1) of subsequence

 P in T, where im–1 – i0 < w

Bounded Minimal Subsequence Occurrences

Window subsequence problems in
Extensions to pattern matching with Fixed/Variable
Length Don’t Care Symbols in

Decomp.&[Troní"ek 2001] #

[Cégielski et al. 2006] #

[Tiskin 2009] #

[Tiskin 2011] #

O(nm2 logm)

O(nm1 . 5)

O(nmlogm)

O(nm)

June 27-29, CPM 2011 @ Palermo 8

This Work

O(nm)

Window Subsequence Problems on SLP

O(Nm)

串：Crossing Occurrences
For Xi = Xl Xr , an occurrence (u, v) of P is a crossing
occurrence in Xi when:

 0 ! u < |Xl | ! v < |Xi |

Xi

Xl Xr

u v

u' v'

串 is the Chinese character meaning “skewer”,
pronounced “KUSHI” in Japanese (Similar to the Greek letter #)

June 27-29, CPM 2011 @ Palermo 9

串

June 27-29, CPM 2011 @ Palermo

Counting Minimal Subsequence
Occurrences on SLP

!  Mi : # of minimal occurrences of P in Xi

!  M串(l, r): # of crossing minimal occurrences of P in Xi=XlXr

�������������������
crossing minimal
occurrences

Xi
Xl Xr

Mi = 4

M串(l, r) = 2

Ml = 1 Mr = 1

Mn is the solution to our Problem

P=����

Mi = Ml + Mr + M串(l, r)

•  If Xi = a (a∈$) •  If Xi = Xl Xr (l , r < i)

Mi = 0　if m %1 or P[j]% a
1 　if m =1 and P[j] = a

Computing Mi

10

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �

Computing M串(l, r)

0
1
2
3
4
5

&��
5
5
2
2
-

k R(l,k)
���
1
4
4
6
6

L(r,m –k)

Xr

Xi

there are at most m – 1
crossing minimal
occurrences

P=������ Xl

11

shortest suffix of Xl
containing P[0:m-k-1]

shortest prefix of Xr
containing P[m-k:m-1]

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �

Computing M串(l, r)

0
1
2
3
4
5

&��
5
5
2
2
-

k R(l,k)
���
1
4
4
6
6

L(r,m –k)

Xr

Xi

P=������ Xl

12

shortest suffix of Xl
containing P[0:m-k-1]

shortest prefix of Xr
containing P[m-k:m-1]

there are at most m – 1
crossing minimal
occurrences

June 27-29, CPM 2011 @ Palermo

C := 0, rmin := R(l, 0)
for k := 1 to m – 1
　if rmin>R(l,k) and L(r,m - k)<L(r,m - k - 1) then
　　C := C + 1
　　rmin := R(l, k)
　end if
end for
M串(l, r) := C

Computing M串(l, r)
M串(l, r) for all Xi = Xl Xr can be computed in
total of O(nm) time using L, R

rmin

R(l, k) L(r, m-k)

L(r, m-k-1)

Xl Xr

Xi

13

L(i,j) : Length of shortest prefix of Xi s.t. P[j:m-1] is subsequence
R(i,j) : Length of shortest suffix of Xi s.t. P[0:m-j-1] is subsequence

Computing Q (to compute L)

Xi
Xl Xr

'''

Q(l, j) characters Q(r, j') characters

(j' = j + Q(l, j))

•  If Xi = a (a∈$) •  If Xi = Xl Xr (l , r < i)

Q(i, j) = 0　 if P [j]% a
1 　if P [j] = a

Q(i, j) = Q(l, j) + Q(r, j')

Computing Q(i, j)

''' ''' '''

Q(i,j): Length of longest prefix of P[j:] that is
 a subsequence of Xi (i = 1,...,n, j = 0,...,m)

j'j

June 27-29, CPM 2011 @ Palermo 14

June 27-29, CPM 2011 @ Palermo

Computing Q (to compute L)

� � � � � � � � � � � � �

Xi

Q(l, j) = 2

j' := j + Q(l, j)

Q(r, j') = 3

Q(i, j) := Q(l, j) + Q(r, j')

= 2 + 3 = 5

Xl Xr

For all i = 1,...,n, j = 0,...,m
Q(i, j) can be calculated in O(nm) time using DP.

Q(n, 0) =m 　　　 　P is a subsequence of

12

Algorithm 1: Counting Minimal Crossing Subsequence Occurrences.
Input: SLP variable Xi = X!Xr, pattern P , auxiliary tables L, R.

Output: The number of minimal crossing subsequence occurrences C(!, r).

C ← 0 ; rmin ← R(!, 0) ;1

for k ← 1 to m − 1 do2

if rmin > R(!, k) and L(r,m − k) < L(r,m − k − 1) then3

C ← C + 1 ;4

rmin ← R(!, k) ;5

return C ;6

Lemma 6. Given a pattern P of length m, an SLP T of size n, and L(i, j), R(i, j) for

i = 1, . . . , n, j = 0, . . . , m, C(!, r) for all variables of form Xi = X!Xr, can be computed

in total of O(nm) time.

Proof. A pseudo-code of our algorithm which computes C(!, r) is shown in Algorithm 1

(see also Fig. ?? in Appendix). The time complexity is clearly O(m) for each Xi = X!Xr,

and hence O(nm) in total. The correctness is due to Lemma 5.

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an SLP T of size n representing text

T , the number of minimal subsequence occurrences of P in T can be calculated in O(nm)

time.

2.3 Window Subsequence Matching.

Cégielski et al. [3] introduced several window-accumulated variants of subsequence

pattern matching on compressed texts. The principal problem is: Given an SLP T

generating text T , a pattern P , and non-negative integer w, count the number of minimal

subsequence occurrences (u, v) of P in T such that v − u + 1 ≤ w.

Our algorithm for counting minimal occurrences can readily be extended to this

window-accumulated variant. See Algorithm 1. By simply adding “R(!, k)+L(r,m−k) ≤

w” in the if-condition of line 3, we can solve the problem in the same complexity O(nm).

P[j:]=������ P[j':]=����

⇐⇒

1

15

Computing L
L(i, j): Length of shortest prefix of Xi s.t. P[j:] is subsequence

 (i = 1,...,n, j = 0,...,m)　(& if P[j:] is not subsequence of Xi)

Xi
Xl Xr

''' ''''''

Computing L(i, j)

If Xi = a (a∈$)

L(i, j) =
0　 if j = m
1　 if P [j :] = a
&　if P [j :]% a

L(i, j) =
L(l, j)　　　　if j'=m
|Xl | + L(r, j')　if j'<m

(j' = j + Q(l, j))

If Xi = Xl Xr•  　 •  　

L(r, j')| Xl |

L(i, j) = |Xl| + L(r,j')

j j'

June 27-29, CPM 2011 @ Palermo 16

June 27-29, CPM 2011 @ Palermo

Computing L

val(Xl) =������������� = val(Xr)

|Xl | = 6
L(i, j)= |Xl |+L(r, j')

Q(l, j)=3

L(l, j)=&

L(r, j')=5

= 11

j' := j + 3

Xi
Xl Xr

L(i, j) can be computed for all i=1,...,n, j=0,...,m,
in total of O(nm) time using Q(i, j)

P[j:] = �������

P[j' :]=����

[Cégielski et al., 2007]
O(nm2 log m)

17

Input : SLP of size n representing string T , string P
Output : # of minimal occurrences of subsequence P in T

Minimal Subsequence Occurrences

Given SLP of size n and a subsequence pattern of size m,
Minimal Subsequence Occurrences can be solved in
O(nm) time and space

Theorem

Counting Minimal Subsequence
Occurrences: Summary

O(Nm) Decomp.&[Troní"ek 2001]

O(nm2 logm) [Cégielski et al. 2007]
O(nm1.5) 　　 [Tiskin 2009]

O(nm log m) [Tiskin 2011]

O(nm)
June 27-29, CPM 2011 @ Palermo 18

MATCHING WITH DON’T
CARE SYMBOLS

June 27-29, CPM 2011 @ Palermo 19

Fixed Length Don’t Care

June 27-29, CPM 2011 @ Palermo 20

P = ��$�$�
� T = ������������

Observation: Bounded Minimal Subsequence Occurrences
Problem with w = |P| ! substring matching

$: don't care symbol

��$�$�

Input : SLP of size n representing T, string P, integer w
Output : # of minimal occurrences (i0, im–1) of subsequence

 P in T, where im–1 – i0 < w

Bounded Minimal Subsequence Occurrences

Fixed Length Don’t Care

June 27-29, CPM 2011 @ Palermo 21

P = ��$�$�
� T = ������������

Observation: Bounded Minimal Subsequence Occurrences
Problem with w = |P| ! substring matching

Extend algorithm to handle don't care symbol ‘$’
Just modify base cases for Q and L,
 computation of M and M串 are the same

Solution

$: don't care symbol

��$�$�

Variable Length Don’t Care

June 27-29, CPM 2011 @ Palermo 22

P
sj
m'
m

VLDC Pattern (★ s0 ★ s1 ★ ''' ★ sm'–1★)
Segment (sj�$+, j=0,...,m'–1)
of segments
pattern length (m = |s0| + |s1| + '''+ |sm' – 1 |)

P occurs in T ∈ $* !∃(i1,..., im') s.t.
 T [i0] = s0[0],..., T [i0 + |s0| – 1] = s0[|s0| – 1], ''' ,
 T [im-1] = sm'-1[0],..., T [im'-1 + |sm'-1| – 1] = sm'-1 [|sm'-1| – 1],
 i0 < i0 + |s0| ! i1 < ''' ! im'-2 < im'-2 + |sm'-2| ! im'-1

sm'-1s0 s1
★ ★ ★ '''★ ★

T

i0 im'-1+|sm'-1| –1 i1 i0+|s0|–1 im'-1

(i0 , im'-1+|sm'-1| –1) is an
occurrence of P in T

VLDC Pattern Matching

All Occ串(Xi, sj) can be computed in
total of O(nm) time. Each Occ串(Xi, sj)
is an arithmetic progression, and can be
represented in O(1) space

'''★ ★ '''
'''★ ★ '''

'''★ ★ '''

Xi

Let Occ串(Xi ,sj) denote the crossing occurrences
of segment sj in Xi (i=1,...,n, j=0,...,m')

Occ串(Xi, sj) = {k | Xl [|Xl | –k : |Xl | –1] = sj[0 :k–1]

　　　　　　　　　　 ∧ Xr [0 : |sj| –k–1] = sj[k : |sj| –1]

　　　　　　　　　　 ∧ |Xl | (k ∧ |Xr| (|sj| –k }
Xl Xr

Length k suffix of Xl = Length k prefix of sj

Length |sj| – k suffix of Xr = Length |sj| – k suffix sj

June 27-29, CPM 2011 @ Palermo 23

[Kida et al., 2003]

June 27-29, CPM 2011 @ Palermo

Computing Q and L for VLDC

★★ ★ ★ ★

sj

k

sj[k:]
sj'-1

j' := j + Q(l, j, k)

k'
★ ★

L(r, j', k')
Xi

case: Q(l, j, k) (1 or k = 0

Q(i, j,k) and L(i, j,k) can
be computed in O(nm)
time using Occ串(Xi, sj)

sj'

k' := max{x | x∈Occ串(Xi, sj'), x + L(l, j,k) ! |Xl|}

L(l, j, k)

Occ串(Xi, sj')

Q(i, j,k) = Q(l, j,k)+Q(r, j',k')

24

Summary
Presented O(nm) algorithms on SLPs for:
! Window subsequence problems
! Fixed/Variable Length Don't Care Matching

Open Problems:
! Faster Longest Common Subsequence?
! Compressed Index for subsequence

matching?

June 27-29, CPM 2011 @ Palermo 25

