
On Wavelet Tree Construction

German Tischler

Lehrstuhl für Informatik 2, Universität Würzburg, Germany

CPM 2011

On Wavelet Tree Construction (1)
German Tischler

Table of contents

Definitions
General
Balanced wavelet tree
Huffman shaped wavelet tree

Stable bit key sorting
In place
Using additional space

Wavelet tree construction
Breadth first
Depth first
Huffman shaped wavelet tree and reconstruction of string

On Wavelet Tree Construction (2)
German Tischler

Table of contents

Definitions
General
Balanced wavelet tree
Huffman shaped wavelet tree

Stable bit key sorting
In place
Using additional space

Wavelet tree construction
Breadth first
Depth first
Huffman shaped wavelet tree and reconstruction of string

On Wavelet Tree Construction (3)
German Tischler

Ordered alphabet and string

I Finite ordered alphabet Σ = {0,1, . . . , σ − 1}, σ ∈ N+

I Bits per symbol δ = dlog2 σe
I Symbol a ∈ Σ stored as bit vector ba of length δ where

a =
δ−1∑
i=0

2δ−i−1ba[i]

most significant to least significant bit
I String s ∈ Σn of length |s| = n stored in δn bits.
I Address single bits of s[i] by s[i][j],0 ≤ j < δ

I Example s = 53163 = (101)(011)(001)(110)(011) over
Σ = {0 = (000),1 = (001), . . . ,6 = (110)} where σ = 7
and δ = 3

On Wavelet Tree Construction (4)
German Tischler

String partitioning

I f̂i(a) = a− i2δ−1 if a[0] = i and f̂i(a) = ε otherwise
I fi(ua) = fi(u)f̂i(a) and fi(ε) = ε

I b̂(a) = a[0]

I b(ua) = b(u)b̂(a) and b(ε) = ε

I String partitioning p given by

p(s) = b(s)f0(s)f1(s)

I Example for s = (101)(011)(001)(110)(011)

p(s) = 10010(11)(01)(11)(01)(10)

On Wavelet Tree Construction (5)
German Tischler

Balanced wavelet tree
Wavelet tree for s is (Grossi, Gupta, Vitter 2003)

I leaf assigned b(s) if δ = 1
I root assigned b(s) with

I left child wavelet tree for f0(s) and
I right child wavelet tree for f1(s)

if δ > 1
Tree can be represented by concatenation of bit vectors
assigned to nodes in

I breadth first or
I depth first order.

Using rank dictionary tree can be navigated without pointers in
both orders.

On Wavelet Tree Construction (6)
German Tischler

Example for string wavelet

represented by a = 0 = 000, e = 1 = 001, l = 2 = 010,
t = 3 = 011, v = 4 = 100, w = 5 = 101

wavelet
1010000

aee
011

lt
01

aelet
00101

wv
00

wv
10

On Wavelet Tree Construction (7)
German Tischler

Navigating balanced wavelet tree
Assume we have a rank dictionary on bit vector giving us
number of 0 or 1 bits up to a given position in constant time.

I Breadth first:
I Left child is found a start of parent plus n bits. Size of left

child is number of 0 bits in parent.
I Right child is found at left child plus number of 0 bits in

parent. Size of right child is number of 1 bits in parent.
I Depth first:

I Left child is found at start of parent plus size of parent. Size
of left child is number of 0 bits in parent.

I Right child is found at start of left child plus number of 0 bits
in parent times distance of left child from leaf level (number
of bits per integer used to construct left child). Size of right
child is number of 1 bits in parent.

In both cases top down traversal is possible in constant time per
step using finite words of additional memory (O(log2(nδ)) bits)

On Wavelet Tree Construction (8)
German Tischler

Huffman shaped wavelet tree
Balanced structure replaced by Huffman tree shape

psm

si

s

0

0

0

1

1

1

mississippi
11001001111

miiippi
1000110

mpp
011

On Wavelet Tree Construction (9)
German Tischler

Table of contents

Definitions
General
Balanced wavelet tree
Huffman shaped wavelet tree

Stable bit key sorting
In place
Using additional space

Wavelet tree construction
Breadth first
Depth first
Huffman shaped wavelet tree and reconstruction of string

On Wavelet Tree Construction (10)
German Tischler

Stable in place adjacent block swapping
Swap two adjacent blocks B = A[i . . j − 1] and C = A[j . . k − 1]
in an array A by computing CB as (BRCR)R where R is reversal

Stable merging of bit sequences
Let B = 0zb1ob and C = 0zc 1oc concatenated in A = BC. B and
C can be merged in linear time O(|A|) by computing

0zb ((1ob)R(0zc)R)R1oc = 0zb0zc 1ob1oc

Can be extended to integers in which one certain bit (e.g. most
significant bit) of each number is used as key.

On Wavelet Tree Construction (11)
German Tischler

Sorting with bit keys
Construct merge sort using stable bit key merging to obtain
O(n log2 n) time algorithm using constant additional space (in
words, O(log2 n) bits)
bitmergesort(A,m, b)

1 l← 1
2 while l < m do
3 for i← 0 to ⌈m2l ⌉ − 1 do
4 (ll, rl, lr, rr)← (2il, (2i + 1)l), (2i + 1)l,min(2(i + 1)l,m))
5 bl ← |{j | ll ≤ j < rl and A[j]&b = b}|
6 or ← |{j | lr ≤ j < rr and A[j]&b 6= b}|
7 reverse(A[rl − bl . . rl − 1])
8 reverse(A[lr . . lr + or − 1])
9 reverse(A[rl − bl . . lr + or − 1])

10 l← 2l

On Wavelet Tree Construction (12)
German Tischler

Sorting with bit keys
Reversals depend on ll , rl , ll , rr ,bl ,or , which remain unchanged
if keys remain in their original place. Thus we can leave the
keys in place while we sort the attached values.
bitmergesort(A,m, b)

1 l← 1
2 while l < m do
3 for i← 0 to ⌈m2l ⌉ − 1 do
4 (ll, rl, lr, rr)← (2il, (2i + 1)l), (2i + 1)l,min(2(i + 1)l,m))
5 bl ← |{j | ll ≤ j < rl and A[j]&b = b}|
6 or ← |{j | lr ≤ j < rr and A[j]&b 6= b}|
7 reverse(A[rl − bl . . rl − 1])
8 reverse(A[lr . . lr + or − 1])
9 reverse(A[rl − bl . . lr + or − 1])

10 l← 2l

On Wavelet Tree Construction (13)
German Tischler

Unsorting with bit keys
If keys remain in place we can compute the unsorted from the
sorted array by

I Letting ` run from 2blog2 mc down to 1
I Reversing the order of lines 7− 9

bitmergesort(A,m, b)
1 l← 1
2 while l < m do
3 for i← 0 to ⌈m2l ⌉ − 1 do
4 (ll, rl, lr, rr)← (2il, (2i + 1)l), (2i + 1)l,min(2(i + 1)l,m))
5 bl ← |{j | ll ≤ j < rl and A[j]&b = b}|
6 or ← |{j | lr ≤ j < rr and A[j]&b 6= b}|
7 reverse(A[rl − bl . . rl − 1])
8 reverse(A[lr . . lr + or − 1])
9 reverse(A[rl − bl . . lr + or − 1])

10 l← 2l

On Wavelet Tree Construction (14)
German Tischler

Transposition
Transform

a0b0a1b1 . . . am−1bm−1

to
a0a1 . . . am−1b0b1 . . . bm−1

is special case of stable bit key sorting. Assign key 0 to ai and
key 1 to bi . Runtime O(m log2 m).

On Wavelet Tree Construction (15)
German Tischler

Partitioning

Theorem
String s of length n can be partitioned in place (O(log n + δ)
additional bits) in time O(n log2 n).

Proof.
First sort s while keeping keys in place, then apply
transposition. Result is b(s)f0(s)f1(s), runtime is O(n log n),
additional space used is O(log n + δ) bits.

On Wavelet Tree Construction (16)
German Tischler

Using additional space
Use space O(

√
δn log2(δn)) bits to partition in O(n) time.

Approach is similar to linear time sorting by Kärkkäinen,
Sanders and Burkhardt (see Linear Work Suffix Array
Construction, JACM 53(6), 2006). Two steps:

I Use bucket sorting to fill buckets of
√
δn bits.

I Use 3 external buckets (one for b, one for f0 and one for f1)
of size O(

√
δn) bits

I Whenever an external bucket runs full copy it to a free
internal bucket and store where it should be in the final
array (block pointer of O(log2(δn) bits)

I When all input was treated by bucket sort use permutation
stored in block pointers to produce final output (follow
cycles in permutation)

Approach can be split into sorting and transposition under
same time and space constraints.

On Wavelet Tree Construction (17)
German Tischler

Table of contents

Definitions
General
Balanced wavelet tree
Huffman shaped wavelet tree

Stable bit key sorting
In place
Using additional space

Wavelet tree construction
Breadth first
Depth first
Huffman shaped wavelet tree and reconstruction of string

On Wavelet Tree Construction (18)
German Tischler

Breadth first
I Construct tree level for level
I On each level

I First perform sorting for each node
I Second perform transposition for complete level
I Start and end positions of nodes can be computed by

considering output already produced. This takes time
O(nk) for each node on level k , which is O(nδσ) (last level
is worst case).

Sorting and transposition take time O(n log n) using
O(log2 n + δ) additional space and and O(n) using
additional space of O(

√
nδ log2(nδ)) bits.

I Total runtime O(δn log2 n + nδ2σ) using O(log2 n + δ) bits
of additional space or O(δn + nδ2σ) using O(

√
nδ log2(nδ))

additional bits.

On Wavelet Tree Construction (19)
German Tischler

Depth first

I Construct tree in depth first pre-order
I Perform partitioning operation for each node
I Use stack of depth δ storing pointers into input/output and

depth in O(δ log2(δn)) bits
I As above partitioning takes time O(n log n) using

O(log2 n + δ) additional space bits and and O(n) using
additional space of O(

√
nδ log2(nδ)) bits.

I Total runtime O(δn log2 n) using O(δ log2(δn)) bits of
additional space or O(δn) using O(

√
nδ log2(nδ)) additional

bits.

On Wavelet Tree Construction (20)
German Tischler

Huffman shaped wavelet tree and reconstruction of string

I Approach can be extended to Huffman shaped wavelet
tree construction

I Method is reversible. We can compute the string from a
wavelet tree in same time/space constraints as for forward
direction.

On Wavelet Tree Construction (21)
German Tischler

Thank you

On Wavelet Tree Construction (22)
German Tischler

	Definitions
	General
	Balanced wavelet tree
	Huffman shaped wavelet tree

	Stable bit key sorting
	In place
	Using additional space

	Wavelet tree construction
	Breadth first
	Depth first
	Huffman shaped wavelet tree and reconstruction of string

