
counting colours in compressed strings

Travis Gagie
Juha Kärkkäinen

CPM 2011



counting colours in compressed strings

Travis Gagie
Juha Kärkkäinen

CPM 2011



Theorem
Given a string s[1..n], we can build a data structure that takes
nH0(s) +O(n) + o(nH0(s)) bits such that later, given a substring’s
endpoints i and j, in O(log `) time we can count how many
distinct characters it contains, where ` = j − i + 1.



source space time

BKM&T O(n log n) O(log n)
Muthu + WT n log n + o(n log n) O(log n)

GN&P n log σ +O(n log log n) O(log n)
this paper nH0(s) +O(n) + o(nH0(s)) O(log `)



counting colours in compressed strings

[c, o, u, n, t, i, n, g, c, o, l, o, u, r, s, i, n,
c, o, m, p, r, e, s, s, e, d, s, t, r, i, n, g, s]

[0, 0, 0, 0, 0, 0, 4, 0, 1, 2, 0, 10, 3, 0, 0, 6, 7,
9, 12, 0, 0, 14, 0, 15, 24, 23, 0, 25, 5, 22, 16, 17, 28]



counting colours in compressed strings

[c, o, u, n, t, i, n, g, c, o, l, o, u, r, s, i, n,
c, o, m, p, r, e, s, s, e, d, s, t, r, i, n, g, s]

[0, 0, 0, 0, 0, 0, 4, 0, 1, 2, 0, 10, 3, 0, 0, 6, 7,
9, 12, 0, 0, 14, 0, 15, 24, 23, 0, 25, 5, 22, 16, 17, 28]



counting colours in compressed strings

[c, o, u, n, t, i, n, g, c, o, l, o, u, r, s, i, n,
c, o, m, p, r, e, s, s, e, d, s, t, r, i, n, g, s]

[0, 0, 0, 0, 0, 0, 4, 0, 1, 2, 0, 10, 3, 0, 0, 6, 7,
9, 12, 0, 0, 14, 0, 15, 24, 23, 0, 25, 5, 22, 16, 17, 28]



source space time

BKM&T O(n log n) O(log n)
Muthu + WT n log n + o(n log n) O(log n)

GN&P n log σ +O(n log log n) O(log n)
this paper nH0(s) +O(n) + o(nH0(s)) O(log `)



source space time

BKM&T O(n log n) O(log n)
Muthu + WT n log n + o(n log n) O(log n)

GN&P n log σ +O(n log log n) O(log n)
this paper nH0(s) +O(n) + o(nH0(s)) O(log `)



5 3

a b b a

3 55

3

5. . . . . .

. . . . . .



a b b a

9

5

9 5

9

5

. . .

. . . . . .



Components:

I multiary wavelet tree assigning entries to blocks

I wavelet tree for each block (with a shared bitvector for each
block size and depth)



Observations:

I if we use more block sizes, the C array becomes more like
recency coding and compression is better (but queries take
more time)

I if we use polylog(n) block sizes, then we can count the entries
much bigger than ` in O(1) time using the multiary wavelet
tree



Calculation:

I if we use block sizes

bk =

{
2 k = 1

2max(
∏k−1

h=1 (1+1/α(bh)),k) k > 1

then we use a total of nH0(s) +O(n) + o(nH0(s)) bits and
O(α(`) log ` log log(`+ 1)) query time



Observations:

I if a block B smaller than ` contains the beginning i of the
interval, then it does not contain the end j

I we can count the entries C [q] = p in B with p < i ≤ q by
counting

I all the entries in B (in O(1) time with the multiary wavelet
tree)

I all the entries in B with q < i (in O(1) time with the multiary
wavelet tree)

I all the entries in B with p ≥ i



Calculation:

I if we store pointers to the wavelet-tree nodes at height k ,
then we use O(n) more bits and can count all the entries in B
with p ≥ i in O

(
α(`)(log log(`+ 1))2

)
⊆ o(log `) time



source space time

BKM&T O(n log n) O(log n)
Muthu + WT n log n + o(n log n) O(log n)

GN&P n log σ +O(n log log n) O(log n)
this paper nH0(s) +O(n) + o(nH0(s)) O(log `)


