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Phylogenic trees

phylogenic tree (or phylogeny) describes the evolution of a set of species
from a common ancestor
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Phylogeny

@ species (taxa) are described using characters (e.g., alligned DNA
sequences, protein sequences, whole or part; blanks are allowed)
@ each character has states (e.g., A, G, C, T)

full characters partial characters

12 3 4 12 3 4
a|lACGT a|A C T
B[A G G A BlA G
x|C T G A X T G
3|CCTC |CCTZC
e|GATG € ATG
6|]G C A G 0| G C G

Characters = equivalence relations on the species

Q={(ab[xd|ed), (e|adp|B]x), (¢|afx|de), (Bx[d]ed|a)}



Phylogeny

@ species (taxa) are described using characters (e.g., alligned DNA
sequences, protein sequences, whole or part; blanks are allowed)
@ each character has states (e.g., A, G, C, T)
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o find an (unrooted) tree...
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Phylogeny

@ species (taxa) are described using characters (e.g., alligned DNA
sequences, protein sequences, whole or part; blanks are allowed)
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Phylogeny

@ species (taxa) are described using characters (e.g., alligned DNA
sequences, protein sequences, whole or part; blanks are allowed)
@ each character has states (e.g., A, G, C, T)
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o find an (unrooted) tree. ..
@ assign character states to the internal vertices (hypothetical species)
@ minimize # of mutations = parsimony score



Perfect Phylogeny

Minimum score:
@ each character with k states: at least kK — 1 mutations in any tree
Perfect phylogeny:
@ a tree where each character with k states: exactly k — 1 mutations
e this is <= each state in the tree is convex (subtree)

o M R T Q

OO0 >X» >~
OX> 000N
> HH0 0 0w
OO0 > > -+
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From Perfect Phylogeny to Tree models

Perfect phylogeny T defines a (sub)tree model of character states:
@ each character state is associated a subtree of T
@ the intersection graph G of the subtrees is chordal (triangulated)

chordal <= no induced I:I Q I::I O

... how do we find G ? what do we know about G ?



What do we know about this (chordal) graph G 7

(1) vertices are the character states
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(1)-(3) necessary conditions define Partition Intersection Graph int(Q)

e E(int(Q)) C E(G) and G is chordal } restricted chordal

e G is properly coloured by the colouring completion
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What do we know about this (chordal) graph G ?

(1) vertices are the character states
(2) two character states are adjacent if 3 species where they occur
(3) two states of the same character never adjacent = add colours

ACGT
Theorem 1 (Buneman 1974
perfect phylogeny for Q@ <= int(Q) has a restricted chordal completion

6|GC A G _
Q ee N 2

(1)-(3) necessary conditions define Partition Intersection Graph int(Q)

e E(int(Q)) C E(G) and G is chordal } restricted chordal

e G is properly coloured by the colouring completion



Complexity

Theorem 2 (Buneman 1974)

perfect phylogeny for Q <= int(Q) has a restricted chordal completion

... Perfect Phylogeny reduces to Triangulating Coloured Graphs

... TCG reduces to Perfect Phylogeny

1A-2G
1A-3G
1A-4A
1C-2C
1C-3T

1C-4C

Edges of G

3T-4G

[Kannan-Warnow 1992]

Colour classes

© <
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5 5 5 5

2 2 o 2
9 8§ g

6 © © o

1A 2G

1A 3G

1A 4A

1C 2C

1Cc 3T

1C 4c

3T 4G

Vertices of G



Complexity

Theorem 2 (Buneman 1974)
perfect phylogeny for Q <= int(Q) has a restricted chordal completion

... Perfect Phylogeny reduces to Triangulating Coloured Graphs
... TCG reduces to Perfect Phylogeny [Kannan-Warnow 1992]

Theorem 3 (Bodlaender et al. 1992; Steel 1992)

The Perfect Phylogeny problem is NP-hard.

... because TCG is NP-hard
... proof uses an unbounded# of 2-state partial characters

... for fixed #characters or for full characters with fixed #states — € P



Hardness reduction (from 3SAT)

...vertices H, F
...vertices S,,, Sy for every variable v;
... vertices K/, K§ for occurence of a variable v; in the j-th clause

H

F

... true literals are forced to be adjacent
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Subtree formulation
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Subtree formulation

1 2 3 4
o

alA CGT
BIA GG A
x|C T G A
6[CCTC
e|GATG €
¢ G C A G

... the tree displays the subtree



Subtree formulation
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.. quartet tree — 4 leaves «, 3,7, 0
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Uniqueness

Problem: Given a perfect phylogeny determine if it is the unique perfect
phylogeny for the input data

Data: Quartet trees
"‘HS
H B 3
Pt
PatiPal
RS

$100 challenge (M. Steel 1992): determine complexity (is it NP-hard?)

=
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=



Uniqueness

Problem: Given a perfect phylogeny determine if it is the unique perfect
phylogeny for the input data

Data: Quartet trees
P ae
B 3 P e
e
Pa e
>
$100 challenge (M. Steel 1992): determine complexity (is it NP-hard?)

YES!
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Uniqueness

... unique solution — all internal vertices of degree 3
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Uniqueness

... unique solution — all internal vertices of degree 3

1
oA
BlA partition
x| C intersection
slc graph
e |G
o |G
restricted
chordal
o completion
subtree
intersection
model

...every internal edge must be distinguished

... also, unique MINIMAL restricted chordal completion of int(Q)
= [Semple, Steel 2002] necessary and sufficient conditions



Uniqueness

... unique solution — all internal vertices of degree 3

partition
intersection
graph
unique
tree is |ternary restricted
edges are | distinguished chordal
B completion
o
x
3
€ ]

...every internal edge must be distinguished

... also, unique MINIMAL restricted chordal completion of int(Q)
= [Semple, Steel 2002] necessary and sufficient conditions



Hardness reduction from ONE-IN-THREE-3SAT

Formula (3CNF): Satisfying assignment (1-in-3):
b
a: :c a>_<d a
b d b e
aHe a}—-(d C
H

b f C e perfect
c e b e d phylogeny
d: :f c: :f e ¢

Number of satisfying assignments = Number of perfect phylogenies



Hardness reduction from ONE-IN-THREE-3SAT
Formula: (XVYVZ)AXVYVW)A(YVZVW)
Assignment: X =1, Y =0,Z=0 W=1

1 1 2 3 3
ay 71 Bx 15 B v3 By
ax Bl az oy 2 »

1 1 2 1 2 3
pR—] BY— Br—| pw—1 13 12 yi

2 3 3
pR—y BY— Bz—] Biy— Bl B2 B
X— N T W— ) Ly 82 73 B3y

X
8 0

Q Q
_QI< I
=2 = o =

.. plus another 170 input quartets
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Hardness reduction from ONE-IN-THREE-3SAT
Formula: (XVYVZ)AXVYVW)A(YVZVW)
Assignment: X =1, Y =0,Z=0 W=1

1 2 3 3
ay 71 Bx 15 B v3 By

ax Bl az oy 2 »
2 3
1 2 }
p—] b pr— | )2 71
3 3
— = va Y,
oy Oy o7 oy — 1— % 2 Y3 3
Y2 BY Bx '3 B
8_! u

.. plus another 170 input quartets

= ™
XN X =

Q Q
_QI< I
=2 = o =



Hardness reduction from ONE-IN-THREE-3SAT
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Conclusion

@ unique perfect phylogeny is NP-hard (input = quartet trees)
@ independently proved by [Bonet-Linz-John 2011]

@ polynomial if 3 a subcollection of k quartet trees whose leaf-set £
satisfies |£| = k+ 3 .. .tree amalgamation [Bocker et al. 2000]

o perfect phylogeny = chordal sandwich
given G1 = (V, E1), G2 = (V, E2) find chordal G with E(G1) C E(G) C E(G2)

@ unique interval sandwich ?

@ unique cograph sandwich ? ...ongoing work

Thank you for your attention!



	Introduction
	Phylogenic trees


