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The Consecutive-Ones Property



The Consecutive-Ones Property

Definition

I A binary matrix M has the Consecutive Ones-Property (C1P) if its
columns can be ordered in such a way that in each row, all 1’s are
contiguous (A C1P Ordering).

I Classical combinatorial object, used in graph theory (Booth and
Lueker 1976), physical mapping (Goldberg et al. 1995), . . .

A C1P matrix

a b c d e
1 1 0 1 0
1 0 1 0 0
0 1 0 1 1

A non-C1P matrix

f g h i j
1 1 0 1 0
1 0 0 0 1
1 0 1 1 0
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The Consecutive-Ones Property: Important Results

I Introduced by Fulkerson and Gross (1965), motivated by problems in
genetics.

I Characterization of non-C1P matrices in terms of forbidden
submatrices: Tucker (1972).

I Deciding if a binary matrix M is C1P can be done in polynomial
time and all C1P column orderings can be represented in linear
space with a PQ-tree: Booth and Lueker (1976).

I Decision algorithm based on partition refinement: Habib et al.
(2000).

I Link with PQR-trees and partitive families: Meidanis et al. (1998,
2005), McConnell (2004).

I Algorithmical study of Tucker submatrices: Dom (2008), Blin et al.
(2010).
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Reconstructing Ancestral Gene Orders (AGOs)
Given a phylogenetic tree on a set of extant (i.e., sequenced) species, we
want to infer possible gene orders of an (unknown) ancestor in this tree.
We have

1. a set of (orthologous) genomic markers, and

2. a set of ancestral syntenies: groups of markers that are believed to
have been contiguous in this ancestral genome.



Reconstructing AGOs and the C1P
AGOs correspond to C1P orderings of the binary matrix M with rows
(columns) corresponding to genomic markers (ancestral syntenies).!"#$%&%'%()*#)+,-%./)0#)1
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Each C1P ordering describes a set of possible Contiguous Ancestral
Regions (CARs): Ma et al. (2006), Adam and Sankoff (2007), Chauve
and Tannier (2008), . . .



Reconstructing AGOs and the C1P

If binary matrix M is C1P, we can represent all C1P orderings, i.e.,
ancestral gene orders, with a PQ-tree (Booth and Lueker, 1976).Representing all possible C1P orderings
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CARs are the children of the root of this PQ-tree



Reconstructing AGOs and the C1P: An Example

Placental mammals ancestor from 11 extant genomes (Chauve
and Tannier, 2008)

I 689 markers (100kb resolution)

I 2326 ancestral syntenies

I well resolved ancestral genome with 28 CARs



Telomeres

A telomere is a region of the
DNA sequence at the end of a
chromosome, which protects the
end of the chromosome from
deterioration or from fusion with
neighboring chromosomes

A Natural Question
In general, a CAR is an ancestral chromosomal segment, so which CARs
are believed to

(a) form a complete ancestral chromosome? or, more generally,

(b) contain an extremity of a chromosome: an ancestral telomere?



The C1P with Multiplicity

I Allow each column c of the matrix to appear multiple (m(c) ≥ 1)
times in any “ordering” S (a sequence) of columns of M

I The question is then to decide if there is an S that is “C1P”
(contains each row somewhere as a subsequence) and that each
column c satisfies its multiplicity constraint m(c)

I We call such a sequence S an mC1P ordering with multiplicity
vector m

A non-C1P matrix

a b c d e
1 1 0 1 0
1 0 0 0 1
1 0 1 1 0

mC1P ordering: m(a) = 2
(m(b), . . . ,m(e) = 1)

e a b d c a
0 1 1 1 0 1
1 1 0 0 0 1
0 1 0 1 1 1



The C1P with Multiplicity

I Allow each column c of the matrix to appear multiple (m(c) ≥ 1)
times in any ordering S (a sequence) of columns of M

I The question is then to decide if there is an S that is “C1P”
(contains each row somewhere as a subsequence) and that each
column c satisfies its multiplicity constraint m(c)

I We call such a sequence S an mC1P ordering with multiplicity
vector m

In the literature:

I Even for matrices with 3 ones per row and m(c) ≤ 2 for all columns
c , this decision problem is NP-hard: Wittler et al. (2009)



Reconstructing AGOs with Telomeres and the mC1P
We model telomeres with a column c ′ with multiplicity

I Let ancestral synteny abcd contain a marker that is an extremity of
an ancestral chromosome (i.e., the synteny is telomeric in two extant
decendants of the ancestor)

I abcd is represented in M as follows:

a b c d c’
...

. . . 1 1 1 1 . . . 1

. . . 1 1 1 1 . . . 0
...

I This ensures that if M has the mC1P, then the occurences of c ′ are
located at the extremities of the CARs (o.w. M does not have the
mC1P)



Matrices with Matched Multirows: A Polytime Solvable
Class of mC1P Instances

M 1 2 3 4 5 a b
r1 1 1 0 0 0 1 1

r̂1 1 1 0 0 0 0 0

r2 1 1 1 0 0 0 0

r3 0 0 1 1 1 0 1

r̂3 0 0 1 1 1 0 0

r4 0 0 0 1 1 0 1

r̂4 0 0 0 1 1 0 0

r5 1 0 0 1 1 0 0

M̂ 1 2 3 4 5
r1 1 1 0 0 0

r2 1 1 1 0 0

r3 0 0 1 1 1

r4 0 0 0 1 1

r5 1 0 0 1 1

Left: Binary matrix M, with matched multirows. Let
m(1) = · · · = m(5) = 1 and m(a) = m(b) = 2: a and b are
multicolumns and r1, r3 and r4 are multirows.
Right: The corresponding matrix M̂. Since in M̂, by definition r̂i = ri for
all multirows ri , the matched multirows are discarded.



Idea of the Approach

1 2 3 4 5 6 7 8 9 c ′

r1 1 1 0 0 0 0 0 0 0 1

r̂1 1 1 0 0 0 0 0 0 0 0

r2 1 1 1 0 0 0 0 0 0 0

r3 0 0 1 1 0 0 0 0 0 1

r̂3 0 0 1 1 0 0 0 0 0 0

r4 0 0 0 0 0 0 1 1 0 1

r̂4 0 0 0 0 0 0 1 1 0 0

r5 0 0 0 0 0 0 0 1 1 0

r6 0 0 0 0 1 1 0 0 0 0

Left: Binary matrix M, with matched multirows. Let m(c ′) = 2.
Right: PQ-tree for M̂. P-nodes are represented by circular nodes and
Q-nodes by rectangular nodes.

An example of a valid mC1P-ordering is c ′ 1 2 3 4 c ′ 7 8 9 5 6 which is
obtained by inserting two copies of c ′ into the corresponding positions.
Notice that inserting c ′ between 2 and 3 would break row r2.
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Consistency Check: The Four Cases
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Consistency Check: Case 1
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Here, insertion of c ′ would break either row 123 or row 234.



Consistency Check: Case 2
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Consistency Check: Case 2
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Consistency Check: Case 2
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Consistency Check: Case 2
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c′ c′

Here, insertion of c ′ would break one of the rows associated with this
node.



Consistency Check: Case 3
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Consistency Check: Case 3
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Here, insertion of c ′ would break one of the rows associated with the root
node.



Consistency Check: Case 4
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Consistency Check: Case 4
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Here, insertion of c ′ would break one of the rows associated with the root
node.



Multiplicity Check

I If the consistency check succeeds for each row, we simply have to
ensure that the PQ-tree satisfies the multiplicity requirement



Case with Several Multicolumns

c′ d′ d′ e′ c′ d′ c′

This corresponds to an Eulerian cycle in the following multigraph

c′

d′ e′

∗



Conclusion

Here we extend the domain of tractable instances of deciding the C1P
with multiplicity. Several questions remain open:

I Is this the largest class of tractable instances of the mC1P?

I Is there structure analgous to the PQ-tree that could encode all
mC1P-orderings of a matrix that satisfies this property? (Note that
our data structure does not incorporate the multiplicity constraint)

I Our algorithm takes time O(mn) where m (n) is the number of rows
(columns). It is open whether there is an O(m + n + `)-time
algorithm where ` is the number of entries 1 in M
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Thanks!

Any Questions or Comments?



Transformation Rules

⇒

⇒

Transformation rules for the LCAs to construct an augmented PQ-tree.
An LCA and its parent node are replaced by the nodes shown on the
right. The LCA (or the segment of an LCA, respectively) are highlighted
in gray.
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Transformation Rules

⇒

⇒

Transformation rules for bottom-up iteration to construct an augmented
PQ-tree. A newly created Q-node and its parent node are replaced by the
nodes shown on the right.



Transformation Rules

⇒

⇒

Special transformation rules for bottom-up iteration to construct an
augmented PQ-tree. A newly created Q-node two levels below the root
node and its parent node are replaced by the nodes shown on the right.


