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Intersection Graphs

Theintersection graph Ω(F) of a family of sets

F = {S1, . . . , Sn}

is the graph withF as the vertex set and with two different ver-
ticesSi andSj adjacent if and only ifSi ∩ Sj 6= ∅.

The familyF is called arepresentation of the graphΩ(F).

Disk intersection graphs, interval graphs, circle graphs,circular-
arc graphs. . .



Multiple-Interval Graphs

Let t be an integer at least two.

A t-interval is the union oft disjoint intervals in the real line.
A t-track interval is the union oft disjoint intervals int disjoint
parallel lines called tracks, one interval on each track.

A t-interval graph is the intersection graph of a family oft-
intervals. At-track interval graph is the intersection graph of a
family of t-track intervals.

If all intervals in the representation of at-interval graph have
unit lengths, then the graph is called aunit t-interval graph. Sim-
ilarly for unit t-track interval graphs.



Graph Hierarchy

Thet disjoint tracks for at-track interval graph can be viewed
ast disjoint “host” intervals in the real line for at-interval graph.

t-track interval graphs⊂ t-interval graphs

t-interval graphs⊂ (t + 1)-interval graphs
t-track interval graphs⊂ (t + 1)-track interval graphs

unit t-interval graphs⊂ t-interval graphs
unit t-track interval graphs⊂ t-track interval graphs

The most basic subclass: unit2-track interval graphs



Applications

As generalizations of the ubiquitous interval graphs, multiple-
interval graphs such ast-interval graphs andt-track interval graphs
have wide applications, traditionally toscheduling and resource
allocation and more recently tobioinformatics.

In particular,2-interval graphs and2-track interval graphs are
natural models for thesimilar regions of DNA sequences and for
thehelices of RNA secondary structures.



Parameterized Complexity

In general graphs, the following four optimization problems,
parameterized by the optimal solution sizek, are exemplary prob-
lems in parameterized complexity theory:

• k-VERTEX COVER: in FPT

• k-INDEPENDENTSET / k-CLIQUE: W[1]-hard

• k-DOMINATING SET: W[2]-hard



In Multiple-Interval Graphs. . .

Sincet-interval graphs are a special class of graphs, all FPT
algorithms fork-VERTEX COVER in general graphs immediately
carry over tot-interval graphs.

The parameterized complexities ofk-INDEPENDENTSET, k-
CLIQUE, andk-DOMINATING SET in t-interval graphs, however,
are not at all obvious.

In general graphs,k-INDEPENDENTSET andk-CLIQUE are
essentially the same problem, but int-interval graphs, they mani-
fest different parameterized complexities. . .



Previous Results

Fellows, Hermelin, Rosamond, and Vialette (2009) recently
initiated the study of the parameterized complexity of multiple-
interval graph problems.

They showed:

1. k-INDEPENDENTSET in t-interval graphs is W[1]-hard for
any constantt ≥ 2.

2. k-DOMINATING SET in t-interval graphs is also W[1]-hard
for any constantt ≥ 2.

3. k-CLIQUE in t-interval graphs admits an FPT algorithm pa-
rameterized by bothk andt.



Three Open Questions

Fellows et al. then raised three open questions:

1. Arek-INDEPENDENTSET andk-DOMINATING SET in 2-
track interval graphs W[1]-hard?

2. Isk-DOMINATING SET in t-interval graphs W[2]-hard?

3. Can the parametric time-bound of their FPT algorithm for
k-CLIQUE in t-interval graphs be improved?

We answer the first open question in the affirmative, and make
a little progress on the third open question. . .



k-Multicolored Clique

Given a graphG and a vertex-coloring

κ : V (G)→ {1, 2, . . . , k},

k-MULTICOLORED CLIQUE is the problem of deciding whether
G has a clique ofk vertices containing exactly one vertex of each
color.

Fellows et al. proved thatk-MULTICOLORED CLIQUE is W[1]-
complete, then proved that bothk-INDEPENDENT SET and k-
DOMINATING SET in unit 2-interval graphs are W[1]-hard by
FPT reductions fromk-MULTICOLORED CLIQUE.

We prove:

Theorem 1. k-INDEPENDENTSET and k-DOMINATING SET in
unit 2-track interval graphs are W[1]-hard.



Previous Reduction for k-Independent Set
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Let (G, κ, k) be an instance ofk-MULTICOLORED CLIQUE.
The construction consists ofk +

(
k
2

)
groups of unit intervals oc-

cupying disjoint regions of the real line:

• k groups are vertex gadgets, one for each color,

•
(
k
2

)
groups are edge gadgets, one for each pair of distinct

colors.



How It Works
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The vertex gadgets and the edge gadgets are then linked to-
gether, according to the incidence relation between the vertices
and the edges, by the validation gadget.

Each vertex gadget selects a vertex of a particular color.
Each edge gadget selects an edge of a particular pair of colors.

The validation gadget ensures the consistency of the selections.



Vertex Selection
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ûivj

←−−uivj

For each colori, 1 ≤ i ≤ k, let Vi be the set of vertices with
color i.

The vertex gadget for the colori consists of a group of inter-
vals that can viewed as a table with|Vi| rows andk + 1 columns.



Vertex Selection
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ûivj

←−−uivj

Each row of the table corresponds to a distinct vertexu ∈ Vi:

• the first interval and the last interval together form avertex
2-interval ûi;

• the other intervals, each associated with a distinct color
j ∈ {1, . . . , k} \ {c} and denoted byui∗j , and are used
for validation.



Vertex Selection
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The intervals in the table are arranged in a parallelogram for-
mation with slanted columns:

• the intervals in each row are disjoint;

• the intervals in each column intersect at a common point;

• the intervals in lower rows have larger horizontal offsets
such that each interval also intersects all intervals in higher
rows in the next column.



Edge Selection
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For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, letEij

be the set of edgesuv such thatu has colori andv has colorj.

The edge gadget for the pair of colorsij consists of a group of
intervals that can viewed as a table with|Eij | rows and4 columns.
Again the intervals in the table are arranged in a parallelogram
formation.



Edge Selection
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Each row of the table corresponds to a distinct edgeuv ∈ Eij :

• the first interval and the fourth interval together form an
edge 2-interval ûivj ;

• the first interval and the fourth interval together form an the
second and the third intervals, denoted byuivj andvjui,
respectively, are used for validation.



Validation
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For each edgeuv such thatu has colori andv has colorj,
the validation gadget includes twovalidation 2-intervals←−−uivj and
−−→uivj :

• the 2-interval←−−uivj consists of the intervaluivj and the in-
tervalui∗j ;

• the 2-interval−−→uivj consists of the intervalvjui and the in-
tervalvj∗i.



Validation
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The vertex 2-interval̂ui selects the vertexu for the colori.
The edge 2-interval̂uivj selects the edgeuv for the pair of colors
ij. The validation 2-interval←−−uivj validates the selections.

F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}

∪
{
ûivj ,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
.



The Claim
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Set the parameterk′ = k + 3
(
k
2

)
.

G has ak-multicolored clique if and only ifF has a
k′-independent set.



Direct Implication
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If K ⊆ V (G) is ak-multicolored clique, then the following
subset of 2-intervals is ak′-independent set inF :

{
ûi | u ∈ K, i = κ(u)

}

∪
{
ûivj ,

←−−uivj ,
−−→uivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.



Reverse Implication
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Suppose thatI is ak′-independent set inF .

By construction,I can include at most one vertex 2-interval
for each color, and at most one edge 2-interval plus at most two
validation 2-intervals for each pair of distinct colors.

Sincek′ = k + 3
(
k
2

)
, I must include exactly one vertex 2-

interval for each color, and exactly one edge 2-interval plus two
validation 2-intervals for each pair of distinct colors.



Reverse Implication
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ûi
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It follows that the2
(
k
2

)
= (k− 1)k validation 2-intervals inI

have exactly two intervals in each edge gadget, and exactlyk − 1
intervals in each vertex gadget.

Moreover, in each vertex gadget, the intervals of the vertex
2-interval and thek − 1 validation 2-intervals inI must be in the
same row. Similarly, in each edge gadget, the intervals of the edge
2-interval and the two validation 2-intervals inI must be in the
same row.



Some Intuition

The central idea behind the construction is essentially a geo-
metric packing argument:

• Consider each vertex 2-interval as a container of capacity
k−1, each edge 2-interval as a container of capacity2, and
the validation 2-intervals as items to be packed.

• In order to pack each container to its full capacity, the items
in each container must be arranged in a regular pattern, that
is, all intervals in each vertex or edge gadget must be in the
same row.



Reverse Implication
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Since all intervals in the same row of a vertex gadget are as-
sociated with the same vertex, and all intervals in the same row
of an edge gadget are associated with the same edge, the vertex
selection and the edge selection must be consistent.

Thek vertex 2-intervals inI corresponds to ak-multicolored
clique inG.



New Reduction
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We now modify the previous construction to transform each
2-interval into a 2-track interval.

Move all vertex gadgets to track 1, and move all edge gad-
gets to track 2. Then all validation 2-intervals are immediately
transformed into 2-track intervals.

It remains to fix the vertex 2-intervals on track 1 and the edge
2-intervals on track 2.



Vertex 2-Intervals
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To fix the vertex 2-intervals in the vertex gadget for the ver-
ticesVi with color i, we replace each 2-interval̂ui by two 2-track
intervalsûi left andûi right.



Vertex 2-Intervals

track 1 track 2

. . .. . .

. . .. . .. . . . . .

. . .. . . . . .

. . .

. . .

. . .

. . .

. . .
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On track 1, let the intervals of̂ui left and ûi right be the left
and the right intervals, respectively, ofûi.



Vertex 2-Intervals
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On track 2, put the intervals of̂ui left andûi right for all u ∈ Vi

in a separate region, and arrange them in a parallelogram forma-
tion with |Vi| rows and2 columns: ûi left in the right column,
ûi right in the left column.



Vertex 2-Intervals
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As usual, the intervals are disjoint in each row and are pair-
wise intersecting in each column, moreover the columns are slanted
such that each interval in the left column intersects all intervals in
higher rows in the right column.



Edge 2-Intervals

In a similar way (with the roles of track 1 and track 2 re-
versed), we replace each edge 2-interval̂uivj by two 2-track in-
tervalsûivj left andûivj right.

F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}

∪
{
ûivj ,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
.

⇓

F =
{
ûi left, ûi right | u ∈ Vi, 1 ≤ i ≤ k

}

∪
{
ûivj left, ûivj right,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}
.



The Claim

Set the parameterk′ = k + 3
(
k
2

)
.

⇓

Set the parameterk′ = 2k + 4
(
k
2

)
.

G has ak-multicolored clique if and only ifF has a
k′-independent set.



Direct Implication

If K ⊆ V (G) is ak-multicolored clique, then the following
subset of 2-track intervals is ak′-independent set inF :

{
ûi | u ∈ K, i = κ(u)

}

∪
{
ûivj ,

←−−uivj ,
−−→uivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.

⇓

{
ûi left, ûi right | u ∈ K, i = κ(u)

}

∪
{
ûivj left, ûivj right,

←−−uivj ,
−−→uivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.



Reverse Implication

SupposeI is ak′-independent set inF .

1. The same argument as before shows thatI must include
exactlytwo vertex 2-track intervals for each color, and ex-
actly two edge 2-track intervals plus two validation 2-track
intervals for each pair of distinct colors.

2. We can assume that the two vertex 2-track intervals for each
color i form a pairûi left ûi right for the same vertexu.

3. Similarly, we can assume that the two edge 2-track intervals
for each pair of colorsij form a pairûivj left ûivj right for
the same edgeuv.

4. Then the same argument as before completes the proof.



Why Can We Assume That?
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Let ûi left andv̂i right be the two vertex 2-track intervals inI
for some colori. The intersection pattern of the vertex 2-track
intervals forVi on track 2 ensures that the row ofu must not be
higher than the row ofv.



Why Can We Assume That?

track 1 track 2

. . .. . .

. . .. . .. . . . . .

. . .. . . . . .

. . .

. . .

. . .

. . .

. . .
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v̂i left v̂i leftv̂i right v̂i right

Without loss of generality, we can assume that they are in the
same row, i.e.,u = v, so that the set of validation intervals in the
middle columns on track 1 that are dominated byûi left v̂i right is
minimal (or, in terms of geometric packing, this gives the con-
tainerûi left v̂i right the largest capacity on track 1).



Previous Reduction for k-Dominating Set
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Let (G, κ, k) be an instance ofk-MULTICOLORED CLIQUE.

The reduction again constructsk vertex gadgets, one for each
color, and

(
k
2

)
edge gadgets, one for each pair of distinct colors.

The vertex gadgets and the edge gadgets are then linked to-
gether by the validation gadget.



Vertex Selection
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For each colori, 1 ≤ i ≤ k, let Vi be the set of vertices with
color i.

The vertex gadget for the colori includes one interval∗i for
the colori and one intervalui for each vertexu ∈ Vi.



Vertex Selection
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The interval∗i is combined with each intervalui to form a
vertex 2-interval ûi.

The vertex gadget forVi also includes two disjoint dummy 2-
intervals that contain the left and the right endpoints, respectively,
of the interval∗i.



Edge Selection
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ûi ûivj

←−−uivj

dummy dummy

dummydummy

For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, letEij

be the set of edgesuv such thatu has colori andv has colorj.

The edge gadget for the pair of colorsij includes a group of
intervals that can viewed as a table with|Eij | rows and3 columns.
Again the intervals in the table are arranged in a parallelogram
formation.



Edge Selection
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Each row of the table corresponds to a distinct edgeuv ∈ Eij :
the left interval and the right interval together form anedge 2-
interval ûivj ; the middle interval, denoted byuivj , is used for
validation.

The edge gadget forEij also includes two disjoint dummy
2-intervals that intersect the left intervals and the rightintervals,
respectively, of all edge 2-intervalŝuivj .



Validation
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For each edgeuv such thatu has colori andv has colorj,
the validation gadget includes twovalidation 2-intervals←−−uivj and
−−→uivj :

• the 2-interval←−−uivj consists of the intervaluivj and the in-
tervalui;

• the 2-interval−−→uivj consists of the intervaluivj and the in-
tervalvj .



Put Together
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F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}

∪
{
ûivj ,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}

∪ DUMMIES,

whereDUMMIES is the set of2k + 2
(
k
2

)
dummy 2-intervals, two

in each vertex or edge gadget.



The Claim
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Set the parameterk′ = k +
(
k
2

)
.

G has ak-multicolored clique if and only ifF has a
k′-dominating set.



Direct Implication
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ûi ûivj
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If K ⊆ V (G) is ak-multicolored clique, then the following
subset of 2-intervals is ak′-dominating set inF :

{
ûi | u ∈ K, i = κ(u)

}

∪
{
ûivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.



Reverse Implication
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Suppose thatI is ak′-dominating set inF .

Because every dummy 2-interval can be replaced by an adja-
cent vertex or edge 2-interval in a dominating set, we can assume
without loss of generality thatI does not include any dummy 2-
intervals.



Reverse Implication
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Then, to dominate the dummy 2-intervals,I must include at
least one vertex 2-interval for each color, and at least one edge
2-interval for each pair of distinct colors.

Sincek′ = k +
(
k
2

)
, I must include exactly one vertex 2-

interval for each color, and exactly one edge 2-interval foreach
pair of distinct colors.



Reverse Implication
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It follows that for each pair of distinct colorsij, the two val-
idation 2-intervals←−−uivj and−−→uivj must be dominated by the two
vertex 2-intervalŝui andv̂j , respectively.

Therefore the vertex selection and the edge selection are con-
sistent: thek vertex 2-intervals inI corresponds to ak-multicolored
clique inG.



New Reduction
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We now modify the previous construction to transform each
2-interval into a 2-track interval. To transform the vertex2-intervals
into 2-track intervals, move the intervalsui to track 1, and move
the intervals∗i to track 2. Then, to transform the validation 2-
intervals into 2-track intervals, move all edge gadgets to track 2.
The dummy 2-intervals can be fixed accordingly.

It remains to fix the edge 2-intervals now on track 2.



Edge 2-Intervals

track 1track 2
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. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

To fix the edge 2-intervals in the edge gadget for the edges
Eij with colorsij, we replace each 2-interval̂uivj by two 2-track
intervalsûivj left andûivj right.



Edge 2-Intervals

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

On track 2, let the intervals of̂uivj left and ûivj right be the
left and the right intervals, respectively, of̂uivj .



Edge 2-Intervals

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

On track 1, put the intervals of̂uivj left andûivj right for all
uv ∈ Eij in a separate region, then arrange them, together with
|Eij | additional dummy intervals, in a parallelogram formation
with |Eij | rows and3 columns:ûi left in the right column,̂ui right

in the left column, and dummies in the middle column.



Edge 2-Intervals

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

As usual, the intervals are pairwise intersecting in each col-
umn, and the columns are slanted. But in each row the three in-
tervals are not all disjoint: the left interval and the middle interval
slightly overlap, and are both disjoint from the right interval.



Edge 2-Intervals

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

Now each interval in the right column intersects all intervals
in lower rows in the middle column, and each interval in the left
column intersects all intervals in the same or higher rows inthe
middle column.



Edge 2-Intervals

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

Finally, each of the|Eij | dummy intervals in the middle col-
umn is combined with an isolated dummy interval on track 2 to
form a dummy 2-track interval.



Put Together

F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}

∪
{
ûivj ,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}

∪ DUMMIES,

whereDUMMIES is the set of2k + 2
(
k
2

)
dummy 2-intervals, two

in each vertex or edge gadget.

⇓



F =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}

∪
{
ûivj left, ûivj right,

←−−uivj ,
−−→uivj | uv ∈ Eij , 1 ≤ i < j ≤ k

}

∪ DUMMIES,

whereDUMMIES is the set of2k + 2
(
k
2

)
+ |E(G)| dummy 2-

track intervals, two in each vertex or edge gadget as before,and
one more for each edge (recall the middle column of each edge
gadget on track 1).



The Claim

Set the parameterk′ = k +
(
k
2

)
.

⇓

Set the parameterk′ = k + 2
(
k
2

)
.

G has ak-multicolored clique if and only ifF has a
k′-dominating set.



Direct Implication

If K ⊆ V (G) is ak-multicolored clique, then the following
subset of 2-track intervals is ak′-dominating set inF :

{
ûi | u ∈ K, i = κ(u)

}

∪
{
ûivj | u, v ∈ K, i = κ(u), j = κ(v)

}
.

⇓

{
ûi | u ∈ K, i = κ(u)

}

∪
{
ûivj left, ûivj right | u, v ∈ K, i = κ(u), j = κ(v)

}
.



Reverse Implication

. . . . . .
. . .

. . .

. . .

. . .

. . .

. . .
ûi ûivj

←−−uivj

dummy dummy

dummydummy

Suppose thatI is ak′-dominating set inF .

Note that any one of the (original) two dummy 2-track inter-
vals in each vertex or edge gadget can be replaced by an adjacent
vertex or edge 2-interval in a dominating set. Thus we can assume
without loss of generality thatI includes none of these2k +2

(
k
2

)

dummies.



Reverse Implication

. . . . . .
. . .

. . .

. . .

. . .

. . .

. . .
ûi ûivj

←−−uivj

dummy dummy

dummydummy

Then, to dominate these dummies,I must include at least one
vertex 2-track interval for each color, and at least two edge2-track
intervals for each pair of distinct colors.

Sincek′ = k+2
(
k
2

)
, I must include exactly one vertex 2-track

interval for each color, and exactly two edge 2-track intervals for
each pair of distinct colors.



Reverse Implication

. . . . . .
. . .

. . .

. . .

. . .

. . .

. . .
ûi ûivj

←−−uivj

dummy dummy

dummydummy

We can assume that the two edge 2-track intervals for each
pair of colorsij form a pairûivj left ûivj right for the same edge
uv.

Then the same argument as before shows that thek vertex
2-track intervals inI corresponds to ak-multicolored clique in
G.



Why Can We Assume That?

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

Let ûivj left and x̂iyj right be the two edge 2-track intervals
in I for some pair of colorsij. The intersection pattern of the
edge 2-track intervals forEij on track 1 ensures that, in order to
dominate all the (new) dummies in the middle column, the row of
xy must not be higher than the row ofuv.



Why Can We Assume That?

track 1track 2

. . .

. . . . . .

. . . . . .

. . .

. . .

. . .. . . . . .

. . .. . .

ûivj left ûivj leftûivj right ûivj right

x̂iyj leftx̂iyj left x̂iyj right
x̂iyj right

Without loss of generality, we can assume that they are in
the same row, i.e.,uv = xy, so that the set of validation in-
tervals in the middle column on track 2 that are dominated by
ûivj left x̂iyj right is maximal.



k-Clique

Fellows et al. presented an FPT algorithm fork-CLIQUE in
t-interval graphs parameterized by bothk andt. They estimated
that the running time of their algorithm istO(k log k) · poly(n),
wheren is the number of vertices in the graph, and asked whether
the parametric time-bound can be improved.

We show:

Theorem 2. For any constant c ≥ 3, there is an algorithm for k-
CLIQUE in t-interval graphs with running time O(tck) ·O(nc) if
k ≤ 1

4 ·n
1−1/c, where n is the number of vertices in the graph. In

particular, there is an FPT algorithm for k-CLIQUE in t-interval
graphs with running time max{tO(k), 2O(k log k)} · poly(n).



Previous Algorithm

Fellows et al. presented the following algorithm CLIQUE(G, k)
that decides whether a givent-interval graphG has ak-clique:

CLIQUE(G, k):

1. If |V (G)| < k, then return NO.

2. Letv be a vertex of minimum degree inG.

3. If deg(v) ≥ 2tk, then return YES.

4. If v is in ak-clique ofG, then return YES.

5. Return CLIQUE(G − v, k).

The crucial step of this algorithm, step 3, is justified by a
structural lemma that “ifG is at-interval graph with nok-cliques
thenG has a vertex of degree less than2tk.”



Previous Analysis

Step 4 can be implemented inO(k2 ·
(
2tk
k

)
) time by brute

force; all other steps have running time polynomial inn. The
total number of recursive calls, in step 5, is at mostn. The overall
time complexity of the algorithm is

O(k2 ·

(
2tk

k

)
) · poly(n).

Fellows et al. estimated that

O(k2 ·

(
2tk

k

)
) = tO(k log k). (1)



Improved Algorithm

Our FPT algorithm has two components:

1. The first component is an algorithm CLIQUE* (G, k) slightly
modified from CLIQUE(G, k).

2. The second component is the obvious brute-force algorithm
that enumerates and checks allk-subsets of vertices fork-
cliques.



CLIQUE*

CLIQUE* (G, k):

1. If |V (G)| < k, then return NO.

2. Letv be a vertex of minimum degree inG.

3. If deg(v) ≥ 2tk, then return YES.

4. If CLIQUE* (neighbors(v), k−1) returns YES, then return
YES.

5. Return CLIQUE* (G− v, k).

CLIQUE* (G, k) is identical to CLIQUE(G, k) except step 4.
The following recurrence on the time boundf(k) · g(n) captures
the recursive behavior of CLIQUE* (G, k):

f(k) · g(n) ≤ f(k − 1) · g(2tk) + f(k) · g(n− 1) + O(n2).



Two Components Put Together

Lemma 1. For any constant c ≥ 3, if k ≤ 1
4 · n

1−1/c, then the
running time of CLIQUE* (G, k) is O(tck) ·O(nc).

Lemma 2. For any constant c ≥ 3, if k > 1
4 · n

1−1/c, then the
running time of the brute-force algorithm is 2O(k log k).

Finally, for any constantc ≥ 3, by choosing the algorithm
CLIQUE* (G, k) whenk ≤ 1

4 · n
1−1/c, and choosing the brute-

force algorithm whenk > 1
4 ·n

1−1/c, we obtain an FPT algorithm
with a parametric time-bound of

max{tO(k), 2O(k log k)}. (2)



Really?

Compare our bound (2) with the previous bound (1). It ap-
pears that we have obtained an improvement1, but asymptotically
this improvement is negligible. Check that the estimate in (1) is
not tight:

O(k2 ·

(
2tk

k

)
) = O(k2(2tk)k) = tO(k)2O(k log k)

= max{(tO(k))2, (2O(k log k))2} = max{tO(k), 2O(k log k)}.

1Under the condition thatk ≤ 1
4

· n1−1/c for some constantc ≥

3, CLIQUE* (G,k) clearly improves CLIQUE(G,k): in particular, for t =
Θ(log k), the parametric bound of CLIQUE* (G,k) is 2O(k log log k), and the
parametric bound of CLIQUE(G,k) is 2O(k log k).



Open Question Reformulated

In light of this delicate distinction, perhaps the open question
onk-CLIQUE in t-interval graphs could be stated more precisely
as follows:

Question 1. Is there an FPT algorithm for k-CLIQUE in t-interval
graphs with a parametric time-bound of tO(k)?

Note that a parametric time-bound of2O(k log k) alone is be-
yond reach. This is because every graph ofn vertices is at-
interval graph fort ≥ n/4. If the parametert does not appear
in the bound, then we would have an FPT algorithm for the W[1]-
hard problem ofk-CLIQUE in general graphs.



Comparative Genomics

A genomic map is a sequence of gene markers.
A gene marker appears in a genomic map in either positive or

negative orientation.

In comparative genomics, the first step of sequence analysisis
usually to decompose two or more genomes intosyntenic blocks
that are segments of homologous chromosomes.

For the reliable recovery of syntenic blocks,noise and ambi-
guities in the genomic maps need to be removed first.



Maximal Strip Recovery

Givend genomic maps as signed sequences of gene markers,
MAXIMAL STRIP RECOVERY (MSR-d) is the problem of finding
d subsequences, one subsequence of each genomic map, such that
the total lengthℓ of the maximal strips in these subsequences is
maximized.

A strip is a string of at least two markers such that either the
string itself or its signed reversal appears contiguously as a sub-
string in each of thed subsequences in the solution.



An Example

The two genomic maps (the markers in negative orientation
are underlined)

1 2 3 4 5 6 7 8 9 10 11 12
8 5 7 6 4 1 3 2 12 11 10 9

have two subsequences

1 3 6 7 8 10 11 12
8 7 6 1 3 12 11 10

of the maximum total strip length8.



Our Result

MSR-d admits a polynomial-time2d-approximation and is
NP-hard to approximate withinΩ(d/ log d) (Jiang 2010).

Our following theorem gives the first parameterized intractabil-
ity result for MSR-d:

Theorem 3. MSR-d for any constant d ≥ 4 is W[1]-hard when
the parameter is either the total length of the strips, or the total
number of adjacencies in the strips, or the number of strips in the
optimal solution. This holds even if all gene markers are distinct
and appear in positive orientation in each genomic map.



FPT- Reduction

Let ℓ-MSR-d be the problem MSR-d parameterized by the
total lengthℓ of the strips in the solution. We prove thatℓ-MSR-4
is W[1]-hard by an FPT-reduction fromk-INDEPENDENTSET in
2-track interval graphs.

Let (F , k) be an instance ofk-INDEPENDENTSET in 2-track
interval graphs, whereF = {I1, . . . , In} is a set ofn 2-track
intervals.

We construct four genomic mapsG→, G←, G1, G2, where
each map is a permutation of2n distinct markers all in positive
orientation:

i
⊂ and

i
⊃, 1 ≤ i ≤ n.



G→ and G←

G→ and G← are concatenations of then pairs of markers
with ascending and descending indices, respectively, and ensure
that each strip must be a pair of markers:

G→ :
1
⊂

1
⊃ · · ·

n
⊂

n
⊃

G← :
n
⊂

n
⊃ · · ·

1
⊂

1
⊃



G1 and G2

G1 andG2 encode the intersection pattern of the 2-track in-
tervals by pairs of markers:

1. Modify the representation of the 2-track interval graph for
F until the 2n endpoints of then intervals on each track
are all distinct.

2. On each track, mark the left and the right endpoints of the

interval for Ii by the left and the right markers
i
⊂ and

i
⊃,

respectively. Thus we obtain two sequences of markers.

Set the parameterℓ = 2k. ThenF has ak-independent set if
and onlyG→, G←, G1, G2 have four subsequences of total strip
lengthℓ.



Summary

Theorem 1. k-INDEPENDENTSET and k-DOMINATING SET in
unit 2-track interval graphs are W[1]-hard.

Theorem 2. For any constant c ≥ 3, there is an algorithm for k-
CLIQUE in t-interval graphs with running time O(tck) ·O(nc) if
k ≤ 1

4 ·n
1−1/c, where n is the number of vertices in the graph. In

particular, there is an FPT algorithm for k-CLIQUE in t-interval
graphs with running time max{tO(k), 2O(k log k)} · poly(n).

Theorem 3. MSR-d for any constant d ≥ 4 is W[1]-hard when
the parameter is either the total length of the strips, or the total
number of adjacencies in the strips, or the number of strips in the
optimal solution. This holds even if all gene markers are distinct
and appear in positive orientation in each genomic map.


