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I nter section Graphs

Theintersection graph Q(F) of a family of sets
F={S1,...,5.}

is the graph withF as the vertex set and with two different ver-
ticesS; andS; adjacent if and only ifS; N.S; # 0.

The family F is called arepresentation of the graph)(F).

Disk intersection graphs, interval graphs, circle grapiisular-
arc graphs...



Multiple-Interval Graphs
Lett be an integer at least two.

A t-interval is the union of disjoint intervals in the real line.
A t-track interval is the union oft disjoint intervals int disjoint
parallel lines called tracks, one interval on each track.

A t-interval graph is the intersection graph of a family of
intervals. At-track interval graph is the intersection graph of a
family of ¢-track intervals.

If all intervals in the representation oftainterval graph have
unit lengths, then the graph is calleduit ¢-interval graph. Sim-
ilarly for unit ¢-track interval graphs.



Graph Hierarchy

Thet disjoint tracks for &-track interval graph can be viewed
ast disjoint “host” intervals in the real line for &interval graph.

t-track interval graphs t-interval graphs

t-interval graphsc (¢ + 1)-interval graphs
t-track interval graphs (¢ + 1)-track interval graphs

unit¢-interval graphsc ¢-interval graphs
unit¢-track interval graphs ¢-track interval graphs

The most basic subclass: uitrack interval graphs



Applications

As generalizations of the ubiquitous interval graphs, iplgt
interval graphs such a@sinterval graphs antitrack interval graphs
have wide applications, traditionally szheduling and resource
allocation and more recently tbioinformatics.

In particular2-interval graphs ang-track interval graphs are
natural models for theimilar regions of DNA sequences and for
thehelices of RNA secondary structures.



Parameterized Complexity

In general graphs, the following four optimization probem
parameterized by the optimal solution sizeare exemplary prob-
lems in parameterized complexity theory:

e k-VERTEX COVER: in FPT
e k-INDEPENDENTSET/ k-CLIQUE: W[1]-hard

e k-DOMINATING SET: W[2]-hard



In Multiple-Interval Graphs...

Sincet-interval graphs are a special class of graphs, all FP
algorithms fork-VERTEX COVER in general graphs immediately
carry over tat-interval graphs.

The parameterized complexities/oiNDEPENDENTSET, k-
CLIQUE, andk-DOMINATING SET in t-interval graphs, however,
are not at all obvious.

In general graphg;-INDEPENDENTSET andk-CLIQUE are
essentially the same problem, butttimterval graphs, they mani-
fest different parameterized complexities. . .



Previous Results

Fellows, Hermelin, Rosamond, and Vialette (2009) recentl
initiated the study of the parameterized complexity of rplet
interval graph problems.

They showed:

1. k-INDEPENDENTSET in t-interval graphs is W[1]-hard for
any constant > 2.

2. k-DOMINATING SET in ¢-interval graphs is also W[1]-hard
for any constant > 2.

3. k-CLIQUE in t-interval graphs admits an FPT algorithm pa-
rameterized by both andt.



Three Open Questions

Fellows et al. then raised three open questions:

1. Arek-INDEPENDENTSET andk-DOMINATING SET in 2-
track interval graphs W[1]-hard?

2. Isk-DOMINATING SET in t-interval graphs W[2]-hard?

3. Can the parametric time-bound of their FPT algorithm fo
k-CLIQUE in t-interval graphs be improved?

We answer the first open question in the affirmative, and mal
a little progress on the third open question. ..



k-Multicolored Clique

Given a graplG and a vertex-coloring
k:V(G) —{1,2,...,k},

k-MULTICOLORED CLIQUE is the problem of deciding whether
G has a clique of: vertices containing exactly one vertex of eact
color.

Fellows et al. proved th&tMULTICOLORED CLIQUE is W[1]-
complete, then proved that bothINDEPENDENT SET and k-
DOMINATING SET in unit 2-interval graphs are W[1]-hard by
FPT reductions fronk-MULTICOLORED CLIQUE.

We prove:

Theorem 1. k-INDEPENDENTSET and k-DOMINATING SETin
unit 2-track interval graphsare W[1]-hard.



Previous Reduction for k-1ndependent Set

Let (G, k, k) be an instance df-MULTICOLORED CLIQUE.
The construction consists &f+ (’;) groups of unit intervals oc-
cupying disjoint regions of the real line:

e k groups are vertex gadgets, one for each color,

° (’;) groups are edge gadgets, one for each pair of distin
colors.



How It Works

uiv;

The vertex gadgets and the edge gadgets are then linked
gether, according to the incidence relation between thecesr
and the edges, by the validation gadget.

Each vertex gadget selects a vertex of a particular color.
Each edge gadget selects an edge of a particular pair okcolc
The validation gadget ensures the consistency of the gmbsct



Vertex Selection

uiv;

For each coloi, 1 < i < k, letV; be the set of vertices with
colori.

The vertex gadget for the colériconsists of a group of inter-
vals that can viewed as a table wjlfj| rows andk + 1 columns.



Vertex Selection

uiv;

Each row of the table corresponds to a distinct vertexV;:

e the firstinterval and the last interval together forwestex
2-interval ;;

e the other intervals, each associated with a distinct col
j € {1,...,k} \ {c} and denoted by;*;, and are used
for validation.



Vertex Selection

;05

uiv;

The intervals in the table are arranged in a parallelogram fo
mation with slanted columns:

e the intervals in each row are disjoint;
e the intervals in each column intersect at a common point;

e the intervals in lower rows have larger horizontal offset:
such that each interval also intersects all intervals imdig
rows in the next column.



Edge Selection

uiv;

For each pair of distinct coloisandj, 1 <i < j < k, letE;;
be the set of edgas such that. has colori andv has color;.

The edge gadget for the pair of col@jsconsists of a group of
intervals that can viewed as a table wiiff ;| rows andt columns.
Again the intervals in the table are arranged in a paraltelog
formation.



Edge Selection

Each row of the table corresponds to a distinct edge E;;:

e the first interval and the fourth interval together form ar
edge 2-interval «;v;;

o thefirstinterval and the fourth interval together form a@ th
second and the third intervals, denoted®y; andv;u;,
respectively, are used for validation.



Validation

For each edgew such that: has colori andv has colory,
the validation gadget includes twalidation 2-intervalsu;v; and
U;Vj:

e the 2-intervalz;v; consists of the intervai;o; and the in-

tervalwu;+;;

e the 2-intervalu;v; consists of the interval;u; and the in-
tervalv;*;.



Validation

uiv;

The vertex 2-intervali; selects the vertex for the colors.
The edge 2-interval;v; selects the edgev for the pair of colors
i7. The validation 2-interva€lil-vj validates the selections.

F={t;|ueV;,1<i<k}

@] {@,uivj,uivj | uv € Eija 1<i<j < l{}



The Claim

Set the parametér = k + 3(%).

G has ak-multicolored clique if and only ifF has a
k’-independent set.



Direct Implication

If K C V(G) is ak-multicolored clique, then the following
subset of 2-intervals is &-independent set iff:

{G |ue K, i=r(u)}

U {@,m,m |u,v € K, i=r(u), j= m(v)}.



Reverse Implication

Suppose thef is ak’-independent set iff.

By constructionZ can include at most one vertex 2-interval
for each color, and at most one edge 2-interval plus at mast tv
validation 2-intervals for each pair of distinct colors.

Sincek’ = k + 3(5), Z must include exactly one vertex 2-
interval for each color, and exactly one edge 2-intervas o
validation 2-intervals for each pair of distinct colors.



Reverse Implication

It follows that the2 (§) = (k — 1)k validation 2-intervals irf
have exactly two intervals in each edge gadget, and exactly
intervals in each vertex gadget.

Moreover, in each vertex gadget, the intervals of the verte
2-interval and thé — 1 validation 2-intervals i must be in the
same row. Similarly, in each edge gadget, the intervalseoétige
2-interval and the two validation 2-intervals Thmust be in the
same row.



Some | ntuition

The central idea behind the construction is essentiallyoa ge
metric packing argument:

e Consider each vertex 2-interval as a container of capaci
k—1, each edge 2-interval as a container of capasignd
the validation 2-intervals as items to be packed.

e Inorder to pack each container to its full capacity, the gem
in each container must be arranged in a regular pattern, tt
is, all intervals in each vertex or edge gadget must be in tt
same row.



Reverse Implication

uiv;

Since all intervals in the same row of a vertex gadget are a
sociated with the same vertex, and all intervals in the same r
of an edge gadget are associated with the same edge, the ve
selection and the edge selection must be consistent.

Thek vertex 2-intervals irf corresponds to A-multicolored
cligue inG.



New Reduction

uiv;

We now modify the previous construction to transform eac
2-interval into a 2-track interval.

Move all vertex gadgets to track 1, and move all edge ga
gets to track 2. Then all validation 2-intervals are imméalia
transformed into 2-track intervals.

It remains to fix the vertex 2-intervals on track 1 and the edg
2-intervals on track 2.



Vertex 2-Intervals

Vileftf —89 —— e — Ui right Vi right e— Ui |eft,

Ui oft,  — ce — Uiright Ui pight ———— —— U et

track 1 track 2

To fix the vertex 2-intervals in the vertex gadget for the ver
ticesV; with colori, we replace each 2-interva) by two 2-track
intervalsi; o and; g -



Vertex 2-Intervals

Vileftf —89 —— e — Ui right Vi right e— Ui |eft,

Ui oft,  — ce — Uiright Ui right ———— e—— Ui Joft

track 1 track 2

On track 1, let the intervals af; o, and; i, b€ the left
and the right intervals, respectively, @f.



Vertex 2-Intervals

Vileftf —m89 —— cee — Ui right Vi right e— Ui |eft,

Ui oft,  — “e — Uiright Ui pight ————— e— i et

track 1 track 2
Ontrack 2, putthe intervals @f; ¢, and; i forallu € V;

in a separate region, and arrange them in a parallelogramafor

tion with |V;| rows and2 columns: @; 1. in the right column,

W vignt IN the left column,



Vertex 2-Intervals

Vileftf —89 —— e — Ui right Vi right e— Ui |eft,

Ui oft,  — ce — Uiright Ui pight ———— —— U et

track 1 track 2

As usual, the intervals are disjoint in each row and are pai
wise intersecting in each column, moreover the columndanges
such that each interval in the left column intersects adinvdls in
higher rows in the right column.



Edge 2-Intervals

In a similar way (with the roles of track 1 and track 2 re-
versed), we replace each edge 2-intemal; by two 2-track in-
tervalsu;v; | ., andu;v; right-

F={G|ueV,1<i<k}
U{@,uivj,m|uv€Eij,1§i<j§k}.
U

f:{@leftvﬁ\iright | ue‘/’ia 1 SZSIC}

— — — . .
U {’U,ﬂ}j left Wivlj right,uivj,uivj | uv € Eija 1<i1<5< k}



TheClaim
Set the parametér = k + 3(5).

4

Set the parametér = 2k + 4(%).

G has ak-multicolored clique if and only ifF has a
k’-independent set.



Direct Implication

If K C V(Q) is ak-multicolored clique, then the following

subset of 2-track intervals iské-independent set ifF:

{Gi|ue K, i=r(u)}

U {0y, wivg, uivy | u,v € K, i = (u), j = k(v)}.
I

{a\ilcfta’&/\iright | u € Ka i= K(u)}

— — & —> . .
U {uivj teft> WiUj pight> Uiy, Uilj |u,v e K, i=r(u),j=



Reverse Implication

Suppos€ is ak’-independent set iff.

1. The same argument as before shows fhatust include
exactlytwo vertex 2-track intervals for each color, and ex-
actly two edge 2-track intervals plus two validation 2-track
intervals for each pair of distinct colors.

2. We can assume that the two vertex 2-track intervals fdr ea
colori form a pairi; g w; yignt, fOr the same vertex.

3. Similarly, we can assume that the two edge 2-track interve
for each pair of colorg; form a pairu;v; | ;, wv; for

Uj .
right
the same edgev.

4. Then the same argument as before completes the proof.



Why Can We Assume That?

track 1 track 2
Let @; 1o¢, ando; i1, b the two vertex 2-track intervals ih
for some colori. The intersection pattern of the vertex 2-track
intervals forV; on track 2 ensures that the row @fmust not be

higher than the row of.



Why Can We Assume That?

Vi left

e Ui right

Vi Jeft

Ui 1ight  e—

Ui oft,  —

Us right Ui right

— Ui oft

track 1 track 2

Without loss of generality, we can assume that they are in tl
same row, i.e.y = v, So that the set of validation intervals in the
middle columns on track 1 that are dominatediy.¢; v; yigns iS
minimal (or, in terms of geometric packing, this gives the-co
tainer; jo¢; Ui right the largest capacity on track 1).



Previous Reduction for £-Dominating Set

i
dummy dummy
[y S— [ E—

dummy dummy

Let (G, k, k) be an instance df-MULTICOLORED CLIQUE.

The reduction again construdis/ertex gadgets, one for each
color, and(’;) edge gadgets, one for each pair of distinct colors.

The vertex gadgets and the edge gadgets are then linked
gether by the validation gadget.



Vertex Selection

i
dummy dummy
[y S— [ E—

dummy dummy

For each colog, 1 < ¢ < k, letV; be the set of vertices with
colori.

The vertex gadget for the col@iincludes one intervai; for
the color: and one intervad; for each vertex, € V;.



Vertex Selection

i
dummy dummy
[y S— [ E—

dummy dummy

The intervalx; is combined with each intervai; to form a
vertex 2-interval w;.

The vertex gadget fov; also includes two disjoint dummy 2-
intervals that contain the left and the right endpointgyeesively,
of the intervals;.



Edge Selection

i a
_ﬁ_r
dummy dummy
[y S— [ E—

dummy dummy

For each pair of distinct coloisandj, 1 <i < j < k, let £
be the set of edgas such that:, has colori andv has color;.

The edge gadget for the pair of colarsincludes a group of
intervals that can viewed as a table wiif ;| rows and3 columns.
Again the intervals in the table are arranged in a parallalog
formation.



Edge Selection

i
i
dummy dummy
By s —T——T

dummy dummy

Each row of the table corresponds to a distinct edge E;;:
the left interval and the right interval together form edge 2-
interval w;v;; the middle interval, denoted by;v;, is used for
validation.

The edge gadget faF;; also includes two disjoint dummy
2-intervals that intersect the left intervals and the riglervals,
respectively, of all edge 2-intervaigv;.



Validation

i
dummy dummy
[y S— [ E—

dummy dummy

For each edgew such that: has colori andv has colory,
the validation gadget includes twalidation 2-intervalsu;v; and
u;v;:

e the 2-interva|§2ivj consists of the intervai;u; and the in-

tervalws;

e the 2-intervaIvaj consists of the intervai;u; and the in-
tervalv;.



Put Together

i
dummy dummy
[y S— [ E—

F={tilueV,1<i<k}
U {05, 705, wivj | wo € Eij, 1 <i < j <k}
U DUMMIES,

whereDUMMIES is the set o2k + 2(%) dummy 2-intervals, two
in each vertex or edge gadget.



i
dummy dummy
[y S— [ E—

Set the parametdr = k + (4).

G has ak-multicolored clique if and only ifF has a
k’-dominating set.



Direct Implication

i
dummy dummy

dummy dummy

If K C V(Q) is ak-multicolored clique, then the following
subset of 2-intervals is & -dominating set irF:

{tilue K, i=r(u)}
U{U/ZFJ |u,v € K, i=r(u),j :/@(v)}.



Reverse Implication

i
dummy dummy
[y S— [ E—

dummy dummy

Suppose thdf is ak’-dominating set inF.

Because every dummy 2-interval can be replaced by an ad

cent vertex or edge 2-interval in a dominating set, we canrass

without loss of generality that does not include any dummy 2-

intervals.



Reverse Implication

i
dummy dummy
[y S— [ E—

dummy dummy

Then, to dominate the dummy 2-intervalsmust include at
least one vertex 2-interval for each color, and at least alge e
2-interval for each pair of distinct colors.

Sincek’ = k + (’5) Z must include exactly one vertex 2-
interval for each color, and exactly one edge 2-intervalefach
pair of distinct colors.



Reverse Implication

i a
_ﬁ_r
dummy dummy
[y S— [ E—

dummy dummy

It follows that for each pair of distinct colotg, the two val-
idation 2-intervalsi;v; andu;v; must be dominated by the two
vertex 2-intervals;; andv;, respectively.

Therefore the vertex selection and the edge selection are ct
sistent: the: vertex 2-intervals it corresponds to &multicolored
cligue inG.



New Reduction

i a
_ﬁ_r
dummy dummy
[y S— [ E—

dummy dummy

We now modify the previous construction to transform eac
2-intervalinto a 2-track interval. To transform the vergeintervals
into 2-track intervals, move the intervais to track 1, and move
the intervalss; to track 2. Then, to transform the validation 2-
intervals into 2-track intervals, move all edge gadgetsdok 2.
The dummy 2-intervals can be fixed accordingly.

It remains to fix the edge 2-intervals now on track 2.



Edge 2-Intervals

Wi0j 15 UiUj g TV g T

Tilj tefy TiY5 vight -— Lillj refe

Tilj pight —

track 2 track 1
To fix the edge 2-intervals in the edge gadget for the edg:
E;; with colorsij, we replace each 2-intervaJu; by two 2-track

intervalsu;vj ¢, aNdu;vj .., -



Edge 2-Intervals

e — Ui g

W] tegy g 05 g
Tilj refe iy right 15 bt e Tilj tefy
track 2 track 1
On track 2, let the intervals af;v; and w;v; be the
U5 loft J right

left and the right intervals, respectively, @fv;.



Edge 2-Intervals

Wi0j 15 UiUj g TV g T

Ll \efy

TilYj lefy TilYj right Til) rigne ——

track 2 track 1

On track 1, put the intervals af;v; ,,, andu;v; ;. for all
wv € E;; in a separate region, then arrange them, together wi
|E;;| additional dummy intervals, in a parallelogram formatior
with | E;;| rows and3 columns:a; i.¢ in the right columniz; ¢
in the left column, and dummies in the middle column.



Edge 2-Intervals

UiVj 1oy UiVj y; e ———— A

ight Iﬁj/

right

Ll \efy

TilYj lefy TilYj right Til) rigne ——

track 2 track 1

As usual, the intervals are pairwise intersecting in eadh cc
umn, and the columns are slanted. But in each row the three
tervals are not all disjoint: the left interval and the miglditerval
slightly overlap, and are both disjoint from the right irnel:



Edge 2-Intervals

Wi0j 15 UiUj g TV g T

Tilj tefy TiY5 vight -— Lillj refe

Tilj pight —

track 2 track 1

Now each interval in the right column intersects all intésva
in lower rows in the middle column, and each interval in the le
column intersects all intervals in the same or higher rowth
middle column.



Edge 2-Intervals

Wi0j 15 UiUj g TV g T

Tilj tefy TiY5 vight -— Lillj refe

Tilj pight —

track 2 track 1

Finally, each of theE;;| dummy intervals in the middle col-
umn is combined with an isolated dummy interval on track 2 t
form a dummy 2-track interval.



Put Together

F={tilueV,1<i<k}
U {05, 305, wivj | wo € Eij, 1 <i < j <k}
U DUMMIES,

whereDUMMIES is the set o2k + 2(%) dummy 2-intervals, two
in each vertex or edge gadget.

4



F={u|ueV;,1<i<k}
@] {@lcft,@right,uivj,uivj |uv S Eija 1<i1<5< k}

U DUMMIES,

where DUMMIES is the set of2k + 2(’;) + |E(G)| dummy 2-
track intervals, two in each vertex or edge gadget as before,
one more for each edge (recall the middle column of each ed
gadget on track 1).



TheClaim
Set the parametér = k + (5).

y
Set the parametér = k + 2(%).

G has ak-multicolored clique if and only ifF has a
k’-dominating set.



Direct Implication

If K C V(Q) is ak-multicolored clique, then the following
subset of 2-track intervals iské-dominating set irF:

{Glue K, i=r(u)}
U{U/Z—Fj |u,v € K, i=r(u),j :n(v)}.

4

{G|ue K, i=r(u)}

U {@1efw@right |u,v € K, i=r(u), j = r(v)}.



Reverse Implication

i
dummy dummy
[y S— [ E—

dummy dummy

Suppose thdf is ak’-dominating set inF.

Note that any one of the (original) two dummy 2-track inter:
vals in each vertex or edge gadget can be replaced by an atljac
vertex or edge 2-interval in a dominating set. Thus we camass
without loss of generality that includes none of thesa + 2(%)
dummies.



Reverse Implication

i
i
dummy dummy
By s —T——T

dummy dummy

Then, to dominate these dummiganust include at least one
vertex 2-track interval for each color, and at least two etigrack
intervals for each pair of distinct colors.

Sincek’ = k+2 (’;) ,Z mustinclude exactly one vertex 2-track
interval for each color, and exactly two edge 2-track irdésor
each pair of distinct colors.



Reverse Implication

i a
_ﬁ_r
dummy dummy
[y S— [ E—

dummy dummy

We can assume that the two edge 2-track intervals for ea
pair of colorsij form a pairu;v; | g u;v; right for the same edge
uv.

Then the same argument as before shows thatkthertex
2-track intervals inZ corresponds to &-multicolored clique in
G.



Why Can We Assume That?

Wil epg

UiV yight T

UiVj right

Tilj lefy TilYj right

— TiYi 1ot

Tilj pight —

track 2 track 1

Let 4;v; ., andz;y; ;. be the two edge 2-track intervals
in Z for some pair of colorg;. The intersection pattern of the
edge 2-track intervals faE;; on track 1 ensures that, in order to
dominate all the (new) dummies in the middle column, the réw c
xy must not be higher than the row o?.



Why Can We Assume That?

Wi0j 15 UiUj g ; T

right

Ll \efy

TilYj lefy TilYj right Til) rigne ——

track 2 track 1

Without loss of generality, we can assume that they are
the same row, i.e.wv = zy, so that the set of validation in-
tervals in the middle column on track 2 that are dominated
UiV togy Til sighe 1S MaXimal.



k-Clique

Fellows et al. presented an FPT algorithm £8CLIQUE in
t-interval graphs parameterized by bdtland¢. They estimated
that the running time of their algorithm i (*1°¢¥) . poly(n),
wheren is the number of vertices in the graph, and asked wheth
the parametric time-bound can be improved.

We show:

Theorem 2. For any constant ¢ > 3, thereisan algorithmfor %-
CLIQUE in t-interval graphswith running time O(t°¥) - O(n¢) if
k < L.n'=1/c wheren isthe number of verticesin the graph. In
particular, there isan FPT algorithm for k-CLIQUE in t-interval
graphs with running time max {t©*), 20(*1g k)1 . holy(n).



Previous Algorithm

Fellows et al. presented the following algorithmIQUE(G, k)
that decides whether a givesinterval graph has ak-clique:

CLIQUE(G, k):

If [V(G)| < k, then return NO.

Letv be a vertex of minimum degree (.
If deg(v) > 2tk, then return YES.

If v is in ak-clique of G, then return YES.
Return CIQUE(G — v, k).

o~ N E

The crucial step of this algorithm, step 3, is justified by ¢
structural lemma that “it7 is at-interval graph with nd:-cliques
thenG has a vertex of degree less thti.”



Previous Analysis
Step 4 can be implemented @(k? - (**)) time by brute
force; all other steps have running time polynomiakin The
total number of recursive calls, in step 5, is at mastThe overall
time complexity of the algorithm is

o (%)) - poty(o)

Fellows et al. estimated that

O(k? - (2/ik)) _ O(klogh) 1)



Improved Algorithm

Our FPT algorithm has two components:

1. Thefirstcomponentis an algorithm@QUEe* (G, k) slightly
modified from Q.IQUE(G, k).

2. The second componentis the obvious brute-force algorith
that enumerates and checks/atbubsets of vertices fat-
cliques.



CLIQUE*

CLIQUE* (G, k):

A W DN P

5.

. I [V(GQ)| < K, then return NO.

. Letwv be a vertex of minimum degree (&.

. If deg(v) > 2tk, then return YES.

. If CLIQUE* (neighbors(v), k — 1) returns YES, then return

YES.
Return CIQUE* (G — v, k).

CLIQUE* (G, k) is identical to @IQUE(G, k) except step 4.
The following recurrence on the time boupfigk) - g(n) captures
the recursive behavior ofl@QUE* (G, k):

f(k) - g(n) < f(k—1)-g(2tk) + f(k) - g(n — 1) + O(n?).



Two Components Put Together

Lemma 1. For any constant ¢ > 3, if k < 1 - n'~1/¢, then the
running time of CLIQUE* (G, k) isO(t*) - O(n®).

Lemma 2. For any constant ¢ > 3, if k > 1 - n'~1/¢, then the
running time of the brute-force algorithmis 20 (*log k)

Finally, for any constant > 3, by choosing the algorithm
CLIQUE*(G, k) whenk < 1 . n!~'/¢ and choosing the brute-
force algorithm whet > 1-n'~1/¢, we obtain an FPT algorithm
with a parametric time-bound of

max{to(k), 2O(k log k)} (2)



Really?

Compare our bound (2) with the previous bound (1). It ap
pears that we have obtained an improverhemit asymptotically
this improvement is negligible. Check that the estimatelinig
not tight:

O(k? - <2Itf:>) — O(K?(2tk)*) = Ok 90(klog k)

= max{(t0M)2, (2001°51))2) — max [0, 20108 1)),

3, CLIQUE*(G, k) clearly improves CIQUE(G,k): in particular, fort =
©(log k), the parametric bound of IGQUE* (G, k) is 20 (kloglogk) " and the
parametric bound of QQUE(G, k) is 20 (klog k),

lUnder the condition thatk < i - nl=1/¢ for some constantt >



Open Question Reformulated

In light of this delicate distinction, perhaps the open dioes
on k-CLIQUE in ¢-interval graphs could be stated more precisel
as follows:

Question 1. Istherean FPT algorithmfor k-CLIQUE int-interval
graphswith a parametric time-bound of ¢t©(*)2

Note that a parametric time-bound 2P(*1°£%) alone is be-
yond reach. This is because every graphofertices is at-
interval graph fort > n/4. If the parametet does not appear
in the bound, then we would have an FPT algorithm for the W[1]
hard problem of:-CLIQUE in general graphs.



Compar ative Genomics

A genomic map is a sequence of gene markers.
A gene marker appears in a genomic map in either positive o
negative orientation.

In comparative genomics, the first step of sequence anadysis
usually to decompose two or more genomes sytgenic blocks
that are segments of homologous chromosomes.

For the reliable recovery of syntenic blocksijse and ambi-
guitiesin the genomic maps need to be removed first.



Maximal Strip Recovery

Givend genomic maps as signed sequences of gene marke
MAXIMAL STRIP RECOVERY (MSR+) is the problem of finding
d subsequences, one subsequence of each genomic map, guct
the total lengthY of the maximal strips in these subsequences
maximized.

A strip is a string of at least two markers such that either th
string itself or its signed reversal appears contiguouslg aub-
string in each of the subsequences in the solution.



An Example

The two genomic maps (the markers in negative orientatic
are underlined)

1 23 45 6 7 8 9 10 11 12
8 5 7 6 4 1 3 2 12 11 10 9
have two subsequences
1 3 6 7 8 10 11 12
8 7 6 13 12 11 10

of the maximum total strip lengtk



Our Result

MSR-d admits a polynomial-tim&d-approximation and is
NP-hard to approximate withif2(d/ log d) (Jiang 2010).

Our following theorem gives the first parameterized in@hdt
ity result for MSR«:

Theorem 3. MSR+ for any constant d > 4 is W[1]-hard when
the parameter is either the total length of the strips, or the total
number of adjacenciesin the strips, or the number of stripsin the
optimal solution. This holds even if all gene markers are distinct
and appear in positive orientation in each genomic map.



FPT- Reduction

Let /-MSR-d be the problem MSR- parameterized by the
total length? of the strips in the solution. We prove tHaMSR-4
is W[1]-hard by an FPT-reduction frohINDEPENDENTSET in
2-track interval graphs.

Let (F, k) be an instance df-INDEPENDENTSET in 2-track
interval graphs, wheré® = {I,,...,1,} is a set ofn 2-track
intervals.

We construct four genomic mags_,, G, Gy, Ga, where
each map is a permutation ?f distinct markers all in positive
orientation:



G_ and G_

G_, andG._ are concatenations of the pairs of markers
with ascending and descending indices, respectively, asdre
that each strip must be a pair of markers:

G_
G_ :

n=s N~
Us U=
N=Ns
Ur Us



Gl and G2

(GG, and G, encode the intersection pattern of the 2-track in
tervals by pairs of markers:

1. Modify the representation of the 2-track interval graph f
F until the 2n endpoints of the: intervals on each track

are all distinct.

2. On each track, mark the left and the right endpoints of tk
interval for I; by the left and the right markers and >,
respectively. Thus we obtain two sequences of markers.

Set the parametér= 2k. ThenF has ak-independent set if
and onlyG_,, G, Gy, G have four subsequences of total strif

length?.



Summary

Theorem 1. k-INDEPENDENTSET and k-DOMINATING SETin
unit 2-track interval graphsare W[1]-hard.

Theorem 2. For any constant ¢ > 3, thereisan algorithmfor %-
CLIQUE in t-interval graphswith running time O(t°¥) - O(n°) if
k < L.n!=1/c wheren isthe number of verticesin the graph. In
particular, there isan FPT algorithm for k-CLIQUE in t-interval
graphswith running time max{t© (%) 20(klog k)1 . 1oy (n).

Theorem 3. MSR+ for any constant d > 4 is W[1]-hard when
the parameter is either the total length of the strips, or the total
number of adjacenciesin the strips, or the number of stripsin the
optimal solution. This holds even if all gene markers are distinct
and appear in positive orientation in each genomic map.



