
New Complexity Bounds for Image Matching
under Rotation and Scaling

Christian Hundt1 Maciej Liśkiewicz2

Institut für Informatik, Universität Rostock, Germany

Institut für Theoretische Informatik, Universität zu Lübeck, Germany

22.06.2009

Christian Hundt, Maciej Liśkiewicz New Complexity Bounds for Image Matching under Rotation and Scaling



The Image Matching Problem

Remember last year’s CPM ...
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Transformation Classes

F ?

Rotation - Fr Scaling and Rotation - Fsr
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Continuous Problem?

Image Matching seems to be a continuous problem by Fsr.

But it is not!D(A) = {f (A) | f ∈ Fsr} is always finite.

For D(A) contains

... only 1250 out of hundreds and thousands!
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Our Characterization
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Let p = s cosφ and
q = s sinφ,

then (p, q)
stands for f (p, q) ∈ Fsr:

f (p, q) =

(
p −q
q p

)
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The unit circle (C) stands
for transformations with
s = 1, i.e., for Fr.
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There are lines

hĳk : ip + jq = k − 0.5

for i , j ∈ {−n, . . . , n}
and for
k ∈ {−m, . . . ,m + 1}

cutting R2 and C into sets
A(m, n) and AC (m, n) of

points,
line segments,
convex regions.
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Theorem
Let ϕ ∈ A(m, n)

and
(p1, q1), (p2, q2) ∈ ϕ
represent f1 = f (p1, q1)
and f2 = f (p2, q2).

Then f1(A) = f2(A).

The same holds for
AC (m, n).
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Our Characterization

Theorem
If m ≈ n then

1 |AC (m, n)| ∈ Θ(n3),
2 |A(m, n)| ∈ O(n6) ∩ Ω(n5).
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Our Image Matching Algorithm

Input: Images A of size m and B of size n
Implicit: Transformation class Fsr

Output: f ∈ Fsr with minimum ∆ = (f (A),B)

1.

construct A(m, n) O(n6) (Edelsbrunner) 1

2.

traverse all faces ϕ of A(m, n) O(n6) (DFS)

3.

find (p, q) ∈ ϕ O(1)

4.

get f = f (p, q) and compute f (A) O(1) (amortized)

5.

obtain ∆ = (f (A),B) O(1) (amortized)

6.

return best transformation f O(1)

overall time O(n6)

1We assume m ≈ n.
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Our Image Matching Algorithm

Input: Images A of size m and B of size n
Implicit: Transformation class Fr

Output: A′ = f (A) with f ∈ Fr and minimum ∆ = (f (A),B)

1. construct AC (m, n) O(n3 log n) (MergeSort)2

2. traverse all faces ϕ of AC (m, n) O(n3) (Linear Traversal)
3. compute f (A) for given ϕ O(1) (amortized)
4. obtain ∆ = (f (A),B) O(1) (amortized)
5. return A′ O(1)

overall time O(n3 log n)

2We assume m ≈ n.
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Recently raised Questions

1 How to resolve the log n-discrepancy between |AC (m, n)| and the
Fr-algorithm’s preprocessing time?

2 What is the “exact” cardinality of A(m, n)?

Same question: How fast does our algorithm run for Fsr?
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New Results, partial Answers

Theorem
If m ≈ n then

1 We can preprocess the data structure for AC (m, n) in O(n3) and
2 |A(m, n)| ∈ O(n6) ∩ Ω(n6/ log n).
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Preprocessing AC(m, n) efficiently

Basic Ideas:
1 Points and line segements are given by line intersections with C .
2 So, we will compute the intersections

p =
i(k − 0.5)± j

√
i2 + j2 − (k − 0.5)2

i2 + j2

q =
j(k − 0.5)∓ i

√
i2 + j2 − (k − 0.5)2

i2 + j2

and sort them according to their linear occurence on C .
3 But we will now use RadixSort instead of MergeSort to get linear

preprocessing time.
4 Problem: All (p, q) are irrational.
5 Hence, we have to show that O(log n) precision is enough.
6 Then we can approximate (p, q) by constantly many

arithmetic operations of O(log n) precision.
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i2 + j2 − (k − 0.5)2

i2 + j2

and sort them according to their linear occurence on C .
3 But we will now use RadixSort instead of MergeSort to get linear

preprocessing time.
4 Problem: All (p, q) are irrational.
5 Hence, we have to show that O(log n) precision is enough.
6 Then we can approximate (p, q) by constantly many

arithmetic operations of O(log n) precision.
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The O(log n) Precision Bound

What ist the minimum distance between the intersections of C with two
lines ` and `′?
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The O(log n) Precision Bound

What ist the minimum distance between the intersections of C with two
lines ` and `′?

Case 1

α

p

q

∆p

` = `′

P’

P d

i = i ′, j = j ′, k = k ′.
Since 4i2 + 4j2 ≥ (2k − 1)2:

d = ‖P − P ′‖

=

√
4i2 + 4j2 − (2k − 1)2

i2 + j2

≥
√

1
2n2 ≥

1√
2n
.

Hence, d is huge compared to
Ω(n−5).
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The O(log n) Precision Bound

What ist the minimum distance between the intersections of C with two
lines ` and `′?

Case 2

α

p

q `

`′

∆p
d ′

P’

P d

Point on `′:
(

p0
q0

)
=

( 0
2k′−1

2j′

)
.

Then

d ≥ d ′ =
|ip0 + jq0 − (k − 0.5)|√

i2 + j2

=

∣∣∣∣∣ j(2k ′ − 1)− j ′(2k − 1)

2j ′
√

i2 + j2

∣∣∣∣∣
≥ 1√

8n2
.
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The O(log n) Precision Bound

What ist the minimum distance between the intersections of C with two
lines ` and `′?

Case 3

α

p

q `

`′

∆p

P ′

P d

β

P0

d 0

d is found by distance from P0
to C and angle β between ` and
`′.
We show d0 ≥ 1

34n4 and β ≥ 1
n .

β ≥ π2 leads to d ≥ Ω(n−4).
If β < π

2 then isosceles triangle
is worst case:

d ≥ d0 tan
β

2 ≥
1

34n4 tan 1
2n ≥

1
68n5
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The O(log n) Precision Bound

What ist the minimum distance between the intersections of C with two
lines ` and `′?

The lower bound on d gives that α ≥ 1
68n5 .

Now ∆p can be estimated:

∆p = 1− cosα ≥ 1− cos
(

1
68n5

)
≥ 2−14n−10.

The order on p-coordinates gives the order of intersection on C .
The p-coordinates can be approximated with O(log n) precision by a
constant number of arithmetic operations.
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The Cardinality of A(m, n)

Basic Ideas:
1 #points ≈ #line segments ≈ #regions
2 So, we will count line segments then.
3 All lines hĳk : ip + jq = k − 0.5 are cut into segments by other lines.
4 Hence, count the number of intersection points on hĳk to get the

number of its segments:

p =
j ′(k − 0.5)− j(k ′ − 0.5)

ĳ ′ − i ′j and q =
i(k ′ − 0.5)− i ′(k − 0.5)

ĳ ′ − i ′j

5 Finally sum over all lines.
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The Cardinality of A(m, n)

Make it easier:
Ha(n) = {(i , j , k) | 0.5n ≤ i , j ≤ n, 1 ≤ k ≤ 0.01n, gcd(i , j) = 1}
Hb(n) = {(i , j , k) | − n ≤ i , j ≤ n, 1 ≤ k ≤ 0.01n}

Consider only segments obtained by cutting lines hi(−j)k with hi′j′k′

where (i , j , k) ∈ Ha(n) and (i ′, j ′, k ′) ∈ Hb(n).

Christian Hundt, Maciej Liśkiewicz New Complexity Bounds for Image Matching under Rotation and Scaling



The Cardinality of A(m, n)

This means: Count for each (i , j , k) ∈ Ha(n) the number of
(i ′, j ′, k ′) ∈ Hb(n), which give a new fraction:

p =
N
D =

j ′(k − 0.5) + j(k ′ − 0.5)

i j ′ + i ′j

1 We have i and j coprime und thus use Bézout’s Lemma.
2 Then D can be any number in {1, . . . , j · n} by the choice of i ′, j ′.
3 Particularly, any of the Ω(n2/ log n) primes in {0.04n2, . . . , 0.5n2}.
4 By k ′ we can still choose 0.01n many numerators with N < 0.04n2.
5 That gives Ω(n3/ log n) segments on hi(−j)k .
6 Since |Ha(n)| ∈ Ω(n3) we get Ω(n6/ log n) segments.
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End of Talk

Thank you for your attention!
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