Level-k Phylogenetic Networks are Constructable from a Dense Triplet Set in Polynomial Time

Thu-Hien To Michel Habib

LIAFA and University Paris Diderot - Paris 7

Combinatorial Pattern Matching - June 22-24 2009

2 Notations

3 General Algorithm to Construct Networks from a Triplet Set

- 4 Analyse the Algorithm
- 5 Conclusion

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Introduction

 Phylogenetic: infer plausible evolutionary histories from biological data of currently living species

Introduction

- Phylogenetic: infer plausible evolutionary histories from biological data of currently living species
- Biological data: sequences, distance matrix, triplets, quartets, subtrees, characters etc

Introduction

- Phylogenetic: infer plausible evolutionary histories from biological data of currently living species
- Biological data: sequences, distance matrix, triplets, quartets, subtrees, characters etc
- Considered problem: infer phylogenetic networks from a triplet set

Thu-Hien To

Phylogenetic tree: a binary rooted tree whose each leaf is labeled by a species

LIAFA and University Paris Diderot - Paris 7

Phylogenetic tree: a binary rooted tree whose each leaf is labeled by a species Triplet: a phylogenetic tree on 3 species

LIAFA and University Paris Diderot - Paris 7

Phylogenetic tree: a binary rooted tree whose each leaf is labeled by a species Triplet: a phylogenetic tree on 3 species

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Phylogenetic tree: a binary rooted tree whose each leaf is labeled by a species

Triplet: a phylogenetic tree on 3 species

A phylogenetic tree consistent with ${\mathcal T}$

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Phylogenetic tree: a binary rooted tree whose each leaf is labeled by a species

Triplet: a phylogenetic tree on 3 species

A triplet set \mathcal{T} on the leaf set \mathcal{L}

A phylogenetic tree consistent with ${\mathcal T}$

 $\Rightarrow O(|\mathcal{T}|.|n|)$ algorithm, with $n = |\mathcal{L}|$, by Aho, Sagiv, Szymanski, and Ullman '81

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Conflicting triplets

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Conflicting triplets

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Conflicting triplets

Problem

Input: a triplet set \mathcal{T} on a leaf set \mathcal{L} Output: a phylogenetic network consistent with \mathcal{T}

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Related works - Main result

 If T is arbitrary: NP-complete for all levels > 0 Jansson, Nguyen, Sung '06 lersel, Keijsper, Kelk, Stougie '08 lersel, Kelk, Mnich '09

LIAFA and University Paris Diderot - Paris 7

Related works - Main result

- If T is arbitrary: NP-complete for all levels > 0 Jansson, Nguyen, Sung '06 lersel, Keijsper, Kelk, Stougie '08 lersel, Kelk, Mnich '09
- If T is dense, i.e there is at least one triplet in T on each three leaves, then:
 - $O(n^3)$ algorithm for level-1 networks Jansson, Nguyen, Sung '04,'06
 - and $O(n^8)$ algorithm for level-2 network lersel, Keijsper, Kelk, Stougie '08

Thu-Hien To

Related works - Main result

- If T is arbitrary: NP-complete for all levels > 0 Jansson, Nguyen, Sung '06 lersel, Keijsper, Kelk, Stougie '08 lersel, Kelk, Mnich '09
- If T is dense, i.e there is at least one triplet in T on each three leaves, then:

- $O(n^3)$ algorithm for level-1 networks - Jansson, Nguyen, Sung '04,'06

- and $O(n^8)$ algorithm for level-2 network - lersel, Keijsper, Kelk, Stougie '08

Main result presented here: If T is dense, for any fixed integer k, it is possible to construct a level-k network in polynomial time

Phylogenetic network

Hybrid vertices model:

- Recombination
- Hybridization
- Horizontal gene transfer
- Ambiguity

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Consistency of a triplet with a network

 \exists 2 vertices $u \neq v$ and pairwise internally vertex-disjoint paths: $u \rightsquigarrow x, u \rightsquigarrow v, v \rightsquigarrow y,$

 $v \rightsquigarrow z$

x|yz is consistent with the network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Consistency of a triplet with a network

 $\exists 2 \text{ vertices } u \neq v \text{ and} \\ \text{pairwise internally} \\ \text{vertex-disjoint paths:} \\ u \rightsquigarrow x, u \rightsquigarrow v, v \rightsquigarrow y, \end{cases}$

 $v \rightsquigarrow z$

z|xy is also consistent with the network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

First defined by Choy, Jansson, Sadakane, Sung '05

- Take the underlying undirected graph $\mathcal{U}(N)$
- Take the biconnected components of $\mathcal{U}(N)$
- Level $k \Leftrightarrow$ each biconnected component has at most khybrid vertices

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

First defined by Choy, Jansson, Sadakane, Sung '05

- Take the underlying undirected graph $\mathcal{U}(N)$
- Take the biconnected components of $\mathcal{U}(N)$
- Level $k \Leftrightarrow$ each biconnected component has at most khybrid vertices

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

First defined by Choy, Jansson, Sadakane, Sung '05

- Take the underlying undirected graph $\mathcal{U}(N)$
- Take the biconnected components of $\mathcal{U}(N)$

- Level $k \Leftrightarrow$ each biconnected component has at most khybrid vertices

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

First defined by Choy, Jansson, Sadakane, Sung '05

- Take the underlying undirected graph $\mathcal{U}(N)$
- Take the biconnected components of $\mathcal{U}(N)$

- Level $k \Leftrightarrow$ each biconnected component has at most k hybrid vertices

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Cut-arc

Cut-arc: arc whose removal disconnects the network **Highest cut-arc:** cut-arc connects with the highest biconnected component

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Simple network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

first proposed by Jansson, Sung '04

- Partition the leaf set

 $\mathcal{P} = \{P_1, P_2, \ldots, P_m\}$

- Construct recursively a network consistent with $T|P_i$ on each part P_i
- Construct a simple network N_s consistent with $\mathcal{T}\nabla\mathcal{P}$

- Replace each leaf of N_s by the known corresponding sub-network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

first proposed by Jansson, Sung - 2004

- Partition the leaf set $\mathcal{P} = \{P_1, P_2, \dots, P_m\}$

- Construct recursively a network consistent with $T|P_i$ on each part P_i - Construct a simple network N_s consistent with $T\nabla P$

- Replace each leaf of N_s by the known corresponding sub-network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

 $\mathcal{T}\nabla \mathcal{P} = \{P_i | P_j P_k \text{ such that } i, j, k \text{ are pairwise distinct } and \exists x \in P_i, y \in P_j, z \in P_k \text{ for which } x | yz \in \mathcal{T} \}$

first proposed by Jansson, Sung - 2004

- Partition the leaf set $\mathcal{P} = \{P_1, P_2, \dots, P_m\}$
- Construct recursively a network consistent with $\mathcal{T}|P_i$ on each part P_i
- Construct a simple network N_s consistent with $T \nabla P$

- Replace each leaf of N_s by the known corresponding sub-network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

first proposed by Jansson, Sung - 2004

- Partition the leaf set $\mathcal{P} = \{P_1, P_2, \dots, P_m\}$
- Construct recursively a network consistent with $\mathcal{T}|P_i$ on each part P_i
- Construct a simple network N_s consistent with $\mathcal{T} \nabla \mathcal{P}$

- Replace each leaf of N_s by the known corresponding sub-network

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Problems

Two problems to solve:

■ Construct a simple network consistent with T∇P Exist an O(n^{k+1}) algorithm to find all simple networks consistent with a dense triplet set - lersel,Kelk '08

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Problems

Two problems to solve:

- Construct a simple network consistent with T∇P Exist an O(n^{k+1}) algorithm to find all simple networks consistent with a dense triplet set - lersel,Kelk '08
- Find all possible partitions \mathcal{P} of the leaf set

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Properties of a Partition of the Leaf Set

 $\forall x \notin P_i \text{ and } y, z \in P_i$, the only triplet on three leaves x, y, z, if there is any, is x|yz

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

SN-set

SN-set

first defined by Jansson, Sung '04 Let $A \subseteq \mathcal{L}$. A is a SN-set, or Simple Network set, if either:

- it is a singleton
- or the whole ${\boldsymbol{\mathcal L}}$

- or $\forall x \in \mathcal{L} \setminus A$, $y, z \in A$, the only triplet on

 $\{x, y, z\}$ in \mathcal{T} , if there is any, is x|yz.

Remark: Each part of the partition is a SN-set

LIAFA and University Paris Diderot - Paris 7

SN-tree

If ${\mathcal T}$ is $\mbox{dense},$ the collection of all SN-sets is laminar - Jansson, Nguyen, Sung '06

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

SN-tree

If \mathcal{T} is **dense**, the collection of all SN-sets is laminar - Jansson, Nguyen, Sung '06

 \Rightarrow is tree-representable

- each node of the SN-tree represents a SN-set

- the number of non-singleton SN-sets is O(n) with $n = |\mathcal{L}|$
- SN-tree can be computed from \mathcal{T} in $O(n^3)$ -
- Jansson, Nguyen, Sung '06

Thu-Hien To

Characterize a partition by split SN-sets

split SN-set: each child of a split SN-set is a part of the partition.

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

A SN-set split in a network

split in this network

Thu-Hien To

Fact: a SN-set is split in a network iff each of its children is hung below a different highest cut-arc of this network

LIAFA and University Paris Diderot - Paris 7

A function from a split SN-set to a set of hybrid vertices

Define a function f from a split SN-set to a set of hybrid vertices

- Let $A = a_1 \cup \cdots \cup a_m$ be a split SN-set. Each a_i

is hung below a highest cut-arc (u_i, v_i)

- *H* is the set of hybrid vertices of the highest biconnected component $\Rightarrow |H| \le k$

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

A function from a split SN-set to a set of hybrid vertices

Thu-Hien To

Define a function f from a split SN-set to a set of hybrid vertices

- Let $A = a_1 \cup \cdots \cup a_m$ be a split SN-set. Each a_i
- is hung below a highest cut-arc (u_i, v_i)
- *H* is the set of hybrid vertices of the highest biconnected component $\Rightarrow |H| \le k$

 $f(A) = \{h \in H | \exists i \text{ so that } u_i \rightsquigarrow h \text{ and the path}$ from u_i to h does not contain any internal hybrid vertex $\}$

LIAFA and University Paris Diderot - Paris 7

Bound the number of split SN-sets in a level-k network

Lemma 1

Let *N* be any network consistent with \mathcal{T} , then (i) $f(A) \neq \emptyset$ for any SN-set *A* split in *N* (ii) $\forall h \in H$, there are at most **three** SN-sets split in *N*, whose image by *f* contains *h*

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Bound the number of split SN-sets in a level-k network

Lemma 1

Let *N* be any network consistent with \mathcal{T} , then (i) $f(A) \neq \emptyset$ for any SN-set *A* split in *N* (ii) $\forall h \in H$, there are at most **three** SN-sets split in *N*, whose image by *f* contains *h*

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Bound the number of split SN-sets in a level-k network

Lemma 1

Let *N* be any network consistent with \mathcal{T} , then (i) $f(A) \neq \emptyset$ for any SN-set *A* split in *N* (ii) $\forall h \in H$, there are at most **three** SN-sets split in *N*, whose image by *f* contains *h*

Lemma 2

Let \mathcal{T} be a dense triplet set. For any level-k network N consistent with \mathcal{T} , there are at most 3k SN-sets of \mathcal{T} which are split in N

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Theorem

Given a dense triplet set \mathcal{T} , and a fixed positive integer k, it is possible to construct a level-k network consistent with \mathcal{T} , if one exists, in $O(|\mathcal{T}|^{k+1}n^{3k+1})$ time.

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Similar to those of level-1 and level-2 networks, we construct on each SN-set A, in small-big order, a sub-network consistent with T|A

LIAFA and University Paris Diderot - Paris 7

Similar to those of level-1 and level-2 networks, we construct on each SN-set A, in small-big order, a sub-network consistent with $\mathcal{T}|A$

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Similar to those of level-1 and level-2 networks, we construct on each SN-set A, in small-big order, a sub-network consistent with $\mathcal{T}|A$

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Similar to those of level-1 and level-2 networks, we construct on each SN-set A, in small-big order, a sub-network consistent with $\mathcal{T}|A$

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

Similar to those of level-1 and level-2 networks, we construct on each SN-set A, in small-big order, a sub-network consistent with T|A

There are O(n) non-singleton SN-sets $\Rightarrow O(n)$ constructions of a network on a SN-set by knowing a sub-network on each smaller SN-set

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

For each of the O(n) constructions:

- Constructing a simple level-k network: $O(|\mathcal{T}|^{k+1})$ lersel,Kelk '08
- The number of partitions = the number of sets of split SN-sets : $O(n^{3k})$

For each of the O(n) constructions:

- Constructing a simple level-k network: $O(|\mathcal{T}|^{k+1})$ lersel,Kelk '08
- The number of partitions = the number of sets of split SN-sets : $O(n^{3k})$
- \Rightarrow Total: $O(|\mathcal{T}|^{k+1}n^{3k+1})$

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

The network with the minimum number of recombinations

Theorem

Given a dense triplet set \mathcal{T} , and a fixed positive integer k, it is possible to construct a level-k network consistent with \mathcal{T} with the minimum number of recombinations, if one exists, in $O(|\mathcal{T}|^{k+1}n^{3k+1})$ time.

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

The network with the minimum number of recombinations

Theorem

Given a dense triplet set \mathcal{T} , and a fixed positive integer k, it is possible to construct a level-k network consistent with \mathcal{T} with the minimum number of recombinations, if one exists, in $O(|\mathcal{T}|^{k+1}n^{3k+1})$ time.

Idea for the proof: If N is a level-k network with the minimum number of recombinations, then each sub-network below a highest cut-arc of N is also the one with the minimum number of recombinations

Constructing a level-k network consistent with a dense triplet set with the minimum number of recombinations is polynomial with any fixed k

- Constructing a level-k network consistent with a dense triplet set with the minimum number of recombinations is polynomial with any fixed k
- Better bound? better algorithm?

- Constructing a level-k network consistent with a dense triplet set with the minimum number of recombinations is polynomial with any fixed k
- Better bound? better algorithm?
- Relax the condition of density on the triplet set?

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

- Constructing a level-k network consistent with a dense triplet set with the minimum number of recombinations is polynomial with any fixed k
- Better bound? better algorithm?
- Relax the condition of density on the triplet set?
- Open problem: the network with the minimum level consistent with a dense triplet set? NP-complete?

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

- Constructing a level-k network consistent with a dense triplet set with the minimum number of recombinations is polynomial with any fixed k
- Better bound? better algorithm?
- Relax the condition of density on the triplet set?
- Open problem: the network with the minimum level consistent with a dense triplet set? NP-complete?

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7

- Constructing a level-k network consistent with a dense triplet set with the minimum number of recombinations is polynomial with any fixed k
- Better bound? better algorithm?
- Relax the condition of density on the triplet set?
- Open problem: the network with the minimum level consistent with a dense triplet set? NP-complete?

Thank you

Thu-Hien To

LIAFA and University Paris Diderot - Paris 7