
Fast Searching in Packed Strings	

Philip Bille

1

String Matching

• Problem: Given strings P and Q of lengths m and n, resp., report all
occurrences of P in Q.

• KMP-algorithm [KMP1977] uses O(n) time (assume w.l.o.g. m ≤ n).

• Optimal if strings are stored with one char per memory word.

Q = aababcabbababcababcaaabbab

P = ababca

2

Packed Strings

• Real strings are packed:

• With word-length log n a memory word holds ≈ log n / log σ characters.

• S uses O(|S| log σ/log n) = O(|S|/ logσn) words.

S =

logσ

≈ logn

S = ababbbacab

a bca aabbbb

3

Packed String Matching

• Problem: String matching with P and Q in packed representation.

• Lower bound:

• What is the best upper bound?

• Can we do better than O(n)?

Ω

(
n +m

logσ n
+ occ

)

4

a bca aabbbb

P = ababca

Q =

4 0 2

A Simple Algorithm: Use a lots of space

5

a bca aabbbb

P = ababca

Q =

4 0 2

A Simple Algorithm: Use a lots of space

• Idea: Traverse Q from left-to-right reading r ≈ #number of characters per word
at a time.

5

a bca aabbbb

P = ababca

Q =

4 0 2

A Simple Algorithm: Use a lots of space

• Idea: Traverse Q from left-to-right reading r ≈ #number of characters per word
at a time.

• At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

5

a bca aabbbb

P = ababca

Q =

4 0 2

A Simple Algorithm: Use a lots of space

• Idea: Traverse Q from left-to-right reading r ≈ #number of characters per word
at a time.

• At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

• To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

5

a bca aabbbb

P = ababca

Q =

4 0 2

A Simple Algorithm: Use a lots of space

• Idea: Traverse Q from left-to-right reading r ≈ #number of characters per word
at a time.

• At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

• To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

O(mσr)

O(n/r +mσr + occ)

Space:

Time:

5

a bca aabbbb

P = ababca

Q =

4 0 2

A Simple Algorithm: Use a lots of space

• Idea: Traverse Q from left-to-right reading r ≈ #number of characters per word
at a time.

• At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

• To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

O(n/ logσ n +mn
ε + occ)

r = ε log! n

O(mnε)O(mσr)

O(n/r +mσr + occ)

Space:

Time:

5

SimpleSimple

This
paper
This

paper

O(mσr)

O

(
n

logσ n
+m + occ

)

O(mnε)

O
(n
r
+mσr + occ

)

Complexities

O

(
n

logσ n
+mnε + occ

)

O(m + nε)

O
(n
r
+m + σr + occ

)
O(m + σr)

SpaceTime

6

Algorithm Overview

• Based on the Knuth-Morris-Pratt automaton.

• The “Four-Russian Technique” (divide and tabulate) with new twists.

7

KMP(P)

The Knuth-Morris-Pratt Automaton

a b ca b a

P = ababca

8

A First Attempt: The Four-Russian Technique

9

A First Attempt: The Four-Russian Technique

9

r

A First Attempt: The Four-Russian Technique

9

r

A First Attempt: The Four-Russian Technique

• Tabulate information for each subautomata to allow up to r internal transitions
in constant time.

9

r

A First Attempt: The Four-Russian Technique

• Tabulate information for each subautomata to allow up to r internal transitions
in constant time.

• Simulate by doing external transitions explicitly and internal transitions using
the tabulated information.

9

r

A First Attempt: The Four-Russian Technique

• Tabulate information for each subautomata to allow up to r internal transitions
in constant time.

• Simulate by doing external transitions explicitly and internal transitions using
the tabulated information.

• Issue 1: Too many external transitions.

9

r

A First Attempt: The Four-Russian Technique

• Tabulate information for each subautomata to allow up to r internal transitions
in constant time.

• Simulate by doing external transitions explicitly and internal transitions using
the tabulated information.

• Issue 1: Too many external transitions.

• Issue 2: Representing subautomata compactly.

9

Fixing 1: Too Many External Transitions

10

Fixing 1: Too Many External Transitions

10

Fixing 1: Too Many External Transitions

10

Fixing 1: Too Many External Transitions

10

Fixing 1: Too Many External Transitions

10

Fixing 1: Too Many External Transitions

10

Fixing 1: Too Many External Transitions

At most O(n/r) external transitions in simulation of Q

10

Fixing 2: Representing Subautomata Compactly

• We want to encode an arbitrary subautomaton of KMP(P) in O(r log σ) bits.

• Non-failure transitions encoded by the sequence of labels in O(r log σ) bits.

• How about the failure transitions in S?

a b ca b a

11

Fixing 2: Representing Subautomata Compactly

a b ca b a

12

Fixing 2: Representing Subautomata Compactly

a b ca b a

• Storing r explicit pointers uses Ω(r log r) bits.

12

Fixing 2: Representing Subautomata Compactly

a b ca b a

• Storing r explicit pointers uses Ω(r log r) bits.

• Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

12

Fixing 2: Representing Subautomata Compactly

a b ca b a

• Storing r explicit pointers uses Ω(r log r) bits.

• Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

• => Total increase at most r => Total decrease at most O(r).

12

Fixing 2: Representing Subautomata Compactly

a b ca b a

• Storing r explicit pointers uses Ω(r log r) bits.

• Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

• => Total increase at most r => Total decrease at most O(r).

• => We can difference encode all failure transitions with O(r) bits.

12

O(n/r +m + σr + occ) O(n/ logσ n +m + occ)

O(m + nε)

Putting the Pieces together

• Construct segment automaton and tabulate transitions for subautomata using
the compact encoding.

• Simulate the segment automaton. Each external transitions is done explicitly.
Internal transitions are done using the tabulation.

• Complexity: r = ε log! n

Space:

Time:

O(m + σr)

13

Directions

14

Directions

• Packed string matching:

14

Directions

• Packed string matching:

• Practical?

14

Directions

• Packed string matching:

• Practical?

• Long word lengths?

14

Directions

• Packed string matching:

• Practical?

• Long word lengths?

• Multi-string matching?

14

Directions

• Packed string matching:

• Practical?

• Long word lengths?

• Multi-string matching?

• Packed problems appear everywhere.

14

Directions

• Packed string matching:

• Practical?

• Long word lengths?

• Multi-string matching?

• Packed problems appear everywhere.

• Longer word lengths => more packing.

14

Directions

• Packed string matching:

• Practical?

• Long word lengths?

• Multi-string matching?

• Packed problems appear everywhere.

• Longer word lengths => more packing.

• Most packed problems are not well-solved.

14

