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String Matching

e Problem: Given strings P and Q of lengths m and n, resp., report all
occurrences of P in Q.

Q = aababcabb|ababca|babca|aabbab

P = ababca

e KMP-algorithm [KMP1977] uses O(n) time (assume w.l.o.g. m < n).

e Optimal if strings are stored with one char per memory word.



Packed Strings

e Real strings are packed:.

S = ababbbacab

log o
—
S=1| a b a b b b a C a b
~ log n

e \With word-length log n a memory word holds = log n / log o characters.

e S uses O(|S| log a/log n) = O(S|/ logen) words.



Packed String Matching

e Problem: String matching with P and Q in packed representation.

n—+m
e | ower bound: {2 ( + occ)
log, n

e \What is the best upper bound?

e Can we do better than O(n)?
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e |dea: Traverse Q from left-to-right reading r = #number of characters per word
at a time.

e At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

¢ To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

r =e€elog, n
Space: O(mao") O(mn®)
Time: O(n/r + mo" + occ) O(n/log, n+ mn® + occ)



Complexities

Time Space
n r I
o, (7 + mo" + occ) O(ma")
Simple
O < e occ) O(mn®)
log, n
O(ﬁ+m+ar+occ) O(m+4c")
' This
aper
O( d Im+occ> O(m+ n°) Pap
log, n




Algorithm Overview

e Based on the Knuth-Morris-Pratt automaton.

e The “Four-Russian Technique” (divide and tabulate) with new twists.
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e Tabulate information for each subautomata to allow up to r internal transitions
In constant time.

e Simulate by doing external transitions explicitly and internal transitions using
the tabulated information.

¢ |ssue 1: Too many external transitions.

¢ |ssue 2: Representing subautomata compactly.
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At most O(n/r) external transitions in simulation of Q
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Fixing 2: Representing Subautomata Compactly
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¢ \\le want to encode an arbitrary subautomaton of KMP(P) in O(r log 0) bits.

e Non-failure transitions encoded by the sequence of labels in O(r log 0) bits.

e How about the failure transitions in S?
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e Storing r explicit pointers uses Q(r log r) bits.

¢ Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

e —> Total increase at most r => Total decrease at most O(r).

e —> \We can difference encode all failure transitions with O(r) bits.
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Putting the Pieces together
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e Construct segment automaton and tabulate transitions for subautomata using
the compact encoding.

e Simulate the segment automaton. Each external transitions is done explicitly.
Internal transitions are done using the tabulation.

e Complexity: r = elog, n

Space: O(m+o") O(m+ n®)
Time: O(n/r+ m+ o" + occ) O(n/log, n+ m 4+ occ)
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Directions

e Packed string matching:
e Practical?
e | ong word lengths?
e Multi-string matching?
e Packed problems appear everywhere.
e | onger word lengths => more packing.

e Most packed problems are not well-solved.
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