—ast Searching in Packed Strings

Philip Bille

String Matching

e Problem: Given strings P and Q of lengths m and n, resp., report all
occurrences of P in Q.

Q = aababcabb|ababca|babca|aabbab

P = ababca

e KMP-algorithm [KMP1977] uses O(n) time (assume w.l.o.g. m < n).

e Optimal if strings are stored with one char per memory word.

Packed Strings

e Real strings are packed:.

S = ababbbacab

log o
—
S=1| a b a b b b a C a b
~ log n

e \With word-length log n a memory word holds = log n / log o characters.

e S uses O(|S| log a/log n) = O(S|/ logen) words.

Packed String Matching

e Problem: String matching with P and Q in packed representation.

n—+m
e | ower bound: {2 (+ occ)
log, n

e \What is the best upper bound?

e Can we do better than O(n)?

A Simple Algorithm: Use a lots of space

P = ababca

=] a]l bl al]b b| b | al|c a | b

A Simple Algorithm: Use a lots of space

P = ababca

=] a]l bl al]b b| b | al|c a | b
4 0 2

e |dea: Traverse Q from left-to-right reading r = #number of characters per word
at a time.

A Simple Algorithm: Use a lots of space

P = ababca

=] a]l bl al]b b| b | al|c a | b
4 0 2

e |dea: Traverse Q from left-to-right reading r = #number of characters per word
at a time.

e At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

A Simple Algorithm: Use a lots of space

P = ababca

=] a]l bl al]b b| b | al|c a | b
4 0 2

e |dea: Traverse Q from left-to-right reading r = #number of characters per word
at a time.

e At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

¢ To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

A Simple Algorithm: Use a lots of space

P = ababca

=] a]l bl al]b b| b | al|c a | b
4 0 2

e |dea: Traverse Q from left-to-right reading r = #number of characters per word
at a time.

e At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

¢ To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

Space: O(ma")
Time: O(n/r + mo" + occ)

A Simple Algorithm: Use a lots of space

P = ababca

=] a]l bl al]b b| b | al|c a | b
4 0 2

e |dea: Traverse Q from left-to-right reading r = #number of characters per word
at a time.

e At each step compute the longest prefix of P matching the current suffix of Q.
(slightly more information needed to also report occurrences).

¢ To do step in constant time store for each prefix of P and each combination of
r characters a pointer to the next prefix. (called a “super-alphabet
technique” [Fre02]).

r =e€elog, n
Space: O(mao") O(mn®)
Time: O(n/r + mo" + occ) O(n/log, n+ mn® + occ)

Complexities

Time Space
n r I
o, (7 + mo" + occ) O(ma")
Simple
O < e occ) O(mn®)
log, n
O(ﬁ+m+ar+occ) O(m+4c")
' This
aper
O(d Im+occ> O(m+ n°) Pap
log, n

Algorithm Overview

e Based on the Knuth-Morris-Pratt automaton.

e The “Four-Russian Technique” (divide and tabulate) with new twists.

The Knuth-Morris-

-———
-

- -

Pratt Automaton

P — ababca

. —— —_—e— - -
-~ -
~

— e e A - — o
- -
-~

\\\\\
”

A First Attempt: The Four-Russian Technique

A First Attempt: The Four-Russian Technique

P

O e O O OO0+ O+ O—r O+ O+ O+ e O D+ O+ O+ O+ O O+ O+ O+ O+ O+ O—O

A First Attempt: The Four-Russian Technique

r

A First Attempt: The Four-Russian Technique

-——— P
-

r

e Tabulate information for each subautomata to allow up to r internal transitions
In constant time.

A First Attempt: The Four-

-

Russian Technique

—————

r

e Tabulate information for each subautomata to allow up to r internal transitions

In constant time.

e Simulate by doing external transitions explicitly and internal transitions using

the tabulated information.

A First Attempt: The Four-Russian Technique

-——— P
-

r

e Tabulate information for each subautomata to allow up to r internal transitions
In constant time.

e Simulate by doing external transitions explicitly and internal transitions using
the tabulated information.

¢ |ssue 1: Too many external transitions.

A First Attempt: The Four-Russian Technique

-——— P
-

r

e Tabulate information for each subautomata to allow up to r internal transitions
In constant time.

e Simulate by doing external transitions explicitly and internal transitions using
the tabulated information.

¢ |ssue 1: Too many external transitions.

¢ |ssue 2: Representing subautomata compactly.

Fixing 1: Too Many External Transitions

Fixing 1: Too Many External Transitions

P

O e O O OO0+ O+ O—r O+ O+ O+ e O D+ O+ O+ O+ O O+ O+ O+ O+ O+ O—O

10

Fixing 1: Too Many

—xternal Transitions

10

Fixing 1: Too Many External Transitions

—————

(OO0 0000000 O0O0)JOO OO O OO)JoOo O OO OO0 O0)

(O OO0 0000000000000 O0O0O0OO0O0 0)

10

Fixing 1: Too Many External Transitions

—————

—————

[o»o»o»o»o»o)[o»o»o»o‘»'o»b)[o»o»b»é»o»o)[O—+0O—~0—~0—0)

10

Fixing 1: Too Many External Transitions

—————

—————

[o»o»o»o»o»o%o»o»o»oimo%o»o»&é»o»@eo»o»o»o»o]

10

Fixing 1: Too Many External Transitions

-_——--
- -
-

(O~ O0~0—~0FO~0~0FO~O—~OK - O~ OF OO~ OFO~O~OF O~O~04O—~0)

- — -
-

—————

[o»o»o»o»o»o%o»o»o»o‘»'o»b%o»o»g»é»o»o}eo»o»o»o»o]

At most O(n/r) external transitions in simulation of Q

10

Fixing 2: Representing Subautomata Compactly

- -
-
- -

e e A -
- - -

-

¢ \\le want to encode an arbitrary subautomaton of KMP(P) in O(r log 0) bits.

e Non-failure transitions encoded by the sequence of labels in O(r log 0) bits.

e How about the failure transitions in S?

11

FIXINng 2:

Representing Subautomata Compactly

- -
-
-

T TTTTT D T - T~
a TN T)
///7/ // \></
/4 Pid N AN
O‘ N L o N L N N . RQ
g\, g\, > > g\, >

12

Fixing 2: Representing Subautomata Compactly

- -
- -

e e A -
- -

-

e Storing r explicit pointers uses Q(r log r) bits.

12

Fixing 2: Representing Subautomata Compactly

- -
-
- -

[i S,
- - -

-

e Storing r explicit pointers uses Q(r log r) bits.

¢ Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

12

Fixing 2: Representing Subautomata Compactly

- -
- -
e e A o ——
- -

-

e Storing r explicit pointers uses Q(r log r) bits.

¢ Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

e —> Total increase at most r => Total decrease at most O(r).

12

Fixing 2: Representing Subautomata Compactly

- -
-
- -

[i S,
- - -

-

e Storing r explicit pointers uses Q(r log r) bits.

¢ Instead we exploit a basic property of KMP-automata: In any subautomaton
failure transition endpoints increase by at most 1 between consecutive states.

e —> Total increase at most r => Total decrease at most O(r).

e —> \We can difference encode all failure transitions with O(r) bits.

12

Putting the Pieces together

[o»o‘»b‘»’é»&oﬁ{o»o»o»o»o»o}{oﬁo#o»o»o»oa{o»o»o»o»o»o{o»o)

—————

[o»o»o»o»o»o}{o»o»o»oimo%o»o»&é»o»o}eo»o»o»o»o)

e Construct segment automaton and tabulate transitions for subautomata using
the compact encoding.

e Simulate the segment automaton. Each external transitions is done explicitly.
Internal transitions are done using the tabulation.

e Complexity: r = elog, n

Space: O(m+o") O(m+ n®)
Time: O(n/r+ m+ o" + occ) O(n/log, n+ m 4+ occ)

13

Directions

14

Directions

e Packed string matching:

14

Directions

e Packed string matching:

e Practical?

14

Directions

e Packed string matching:
e Practical?

e | ong word lengths?

14

Directions

e Packed string matching:
e Practical?
e | ong word lengths?

e Multi-string matching?

14

Directions

e Packed string matching:
e Practical?
e | ong word lengths?
e Multi-string matching?

e Packed problems appear everywhere.

14

Directions

e Packed string matching:
e Practical?
e | ong word lengths?
e Multi-string matching?
e Packed problems appear everywhere.

e | onger word lengths => more packing.

14

Directions

e Packed string matching:
e Practical?
e | ong word lengths?
e Multi-string matching?
e Packed problems appear everywhere.
e | onger word lengths => more packing.

e Most packed problems are not well-solved.

14

