
Optimal(almost) edit distance ”1” dictionary

Djamal Belazzougui
Ecole national Superieure d’informatique, Algiers, Algeria

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Edit distance

The edit distance between two strings x and y is the minimal
number of edit operations needed to get string y from string x
(which is the same as number of edit operations needed to get
string x from string y).

Usually considered edit operations are: insertion, deletions and
substitution.

Insertion: insert a character c at some position in the string.
Deletion: delete some character from the string.
Substitution: substitute some character of the string with
another character.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Problem definitions (Approximate dictionary with edit
distance ”1”)

We work in the word RAM model with word length w. All
standard operations including multiplication, division and shift
take constant time.

We have a set S of n strings.

Total number of characters in all strings is m.

Each character is encoded using b bits.

The size of alphabet is noted by α where α = 2b.

We have to build a data structure on the set S so that we can
answer to an approximate queries that asks for all strings of
the set S that are at edit distance at most ”1” from a query
string q.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Applications

Spell checking in word processors.

Data-cleaning in databases. The same name is spelled
differently in different databases.

Optical character recognition. Correct the mis-recognized
characters or complete the unrecognized characters.

Information retrieval(Search engines): correct for user’s typing
errors.

Bio-informatics.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Problem definitions(Approximate full-text indexing with
edit distance ”1”)

We work in the word RAM model.

We have a text T of length n characters .

We have to build a data structure on the set S so that we can
answer to an approximate query that asks for all sub-strings of
the text T that are at edit distance at most 1 from a query
string q.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Results

A dictionary that occupies O(mb) bits space.

Space is optimal up to a constant factor.

Query time of the dictionary is O(k), where k = |q| is the
length of query string.

Query time is almost optimal.

Application: a full text index that occupies space
O(n(lg(n) lg lg(n))2b) bits with query time O(|q|).

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Related work(approximate dictionary for edit distance”1”)

General case:

Recall that α is alphabet size and α = 2b(each character is
represented using b bits).

Length of query string q is k = |q|

Method Qeury time Space usage Construction time
BG96(1) O(k) O(αm) words N.A
BG96(2) O(bk + lg(n)) O(m) words O(m)
BG96(3) O(αk) O(m) words O(m)
CGL04 O(k + lg(n) lg lg(m)) O(m + n lg(n)) words O(m lg(m))

New result O(k) O(mb) bits(optimal) O(m)

BG96 : Brodal, Gasieniec. Approximate Dictionary Queries. CPM
1996.
CGL04 : Cole, Gottlieb, Lewenstein. Dictionary matching and
indexing with errors and don’t cares. STOC 2004.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Related work(approximate dictionary for edit distance”1”)

Constant sized alphabets case:

We have b = O(1) and hence α = 2b = O(1).

Recall that a word occupies w bits.

Method Qeury time Space usage Construction time
BG96(1) O(k) O(mw) bits N.A
BG96(2) O(k + lg(n)) O(mw) bits O(m)
BG96(3) O(k) O(mw) bits O(m)
CGL04 O(k + lg(n) lg lg(m)) O((m + n lg(n))w) bits O(m lg(m))

New result O(k) O(m) bits(optimal) O(m)

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Related work(approximate full-text indexing for edit
distance”1”)

We have to index a text Tof length n characters. Each
character is chosen from a set of α = 2b possible characters.

Queries: report all sub-strings of the text T that are at edit
distance ”1” from query string q.

We have length of q is k = |q|.

Method Qeury time Space usage

CGL04 O(k + lg(n) lg lg(n)) O(n lg2(n)) bits

New result O(k) O(n(lg2(n) lg lg2(n))b) bits

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Naive solution (using exact dictionary)

Using a standard hash based dictionary occupying space
O(mb) bits.

Query time for exact queries is O(|s|) for a string s.

For approximate queries on a string q, we can simply generate
all strings at edit distance ”1” from q and query exact
dictionary for each string.

We have k,k2b and (k − 1)2b candidate strings that can be
obtained from q using deletion,substitution and insertion
respectively.

Total query time becomes O(k2b · k) = O(k22b).

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Overview of the new solution (Reducing number of
candidate strings)

number of candidate strings for deletions is k.

Reduce the number of candidate strings for substitutions and
insertions to k and k + 1 respectively instead of k2b and
(k + 1)2b. For each possible position for insertion or
substitution we have a list of candidate characters. Hence we
have to explore k and k + 1 lists in total for substitutions and
insertions.

Sufficient to check just for first character of the each list.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Overview of the new solution (Reduce query time for each
candidate string to O(1))

Look-up for a candidate string involves two step: compute a
hash function on candidate string and compare the candidate
string with the string from the dictionary pointed by the hash
function.

Use a preprocessing step that takes O(k) time.

Each subsequent hash function evaluation takes O(1) time.

Each subsequent string comparison takes takes O(1) time
also.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components

We make use of the following components:

Two Succinctly encoded tries.

Injective hash functions from sets of strings into sets of
integers.

Minimal perfect hash functions.

Succinctly encoded sequences of integers.

Dictionary based on Minimal perfect hashing.

Dictionary that stores Succinctly encoded lists, where each list
is associated with a key.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components: succinctly encoded tries

Succinctly encoded trie. A trie can be encoded using space
O(mb) bits.

Time to construct the trie is O(m).

Time to traverse the trie is O(k) for a string of length k.

At each step of the traversal, we get a unique identifier in
interval [0,m − 1].

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components: minimal perfect hash function

Minimal perfect hash function for integers

A minimal perfect hash functions (mphf) maps a set of n′

integer keys to interval [0, n − 1].

Time to construct the perfect hash function if O(n′).

Query time is O(1).

Minimal perfect hash function for strings

For a set of n′ strings having a total of m′ characters, we first
apply a simple hash function that maps the set of strings to
integers of O(lg(n)) bits.

We can now build the mphf on the set of integers.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components: hash function for strings

Goal: reduce each of the variable length strings to integers
occupying O(w) bits each, so that each string is mapped to a
distinct integer.

The hash functions is a polynomial over prime field modulo a
prime P , where P ≥ 2b and P >= mn2.

For a string s, the hash function is evaluated as

ht(s) =

|s|∑

i=1

s[i] ⊗ t i

where t is a number from interval [1,P] that characterizes the
hash function.

All additions and multiplications are done modulo P .

With a randomly chosen t, the hash function ht will be
injective over interval [0,P − 1] with probability at most 1/2.

Keep choosing a new value for t until all strings are mapped
to a distinct integer.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components:Succinctly encoded Compressed sequences of
integers

We have a sequence of n integers.

The sum of the integers in the sequence is m.

We can encode the integers to use space n(2 + lg(m/n)) bits.

The encoding permits to retrieve the sum of integers
sumk = x0 + x1 + · · · + xk for any k in constant time.

Retrieving the integer xk can be deduced in O(1) time using
formulae xk = sumk − sumk−1.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components: mphf based dictionary for variable length
strings

We use mphf to map n strings to integers in the range
[0, n − 1].

Store the lengths of strings using a succinctly encoded
sequence of integers.

Store the strings in array in the order given by the mphf .

Constant access to the start position of every string.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Components: retrieval only dictionary of lists

Very similar to the dictionary for variable length strings.

Instead of storing a set of strings, we store a set of lists where
each list is associated with a key(we do not store the key
itself).

returns size of a list associated with a key in constant time.

Constant time access any element of a list.

The data structure is retrieval only: the data structure returns
the correct list for an existing key, but returns an arbitrary list
for a non-existing key.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Putting elements together

Our data structure will contain the following elements:

A trie Tr that stores the strings of S .

A reverse trie Tr that stores the strings of S where the set S

is the set of strings of S written in reverse order.

a variant of mphf based dictionary.

dictionary of lists.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Putting elements together (trie and reverse trie)

Our data structure will contain the following elements:

Construction of Tr and Tr takes time O(m).

The trie Tr and reverse trie Tr are succinctly encoded.

Space usage of Tr and Tr is O(mb) bits.

traversal of the trie and reverse trie returns a unique identifier
at each step.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Putting elements together (mphf based dictionary)

A dictionary for variable length strings augmented with
signatures for long strings.

Short strings are stored unmodified.

A string is considered as a long one if its length exceeds w

bits.

Each long string will be stored in triple its original size.

We use a parameter u = lg(m)/b.

For a long string s we store signatures of prefixes of s of
lengths u, 2u, 3u,

We also store signatures of suffixes of s of lengths
u, 2u, 3u,

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Putting elements together (mphf based dictionary)

Each signature occupies lg(m) bits.

Signatures of prefixes of s are obtained by traversing trie Tr

for the string s.

Signatures of suffixes of s are obtained by traversing trie Tr

for the string s (string s written in reverse order).

The signature of a prefix of length iu is the unique identifier
returned by the trie Tr at step iu of traversal for the string s.

The signature of a suffix of length iu is the unique identifier
returned by the trie Tr at step iu of the traversal for the
string q.

Total space used by signatures does not exceed 2|s|b bits.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Putting elements together (lists dictionary)

For each string s from S of length k = |s|, we do the following
pre-processing:

We traverse the trie Tr and store in an array L[0..k], the
labels encountered at each step of the traversal.

Likewise we traverse the trie Tr for the string s and store the
labels encountered at each step of traversal in array R [0..k].

In total we store exactly k characters in the lists for th string
s.

Total space used by all lists is the same as the space occupied
by the strings themselves.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Queries(Preprocessing for signatures)

We have a string q of length k.

Traverse the trie Tr for the string q and store in a an array
L[1..k], the labels (integers) returned at each step of the
traversal.

Traverse the the trie Tr for the string q (q written in reverse
order), and store the returned labels in an array R [1..k].

Time for traversal of Tr and Tr is O(k).

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Queries(Preprocessing for hashing)

Compute an array At [0, k + 1] of powers of t (recall that t is
the number that characterizes the hash function). This takes
time O(k): first set At [0] = 1, then set At [i + 1] = At [i] · t
for every i ∈ [1, k]).

Compute an array F [0..k] of the hash values of all prefixes of
q: first set F [0] = 0, then set F [i] = F [i − 1] + (q[i] · At [i])
for each i ∈ [1, k]. Total time is O(k).

Compute the array G [1..k] of hash values of all suffixes of q:
first set F [0] = 0, then set F [i] = F [i − 1] + (q[i] · At [i]) for
each i ∈ [1, k]. Total time O(k).

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Queries(Substitution)

For i ∈ [1, k] such that L[i − 1] 6=⊥ and R [k − i] 6=⊥ we do the
following:

Query the retrieval list for every pair (L[i − 1],R [k − i]).

L[i] is the identifier of of q[1..i − 1] (prefix of q of length i − 1)

R [k − i] is the identifier of q[i + 1..k] (suffix of q of length
k − i).

First element of list associated with a pair (L[i − 1],R [k − i])
is a character c that could be substituted at position i in
string q.

We now have to look for the string
q′ = q[0..i − 1] · cq[i + 1..k] in the mphf based dictionary. If
we have a match we continue to report all remaining elements
(characters) of the list.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Queries(Lookup in dictionary)

Lookup in the dictionary should not take more than O(1)
time.

We can compute h(q′) in constant time using formulae

h(q′) = F [i − 1] ⊕ (c ⊕ G [i + 1]) ⊗ At [i]

.

We can now use the hash value h(q′) to compute mphf which
will point to a string s in the dictionary. If s is a short string
of length ≤ w , we can compare it with q′ in constant time.
Otherwise we compare s with q′ using the array sl of left
signatures and the array sr of right signatures.

Length of s is 3k .
lq′ = 0 ∨ sl [lq′] = L[lq′].
q[u · lq′ + 1..i − 1] = s1[u · lq′ + 1..i − 1].
s1[i] = c .
q[i + 1..k − u · rq′] = s1[i + 1..k − u · rq′].
rq′ = 0 ∨ sr [rq′] = R [rq′].

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Example(construction)

A set of two strings ”wearable” and ”hashable”.

Suppose w = 32 bits. We use ASCII alphabet: b = 8 bits and
α = 256 (we have 256 distinct characters).

The two strings are considered as long strings as their length
exceeds w = 32 bits.

We have u = (32/8) = 4.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Example(construction)

We build the trie Tr and reverse trie Tr .

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Example(construction)

Traverse the trie Tr for the strings ”wearable” and ”hashable”
resulting in sequences [0, 2, 4, 6, 8, 10, 12, 14, 16] and
[0, 1, 3, 5, 7, 9, 11, 13, 15].

Traverse the reverse trie Tr for the strings = ”elbaraew” and
”elvahsah”, resulting in sequences [0, 1, 2, 3, 4, 6, 8, 10, 12] and
[0, 1, 2, 3, 4, 5, 7, 9, 11].

For string ”wearable”, we store the characters w ,e,a,r ,a,b,l ,e
in the lists associated with pairs
(0, 12),(2, 10),(4, 8),(6, 6),(8, 4),(10, 3),(12, 2),(14, 1),(16, 0)
respectively.

For string ”hashable”, we store the characters h,a,s,h,a,b,l ,e
in lists associated with pairs
(0, 11),(1, 9),(3, 7),(5, 5),(7, 4),(9, 3),(11, 2),(13, 1),(15, 0)
respectively.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Example(construction)

Build the mphf based dictionary.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Application to full-text indexing

We have to index a text n characters each encoded using b

bits.

We first, index the text using the data structure of CGL04.

Space usage of that data structure is O(n lg(n) lg lg(n)) words.

Query time of data structure is O(k + lg(n) for a pattern of
length k which is optimal when k ≥ lg(n).

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Application to full-text indexing

To obtain optimal query time for k < lg(n), we build our
dictionary on all substring of the text of lenghts below lg(n).

For each sub-string stored in dictionary, we store a pointer to
its location in the text.

Total number of sub-srings is about n lg(n) lg lg(n), and each
sub-string is of length at most lg(n) lg lg(n).

Total space is thus O(n(lg2(n) lg lg2(n))b) bits.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Conclusion

We have presented a dictionary for approximate edit distance
”1” queries that uses optimal space up to constant factor.

Query time for a string of length k characters is O(k), which
is optimal for very large alphabets(characters that occupy w

bits), but not for smaller alphabets, for which query time is a
factor w away from optimal.

Straightforward application of our dictionary permits to build
a full-text index that uses space O(n(lg(n) lg lg(n))2) with
query time O(k) for a pattern of length k.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Follow-ups

We plan to investigate practical performance of the dictionary.

For constant-sized alphabets we can improve query time of our
dictionary from O(k) to optimal O(k/w) (factor w speedup)
at the expense of using space that is a factor lg(w) from
optimal (we use space O(m lg(w)) bits instead of O(m) bits).

For approximate full-text indexing, we have an improved
solution with space usage reduced to O(n lg(n) lg lg(n)) bits
for constant sized alphabets and to O(n lg(n) lg lg(n)) words
for arbitrary alphabets.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

Open problems

Improving space: reduce constant factors, entropy
compression.

Is there any lower bound on space/time trade-off for the
dictionary.

What about external memory. A straightforward adaptation
of our dictionary in external memory would use O(k) I/Os.
An optimal solution would use O(k/B) I/Os.

Dynamic version of our dictionary.

Djamal Belazzougui Ecole national Superieure d’informatique, Algiers, AlgeriaOptimal(almost) edit distance ”1” dictionary

