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The context: Sorting by reversals

Biological motivations

Reconstruction of evolution scenarios

Mouse — QOperation on genome = reversal
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: : % ’ m Model for genome = signed

———— permutation
Bl = m Reversal = reverse a window of the
i |§:-=<_- - e permutation while changing the signs
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The context: Sorting by reversals

Sorting by reversals: the problem and solution

The problem:
m INPUT: Two signed permutations o4 and o2
B ouTpPuT: A parsimonious scenario from o1 to o2 or o2

Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, co = Id=12...n

The solution:
m Hannenhalli-Pevzner theory
m Polynomial algorithms: from O(n*) to O(n+/nlog n)

Remark: the problem is NP-hard when permutations are unsigned.
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The problem we consider: Perfect sorting by reversals

Definition and motivation

Perfect sorting by reversals: do not break common intervals.

Common interval between oy and o»: windows of oy and o
containing the same elements (with no sign)
Example: oy =5137624ando,=6471325

When o> = Id, interval of o1 = window forming a range (in N)
Example: 01 =4756312

Biological argument: groups of identical (or homologous) genes
appearing together in two species are likely

m together in the common ancestor
m never separated during evolution
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The problem we consider: Perfect sorting by reversals

Algorithm and complexity

The problem:
m INPUT: Two signed permutations o4 and o2

m ouTpPuT: A parsimonious perfect scenario (=shortest among
perfect) from o to o or o2

Without loss of generality, co = Id=12...n
Beware: Parsimonious perfect = parsimonious
Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of
decomposition trees to produce a FPT algorithm (2 - n°())
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Also known as strong interval trees
m Strong interval = does not overlap any other interval
m Inclusion order on strong intervals: a tree-like ordering

241D
5.717 o [1.4]
VN A
586 7 4 31.2]

Computation: in linear time
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Quotient permutation = Example:

order of the children (that are intervals) H‘Z 9
5.7 9 [1.4] ™3

Two types of nodes:
m Linear nodes (O):
B increasing, i.e. quotient permutation=12...k
= label m
m decreasing, i.e. quotient permutation = k (k —1)...21
= label B
m Prime nodes (O): the quotient permutation is simple

Simple permutations: Example: 425163, i.e.

the only intervals are 1, 2,..., nand o

4°2 5 1 6 3
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information = forget the leaves and intervals

[1.19]
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information = forget the leaves and intervals

+ +

labels of internal nodes
+signs of the leaves
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The problem we consider: Perfect sorting by reversals

ldea of the algorithm

Put labels + or — on the nodes of the decomposition tree of o
m Leaf: sign of the element in o
m Linear node: + for @ (increasing) and — for 8 (decreasing)
m Prime node whose parent is linear: sign of its parent

m Other prime node: 777
— Test labels + and — and choose the shortest scenario

Algorithm:

m Perform Hannenhalli-Pevzner (or improved version) on prime
nodes

m Signed node belongs to scenario iff its sign is different from
its linear parent
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The problem we consider: Perfect sorting by reversals

Example of labeled decomposition tree

.
7
e
-k
i

_|_
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The problem we consider: Perfect sorting by reversals

Complexity results

Complexity:

m O(2Pn+/nlog n), with p = # prime nodes
m polynomial on commuting permutations (p = 0)

Our work:
m polynomial with probability 1 asymptotically
m polynomial on average

m in a parsimonious scenario for commuting permutations

m average number of reversals ~ 1.2n
m average length of a reversal ~ 1.02vn

Probability distribution: always uniform
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Average-case complexity analysis

Average shape of decomposition trees

Enumeration of simple permutations: asymptotically g—;

= Asymptotically, a proportion Z of decom-

-position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of
decomposition trees made of a prime root R /E\ o

with children that are leaves or twins is 1

twin = linear node with only two children, that are leaves

Consequence: Asymptotically, with probability 1, the algorithm
runs in polynomial time.

Mathilde Bouvel
Average-case complexity analysis of perfect sorting by reversals



Average-case complexity analysis
oe

Average-case complexity analysis

Average complexity

Average complexity on permutations of size n:

n
Z #{o- with p prime nodes} C 2°n+/nlogn

p=0

n!

Thm: When p > 2,

number of permutations of size n with p prime nodes < 28!

2P

Proof: induction on p

Consequence: Average complexity on permutations of size n is
< 50Cn+/nlog n. In particular, polynomial on average.
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Restriction to the class of commuting permutations

Commuting (separable) permutations

Example:
Def.: No prime node in decomposition tree 54231687 i.e.

In general, in the computed perfect sorting scenario,

A

m linear nodes with label different from its parent
m inside prime nodes

Prop.: No B — B nor 8 — B8 edge in decomposition trees

Consequence: For commuting permutations,
all internal nodes except the root

leaves with label different from its parent

Mathilde Bouvel
Average-case complexity analysis of perfect sorting by reversals

reversals = {



Commuting permutations
Oe00000

Restriction to the class of commuting permutations

Bijection between commuting perm. and Schréder trees

Decomposition trees of Schréder trees
unsigned commuting permutation

s N
R VANZINN
E@\ 101178 VAARVAWAIN
J A
+ label @ on the root
size of & «— number of leaves

reversal (except leaf) «— internal node (except root)
length of areversal «— number of leaves in the subtree
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Restriction to the class of commuting permutations

Average number of reversals

Average number of reversals for commuting permutations

average number of internal nodes (except root)

+ average number of leaves with label different from its parent
= average number of internal nodes -1 + n/2

Focus on average number of internal nodes in (unsigned)
Schréder trees: using bivariate generating functions.

S(x.y) = > snkx"yk,

where s, x = number of Schréder trees with n leaves and k
internal nodes.
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Restriction to the class of commuting permutations

Generating function for average number of internal nodes

Definition: S(x,y) = 3 snxx"yk,
where s, x = number of Schrdder trees with n leaves and k
internal nodes.

s s

S:.

Functional equation: S(x,y) = x + y1s_(g(’£);)

H .
Solution: S(x, y) = S VOE P -ax(y+1)

2(y+1)
IS(x.y)
.  Suksax XM= =
Average number of internal nodes = Yoo = IS(aT)
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Restriction to the class of commuting permutations

From generating function to asymptotics

Tools: Analytic Combinatorics by Ph. Flajolet and R. Sedgewick

Development around singularity (here, 3 — 2V2):

m S(x, 1)~ B2 - N3 (g 7ve)
aS(xy)| _ _3-2+2 (1 - —X )—1/2
T 4Vsvz4 32V2
Equivalent of coefficients:

m [X"]S(x, 1) ~ Y324 ‘3+2v2)-L

m [Xn]as)<y)|y:1 ~ 43,_2‘f (3+2\/_)

[ n] 6S(xy |y—

322, n
[X"]S(X1) T 3V2-4 V2
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Restriction to the class of commuting permutations

Results (1) : Average number of reversals

Average number of internal nodes in Schrdder trees:

n .
—— asymptotically

V2

This result is valid both for unsigned Schrdder trees and for
Schréder trees with a sign (& or 8) on the root.

Average number of reversals for commuting permutations:

n n. 1+42
— -1+ —-ie.

V2 2 2

Remark: Many reversals of length 1: confirm biological
experiments.
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Restriction to the class of commuting permutations

Results (2) : Average length of a reversal

average sum of the lengths of all reversals

Average |ength of a reversal = average number of reversals

Average sum of the lengths of all reversals for commuting perm.
= average sum of the sizes of all subtrees in a Schréder tree
—n (for the root) —n/2 (for the leaves)

Analytic combinatorics techniques

Average sum of the sizes of all subtrees in a Schrdder tree:
23/4 /3 — 22 Van® asymptotically

Average length of a reversal for commuting permutations:

7/4
2 ff Van =~ 1.02+/n
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Conclusion

Summary of results

Perfect sorting by reversals for signed permutations:
m NP-hard problem

m algorithm running in polynomial time

< on average
— asymptotically with probability 1

Special case of commuting permutations:
m expected length of a parsimonious perfect scenario ~ 1.2n
m expected length of a reversal in such a scenario ~ 1.02vn
using analytic combinatorics techniques
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