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Interval Constrained Coloring (ICC)

Input:
integer intervals {F1, . . . , Fm}, Fi ⊆ [1, n],
multisets of colors {C1, . . . , Cm} over k colors.
Question:
Does there exists a coloring c : [n]→ [k] such that Ci = c(Fi ), ∀i?
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Motivation

Application: interpretation of experimental data (mass
spectrometry).

Goal: Obtain information about 3D structure of a protein.

intervals: protein fragments
(amino acid sequences)

colors: Hydrogen/Deuterium
exchange rates (Slow,
Medium, Fast)

ICC:
assign exchange rates to
single amino acids
[Althaus, Canzar, Emmett, Karrenbauer, Marshall, Meyer-Baese, and Zhang,

ACM Symposium on Applied Computing (SAC 08)]
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Previous work

Two recent papers:
[Althaus, Canzar, Emmett, Karrenbauer, Marshall,
Meyer-Baese, and Zhang, ACM Symposium on Applied
Computing (SAC 08)]

ILP and branch-and-bound based algorithm

polynomial-time solvable for two colors

[Althaus, Canzar, Elbassioni, Karrenbauer, and Mestre, 11th
Scandinavian Workshop on Algorithm Theory (SWAT 08)]

NP-complete

approximation algorithm: every color multi-
set is matched within ±1 for every color

... ...
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Parameterized Complexity

Given an NP-hard problem with input size n and a parameter k
Basic idea: Confine the combinatorial explosion to k

n
k

instead of
k

n

Definition

A problem of size n is called fixed-parameter tractable with respect
to a parameter k if it can be solved in f (k) · nO(1) time.
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Parameter Identification

1 n

o

` c

n range
m number of intervals
k number of colors
` maximum interval length
c cutwidth maxi∈[1,n] |{Fj | i ∈ Fj}|
o maximum overlap between intervals
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Parameter Identification

1 n

o

` c

ICC is NP-hard for cutwidth c = 3 [Althaus et al., SWAT 08].
All other parameters are non-constant in this NP-hardness proof.

What is the parameterized complexity with respect to these
non-constant parameters?

Can ICC be solved in polynomial time for cutwidth two?

What parameter assumptions does the NP-hardness proof make?
What is the complexity of the problem if these assumptions do not
hold?
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Overview

Single parameters

Parameter k ` c m n o

Complexity
k = 2: P
k ≥ 3: ?

`!
c = 2: P
c = 3: NPc

? n!
o = 1: P
o ≥ 2: ?

Combined parameters

Parameter (k, ∗) (k, ∗, ∗) (`, ∗)

k` `c·(k−1), (c + 1)`

Running times (k − 1)n nc·(k−1)

f (k, m) (ILP)

k: number of colors, `: max. interval length, c: cutwidth,
m: number of intervals, n: input range, o: max. overlap

Althaus et al. (2 papers)
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Cutwidth

c = 3

ICC is NP-complete for cutwidth c = 3.
[Althaus, Canzar, Elbassioni, Karrenbauer, and Mestre, SWAT 08]

c = 2

ICC can be solved in O(n2) time for cutwidth c = 2.

Solving strategy: polynomial-time data reduction rules.

Johannes Uhlmann (Universität Jena) Interval Constrained Coloring 10/20



Introduction and Motivation Algorithms Conclusion

Rule 1
For any two intervals Fi

and Fj ,

if |Fi ∩ Fj | = |Ci ∩ Cj |,
then c(Fi ∩ Fj) :=
Ci ∩ Cj ;

if |Fi ∩ Fj | > |Ci ∩ Cj |,
then return “No”.

}Ci = {

}Ci ∩ Cj = {

}Cj = {
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Fj

Fi

Fq

......

}

}Ci = {

Cj = { Fj

Fi

Rule 2

Fi : interval whose positions are all contained in further intervals.
Fj : interval overlapping with Fi .
x : color that occurs more often in Ci than in Cj .
If x ∈ Cq

c(p) := x for a p ∈ Fi \ Fj ,
else

“no”.
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Cj = { }

}Ci = {

... ...
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Cj = {Cj = { }}

}Ci = {

... ...
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Cj = {Cj = { }}

}Ci = {

... ...
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Cj = {

Cq = {

Cj = { }}

}

}
Fq

Ci = {

... ...

Rule 3.1

Fi , Fj : overlapping intervals.
Fq: another interval overlapping with Fi .
x : color that occurs more often in Ci than in Cj .
If x 6∈ Cq, then c(p) := x for a p ∈ Fi \ (Fj ∪ Fq)
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...

...

Fj
Fj−1

Fj+1

Rule 3.2
Consider a reduced instance.
Let the input intervals be sorted by their starting points.
Let j be minimum number such that

exists a color x ∈ Cj ∩ Cj−1 that occurs more often in Cj than in Cj+1

Then, set c(p) = x for some p ∈ Fj ∩ Fj−1

C1 ⊆ C2 ⊆ . . . ⊆ Cj
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Cutwidth

Apply data reduction rules exhaustively.

Either output “no”

or reduced instance with C1 ⊆ C2 ⊆ . . . ⊆ Cm

Theorem

ICC can be solved in O(n2) time for cutwidth c = 2.
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Overview

Single parameters

Parameter k ` c m n o

Complexity
k = 2: P
k ≥ 3: ?

`!
c = 2: P
c = 3: NPc
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f (k, m) (ILP)
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ICC can be solved in O(k`(k + `m)n) time.

i j

......

...

...

`

If the coloring of [i , j ] is known, then the instance restricted to [j + 1, n] can be
solved independently from [1, i − 1].

Dynamic Programming

traverse the input from left to right.

for every length-` subinterval maintain a table with an entry
for every coloring.
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Running time:

ICC can be solved in O(k`(k + `m)n) time.

With a similar algorithm we obtain:

ICC can be solved in O(`! · `mn) time.

Based on a second possibility to divide the input, we can show

ICC can be solved in

(c + 1)` · poly(n, m) time, or

`c(k−1) · poly(n, m) time.
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Open Questions

Single parameters

Parameter k ` c m n o

Complexity
k = 2: P
k ≥ 3: ?

`!
c = 2: P
c = 3: NPc

? n!
o = 1: P
o ≥ 2: ?

Combined parameters

Parameter (k, ∗) (k, ∗, ∗) (`, ∗)

k` `c·(k−1), (c + 1)`

Running times (k − 1)n nc·(k−1)

f (k, m) (ILP)

What is the complexity of ICC for k = 3 colors?

Is ICC fixed-parameter tractable for the combined parameter (c, k)?

Is ICC fixed-parameter tractable w.r.t. m the number of intervals?

k: number of colors, `: max. interval length, c: cutwidth,
m: number of intervals, n: input range, o: max. overlap
Althaus et al. (2 papers)
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Future Research

Extend the investigations to the optimaztion variants.

In the biochemical application k = 3.

We can show that ICC can be solved in 1.87n · poly(n, m) time
for k = 3.
Can some of our other results be improved for the case k = 3?

Implementation of our algorithms.
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Thank you!
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