Deconstructing Intractability: A Case Study for Interval Constrained Coloring

Johannes Uhlmann

joint work with Christian Komusiewicz and Rolf Niedermeier

Friedrich-Schiller-Universität Jena Institut für Informatik Germany

CPM 2009, Lille

Johannes Uhlmann (Universität Jena)

Interval Constrained Coloring

イロト イポト イヨト イヨト

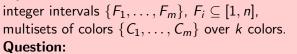
ヘロト 人間 ト くほ ト くほ トー

Algorithms

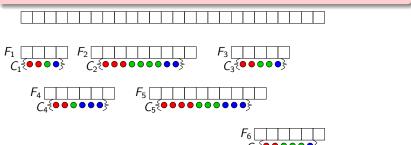
Conclusion

Interval Constrained Coloring (ICC)

Input:



Does there exists a coloring $c : [n] \rightarrow [k]$ such that $C_i = c(F_i), \forall i$?



Algorithms

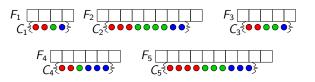
Conclusion 000

Interval Constrained Coloring (ICC)

Input:

integer intervals $\{F_1, \ldots, F_m\}$, $F_i \subseteq [1, n]$, multisets of colors $\{C_1, \ldots, C_m\}$ over k colors. **Question:**

Does there exists a coloring $c : [n] \rightarrow [k]$ such that $C_i = c(F_i), \forall i$?



Algorithms

Conclusion 000

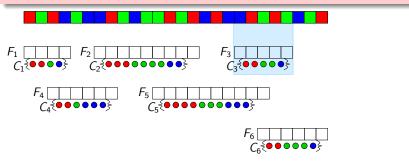
Interval Constrained Coloring (ICC)

Input:

integer intervals $\{F_1, \ldots, F_m\}$, $F_i \subseteq [1, n]$, multisets of colors $\{C_1, \ldots, C_m\}$ over k colors.

Question:

Does there exists a coloring $c : [n] \rightarrow [k]$ such that $C_i = c(F_i), \forall i$?



C_3 is *matched* by coloring *c*.

Algorithms

Conclusion 000

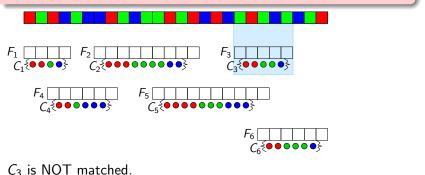
Interval Constrained Coloring (ICC)

Input:

integer intervals $\{F_1, \ldots, F_m\}$, $F_i \subseteq [1, n]$, multisets of colors $\{C_1, \ldots, C_m\}$ over k colors.

Question:

Does there exists a coloring $c : [n] \rightarrow [k]$ such that $C_i = c(F_i), \forall i$?



Motivation

Application: interpretation of experimental data (mass spectrometry).

Goal: Obtain information about 3D structure of a protein.

- intervals: protein fragments (amino acid sequences)
- colors: Hydrogen/Deuterium exchange rates (Slow, Medium, Fast)

• ICC:

assign exchange rates to

single amino acids

[Althaus, Canzar, Emmett, Karrenbauer, Marshall, Meyer-Baese, and Zhang,

ACM Symposium on Applied Computing (SAC 08)]

Overlapping Myoglobin Peptic Peptides

No		Amino acid sequence											Arnide hydrogens			15														
																											All	Slow	Medium	Fast
1	0 L	8 D	0	Е	w	Q	a	v	L	N	٧	w	9 1	к	v i	Ε.	A	DI	C	A	0	н	з	Q I	E١	L	28	15		
2	Q L	\$ D	0	Ε	w	Ø.	Q.	V.	L	2																	10	7	2	
3			_						-	N	٧	w	0 1	ĸ	V.	E	A	P									8	5	2	- 3
4								٧.	L	Ñ	٧	w			V I	Ε.	A	DI		A	G	н	э	9	E		17	12	ĩ	
5										N.	٧	W		K		Ε.	A										7	5	1	
6					Ψ.	Q	Q	V.	L	Ñ	۷	w	91	ĸ	V I	E	A	DI		A	0	н	Э	0	ΕV	ł	15	11	1	1
7	GLI	S D	9	E	¥.																						6	4	1	
8					¥.	Q.	a .	Υ.	5																		4	3	1	(
8																			÷	A 1	9	н		u I	E١	*	8	7	1	6

Previous work

Two recent papers:

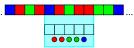
[Althaus, Canzar, Emmett, Karrenbauer, Marshall, Meyer-Baese, and Zhang, ACM Symposium on Applied Computing (SAC 08)]

- ILP and branch-and-bound based algorithm
- polynomial-time solvable for two colors

[Althaus, Canzar, Elbassioni, Karrenbauer, and Mestre, 11th Scandinavian Workshop on Algorithm Theory (SWAT 08)]

• NP-complete

approximation algorithm: every color multiset is matched within ± 1 for every color



Algorithms

Conclusion

Parameterized Complexity

Given an NP-hard problem with input size n and a parameter kBasic idea: Confine the combinatorial explosion to k

Definition

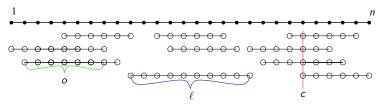
A problem of size *n* is called *fixed-parameter tractable* with respect to a parameter *k* if it can be solved in $f(k) \cdot n^{O(1)}$ time.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Algorithms

Conclusion 000

Parameter Identification

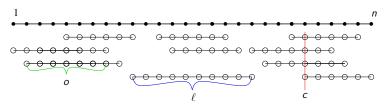


- n range
- *m* number of intervals
- k number of colors
- ℓ maximum interval length
- c cutwidth $\max_{i \in [1,n]} |\{F_j \mid i \in F_j\}|$
- o maximum overlap between intervals

- ∢ /⊐ ►

Conclusion 000

Parameter Identification



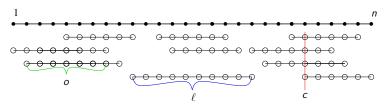
ICC is NP-hard for cutwidth c = 3 [Althaus et al., SWAT 08]. All other parameters are non-constant in this NP-hardness proof.

- What is the parameterized complexity with respect to these non-constant parameters?
- Can ICC be solved in polynomial time for cutwidth two?

- 4 @ ト 4 ヨト 4 ヨト

Conclusion 000

Parameter Identification



ICC is NP-hard for cutwidth c = 3 [Althaus et al., SWAT 08]. All other parameters are non-constant in this NP-hardness proof.

- What is the parameterized complexity with respect to these non-constant parameters?
- Can ICC be solved in polynomial time for cutwidth two?

What parameter assumptions does the NP-hardness proof make? What is the complexity of the problem if these assumptions do not hold?

イロト 不得下 イヨト イヨト

Introduction	and	Motivation
000000		

Overview

Single parameters									
Parameter	k	ℓ	С	т	n	0			
Complexity	k = 2: P $k \ge 3: ?$	$\ell!$	c = 2: P c = 3: NPc	?	n!	o=1: P $o \ge 2: ?$			

k: number of colors, ℓ : max. interval length, c: cutwidth, m: number of intervals, n: input range, c: max. overlap

Althaus et al. (2 papers)

ヘロト 人間 ト くほ ト くほ トー

Introduction	and	Motivation
000000		

Overview

Single parameters									
Parameter	k	ℓ	с	т	n	0			
Complexity	k = 2: P $k \ge 3: ?$	$\ell!$	c = 2: P c = 3: NPc	?	<i>n</i> !	o=1: P $o \ge 2: ?$			

Combined parameters

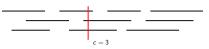
Parameter	(k,*)	(k, *, *)	(ℓ, *)
Running times	$egin{array}{c} k^\ell \ (k-1)^n \ f(k,m) \ (ext{ILP}) \end{array}$	$\left \begin{array}{c} \ell^{c \cdot (k-1)}, \\ n^{c \cdot (k-1)} \end{array} \right $	$(c+1)^\ell$

k: number of colors, ℓ : max. interval length, *c*: cutwidth, *m*: number of intervals, *n*: input range, *o*: max. overlap Althaus et al. (2 papers)

イロト イポト イヨト イヨト

Introduction	and	Motivation
0000000		

Cutwidth



ICC is NP-complete for cutwidth c = 3.

[Althaus, Canzar, Elbassioni, Karrenbauer, and Mestre, SWAT 08]

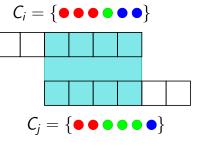
ICC can be solved in $O(n^2)$ time for cutwidth c = 2.

Solving strategy: polynomial-time data reduction rules.

Rule 1

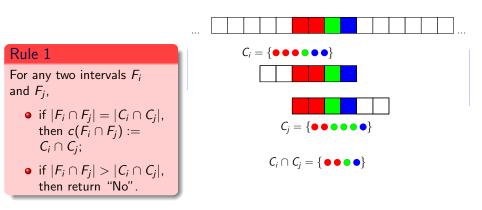
For any two intervals F_i and F_j ,

- if $|F_i \cap F_j| = |C_i \cap C_j|$, then $c(F_i \cap F_j) := C_i \cap C_j$;
- if $|F_i \cap F_j| > |C_i \cap C_j|$, then return "No".



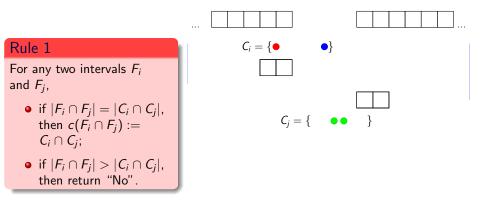
$$C_i \cap C_j = \{ \bullet \bullet \bullet \bullet \}$$

イロト イポト イヨト イヨト

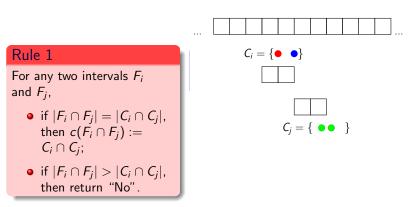


イロト イポト イヨト イヨト

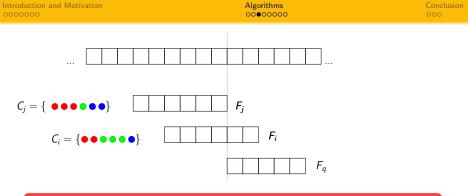
Introduction	and	Motivation
0000000		



イロト イポト イヨト イヨト



イロト イポト イヨト イヨト



Rule 2

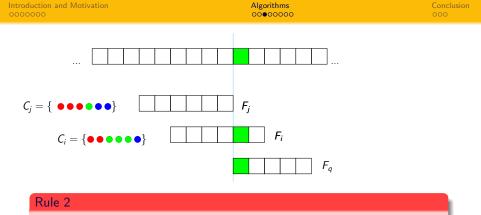
- F_i : interval whose positions are all contained in further intervals.
- F_i : interval overlapping with F_i .

x: color that occurs more often in C_i than in C_i .

$$\begin{array}{l} \text{If } x \in C_q \\ c(p) := x \text{ for a } p \in F_i \setminus F_j \end{array}$$

else "no".

イロト イポト イヨト イヨト



- F_i : interval whose positions are all contained in further intervals.
- F_i : interval overlapping with F_i .

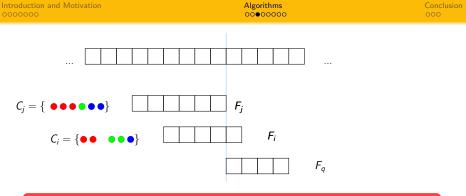
x: color that occurs more often in C_i than in C_i .

If
$$x \in C_q$$

 $c(p) := x$ for a $p \in F_i \setminus F_j$
else

"no".

イロト イポト イヨト イヨト



Rule 2

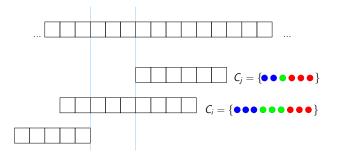
- F_i : interval whose positions are all contained in further intervals.
- F_i : interval overlapping with F_i .

x: color that occurs more often in C_i than in C_i .

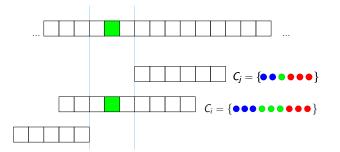
$$\begin{array}{l} \mathsf{lf} \ x \in \mathit{C_q} \\ \mathit{c(p)} \coloneqq x \ \mathsf{for a} \ p \in \mathit{F_i} \setminus \mathit{F_j} \end{array}$$

else "no".

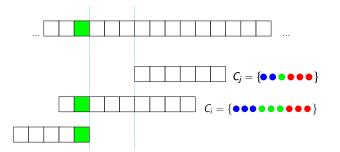
イロト イポト イヨト イヨト



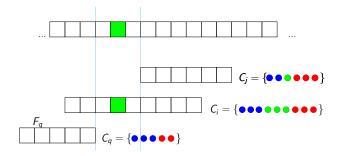
イロト イヨト イヨト イヨト



イロト イヨト イヨト イヨト



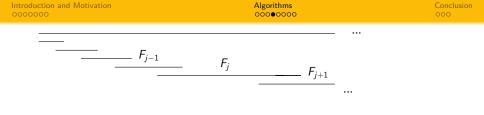
イロト イヨト イヨト イヨト



Rule 3.1

 F_i, F_j : overlapping intervals. F_q : another interval overlapping with F_i . x: color that occurs more often in C_i than in C_j . If $x \notin C_q$, then c(p) := x for a $p \in F_i \setminus (F_j \cup F_q)$

イロト 不得下 イヨト イヨト



Rule 3.2

Consider a reduced instance.

Let the input intervals be sorted by their starting points.

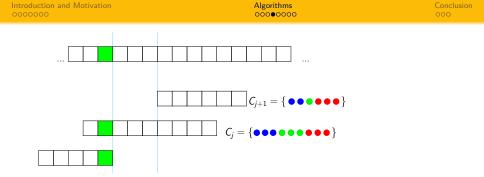
Let j be minimum number such that

• exists a color $x \in C_j \cap C_{j-1}$ that occurs more often in C_j than in C_{j+1}

Then, set c(p) = x for some $p \in F_j \cap F_{j-1}$

 $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_j$

・ロト ・ 一下・ ・ ヨト・



Rule 3.2

Consider a reduced instance.

Let the input intervals be sorted by their starting points.

Let j be minimum number such that

• exists a color $x \in C_j \cap C_{j-1}$ that occurs more often in C_j than in C_{j+1}

Then, set c(p) = x for some $p \in F_j \cap F_{j-1}$

 $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_j$

Cutwidth

Apply data reduction rules exhaustively.

- Either output "no"
- or reduced instance with $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_m$

Theorem

ICC can be solved in $O(n^2)$ time for cutwidth c = 2.

Introduction	and	Motivation
0000000		

Overview

Single parameters									
Parameter	k	ℓ	С	т	n	0			
Complexity	k = 2: P $k \ge 3: ?$	$\ell!$	c = 2: P c = 3: NPc	?	n!	o=1: P $o \ge 2: ?$			

k: number of colors, ℓ : max. interval length, c: cutwidth, m: number of intervals, n: input range, c: max. overlap

Althaus et al. (2 papers)

ヘロト 人間 ト くほ ト くほ トー

Introduction	and	Motivation
0000000		

Overview

Single parameters									
Parameter	k	ℓ	С	т	n	0			
Complexity	k = 2: P $k \ge 3: ?$	$\ell!$	c = 2: P c = 3: NPc	?	<i>n</i> !	o=1: P $o \ge 2: ?$			

Combined parameters

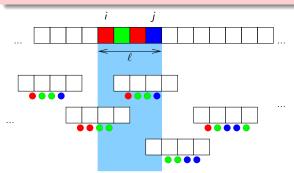
Parameter	(k,*)	$\mid (k,*,*) \mid (\ell,*)$
Running times	$\begin{vmatrix} k^{\ell} \\ (k-1)^n \\ f(k,m) (ILP) \end{vmatrix}$	$\left \begin{array}{c} \ell^{c \cdot (k-1)}, \\ n^{c \cdot (k-1)} \end{array} \right (c+1)^{\ell}$

k: number of colors, ℓ : max. interval length, c: cutwidth, m: number of intervals, n: input range, o: max. overlap

Althaus et al. (2 papers)

イロト イポト イヨト イヨト

ICC can be solved in $O(k^{\ell}(k + \ell m)n)$ time.



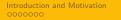
If the coloring of [i, j] is known, then the instance restricted to [j + 1, n] can be solved independently from [1, i - 1].

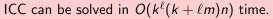
Dynamic Programming

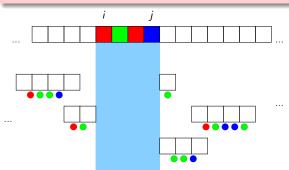
- traverse the input from left to right.
- for every length- ℓ subinterval maintain a table with an entry for every coloring.

Johannes Uhlmann (Universität Jena)

Interval Constrained Coloring







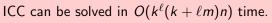
If the coloring of [i, j] is known, then the instance restricted to [j + 1, n] can be solved independently from [1, i - 1].

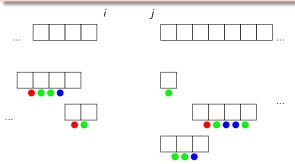
Dynamic Programming

- traverse the input from left to right.
- for every length- ℓ subinterval maintain a table with an entry for every coloring.

Johannes Uhlmann (Universität Jena)

Interval Constrained Coloring





If the coloring of [i, j] is known, then the instance restricted to [j + 1, n] can be solved independently from [1, i - 1].

Dynamic Programming

- traverse the input from left to right.
- for every length- ℓ subinterval maintain a table with an entry for every coloring.

Johannes Uhlmann (Universität Jena)

Interval Constrained Coloring

Running time:

ICC can be solved in $O(k^{\ell}(k + \ell m)n)$ time.

With a similar algorithm we obtain:

ICC can be solved in $O(\ell! \cdot \ell mn)$ time.

Based on a second possibility to divide the input, we can show

ICC can be solved in • $(c+1)^{\ell} \cdot poly(n,m)$ time, or • $\ell^{c(k-1)} \cdot poly(n,m)$ time.

Introduction	and	Motivation
0000000		

Algorithms

Conclusion •00

Open Questions

Single parame	ters						
Parameter	k	ℓ	С	т	n	0	
Complexity	k = 2: P $k \ge 3: ?$	ℓ!	c = 2: P c = 3: NPc	?	n!	o = 1: P $o \ge 2$: ?	
Combined parameters							
$D_{e} = d_{e} d_{d} $							

Parameter (k, *) (k, *, *) $(\ell, *)$ Running times k^{ℓ} $\ell^{c \cdot (k-1)}$, $n^{c \cdot (k-1)}$ $(c+1)^{\ell}$ f(k, m) (ILP) $n^{c \cdot (k-1)}$ $(c+1)^{\ell}$

- What is the complexity of ICC for k = 3 colors?
- Is ICC fixed-parameter tractable for the combined parameter (c, k)?
- Is ICC fixed-parameter tractable w.r.t. *m* the number of intervals?

 k: number of colors, l: max. interval length, c: cutwidth,

 m: number of intervals, n: input range, o: max. overlap

 Althaus et al. (2 papers)

 Johannes Uhlmann (Universität Jena)

 Interval Constrained Coloring

 18/20

Future Research

- Extend the investigations to the optimaztion variants.
- In the biochemical application k = 3.
 - We can show that ICC can be solved in $1.87^n \cdot poly(n, m)$ time for k = 3.
 - Can some of our other results be improved for the case k = 3?
- Implementation of our algorithms.

Thank you!

Johannes Uhlmann (Universität Jena)

Interval Constrained Coloring

ヘロト 人間 ト くほ ト くほ トー

√ へ (~
20/20

E