On the Value of Multiple Read/Write Streams for Data Compression

Travis Gagie

University of Eastern Piedmont

CPM '09

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Universal compression

Grammar-based compression

Entropy-only compression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Universal compression

Grammar-based compression

Entropy-only compression

Models of disks:

- external-memory I/O [Aggarwal & Vitter, 1988]
- cache-oblivious
 [Frigo et al., 1999]
- read/write streams
 [Grohe, Koch & Schweikardt, 2005]

Read/write streams:

- sequential access
- sublinear memory (e.g., polylogarithmic)
- multiple passes (e.g., polylogarithmic)
- ability to change the data
- possibility of multiple streams

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

	1 stream	$\mathcal{O}\left(1 ight)$ streams
e.g., sorting (see [Sch07])	NO	YES
universal compression	YES	YES
grammar-based compression	NO	?
entropy-only compression	NO	YES

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Universal compression

Grammar-based compression

Entropy-only compression

★□> <圖> < E> < E> E のQ@

Theorem (Gupta, Grossi & Vitter, 2008) It takes $\mathcal{O}(|s|)$ time in the RAM model to store a string s in $|s|H_k(s) + \mathcal{O}(\log |s|)$ bits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary

We can achieve universal compression in the standard streaming model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

- 1. process s in blocks of $\log^{c} |s|$ characters
- $2. \ \mbox{apply GGV's algorithm to each block in turn}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. redundancy is
$$\mathcal{O}\left(\frac{n\log\log|s|}{\log^c|s|}\right)$$

Universal compression

Grammar-based compression

Entropy-only compression

Theorem (Rytter, 2003; Charikar *et al.*, 2005) In the RAM model, we can approximate the smallest-grammar

problem with $|APPROX| \leq |OPT|^2$.

Lemma

We can compute any substring of s from

- the length of the substring,
- the machine's configurations when it reaches and leaves the part of the stream that initially holds that substring,

all the output it produces while over that part.

Theorem With 1 stream, we cannot approximate the smallest-grammar problem with $|APPROX| \leq |OPT|^{O(1)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

1. *m* memory and *p* passes, $mp = \log^{\mathcal{O}(1)} |s|$

2.
$$s = t^r$$
, $|t| = (mp)^{1+\epsilon}$

 t is a randomly chosen string (incompressible w.h.p.)

4.
$$|\mathsf{OPT}| = \mathcal{O}\left(|t| + \log r\right) \subset \log^{\mathcal{O}(1)} |s|$$

5. by lemma, output for any copy of t is $\Omega(|t|)$ bits

6.
$$|\mathsf{APPROX}| = \Omega(|s|)$$

Universal compression

Grammar-based compression

Entropy-only compression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

With 1 stream, we cannot achieve entropy-only compression, i.e., a bound of the form $\lambda |s| H_k^*(s) + g_k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

1. *m* memory and *p* passes, $mp = \log^{\mathcal{O}(1)} |s|$

2.
$$s = t^r$$
, $|t| = 2^k = (mp)^{1+\epsilon}$

 t is a randomly chosen kth-order De Bruijn cycle (compressible by at most a constant factor w.h.p.)

4.
$$|s|H_k^*(s) = \mathcal{O}\left(|t|\log r\right) \subset \log^{\mathcal{O}(1)}|s|$$

5. by lemma, output for any copy of t is $\Omega(|t|)$ bits

6. output is $\Omega(|s|)$ bits

Theorem (Manzini, 2001)

Using the Burrows-Wheeler Transform, move-to-front coding and arithmetic coding, we can achieve entropy-only compression.

Lemma (Ruhl, 2003 + Hardy, c. 1967 + tweak)

We can compute and invert the Burrows-Wheeler Transform using $\mathcal{O}(\log |s|)$ bits of memory and $\mathcal{O}(\log^2 |s|)$ passes over 2 streams.

Theorem With 2 streams, we can achieve entropy-only compression.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

	1 stream	$\mathcal{O}\left(1 ight)$ streams
e.g., sorting (see [Sch07])	NO	YES
universal compression	YES	YES
grammar-based compression	NO	?
entropy-only compression	NO	YES

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●