Fast RNA Structure Alignment
for Crossing Input Structures

String Edit Distance

CombinatorialOptimisation

OptimatorialCombinisation

String Edit Distance

CombinatorialOptimisatio

OptimatorialCombinisatio

String Edit Distance

String Edit Distance

CombinatorialOptimisation

OptimatorialCombinisation

String Edit Distance

Combina

OptimatorialCombinisatio

Every two prefixes

String Edit Distance

Combina

OptimatorialCombinisatio

Every two prefixes =5 > O(n?)

String Edit Distance

Every two infixes

String Edit Distance

CombinatorialOptimisation

OptimatorialCombinisation

Every two infixes

String Edit Distance

CombinatorialOptimisation

OptimatorialCombinisation

Every two infixes =5 > O(n?)

RNA Edit Distance

AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

RNA Edit Distance

X\

N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

RNA Edit Distance

N
KEcUERSchkucUealUchs

GCUGCGAUCGCGACUGGUA

N

RNA Edit Distance

/N
KEcUERSchkucuealUche

GCUGCGAUCGCGACUGGUA

N

RNA Edit Distance

X\

7N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

N

RNA Edit Distance

N
KEct&rechucueadlahe

GCUGCGAUCGCGACUGGUA

N

RNA Edit Distance

T X\

N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA
=N

Additional edit operations:

RNA Edit Distance

T X\

N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA
=N

Additional edit operations: Arc Deletion / Insertion

RNA Edit Distance

e N

N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA
=N

Additional edit operations: Arc Deletion / Insertion

RNA Edit Distance

T X\

N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA
=N

Additional edit operations:

RNA Edit Distance

T X\

N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA
=N

Additional edit operations: Arc Match / Relabel

RNA Edit Distance

T X\

N\
AACUCAGGAUGUUAGUGAC

GCUGCGAUCGCGACUGGUA
=N

Additional edit operations: Arc Match / Relabel

RNA Edit Distance

N
KEcUERSahkucUealUchs

GCUGCGAUCGCGACUGGUA

N

RNA Edit Distance

RN 2
AGCU AG AUGUC

AUCGCGA UG U A
N

Consensus Structure

RNA Edit Distance

A

N\ / 7\
AGCU AG AUGUC

AUCGCGA UG UA
%

S

Consensus Structure

RNA Edit Distance

RN N
AGCU AG AUGUC

AUCGCGA UG UA
N

Consensus Structure

RNA Edit Distance

RN N
AGCU AG AUGUC

AUCGCGA UG UA
N

Arbitrary Consensus Structure: NP-hard

RNA Edit Distance

PR

GCU AG AUG C

UCGCGA UG A
&\//
[Jiang et al. 2002]
-Aebitrars Consensus Structure: O(n?)

Non-crossing AR ;

Non-Crossing Consensus

[Jiang et al. 2002]
-Aebitrars Consensus Structure: O(n?)

Non-crossing A ;

Non-Crossing Consensus

N
KEcUERSchkucUealUche

GCUGCGAUCGCGACUGGUA

N N

[Jiang et al. 2002]
Aebitrary Consensus Structure: O(n?)

Non-crossing A ;

Non-Crossing Consensus

Y VRN

GAUGUCAGUGA
CGAUCGCAG

\\/ y

Every two infixes =5 > O(n?)

Non-Crossing Consensus

Y VRN
GAUGUCAGUGAC
CGAUCGCAG
\\/ y

Every two infixes =5 > O(n?)

Non-Crossing Consensus

N

/" \
GAUGUCAGUGAC
CGAUCGCAG
\\/ y

Every two infixes =5 > O(n?)

Non-Crossing Consensus

N

A\
GAUGUCAGUGAC

CGAUCGCAG
\\/ y

Arc Match / Relabel

Non-Crossing Consensus

N\ /7 N\
GAUGUCAGUGAC

CGAUCGCAG
w

Arc Match / Relabel

Non-Crossing Consensus

7N\
GAUGUCAGUGAC

L

Arc Match / Relabel

Non-Crossing Consensus

7N\
GAUGUCAGUGAC

Ly

Arc Match / Relabel

Non-Crossing Consensus

N

A\
GAUGUCAGUGAC

CGAUCGCAG
\\/ y

Character Match / Relabel

Non-Crossing Consensus

N

A\
GAUGUCAGUGAC

CGAUCGCAG
\\/ y

Character Match / Relabel

Non-Crossing Consensus

N\ /7 N\
GAUGUCAGUGAC

CGAUCGCGACUGGU
~ S

Character Match / Relabel

Non-Crossing Consensus

N\ /7~ N\
GAUGUCAGUGAC

CGAUCGCGACUGGU
e S

Character Match / Relabel

Non-Crossing Consensus

N

A\
GAUGUCAGUGAC

CGAUCGCAG
\\/ y

Character Deletion / Insertion

Non-Crossing Consensus

AN

A\
GAUGUCAGUGA

CGAUCGCAG
\\/ y

Character Deletion / Insertion

Non-Crossing Consensus

N\ /7 N\
GAUGUCAGUGA

CGAUCGCAG
\\/ y

Character Deletion / Insertion

Non-Crossing Consensus

N\ /7~ N\
GAUGUCAGUGA

CGAUCCi/CGACUGGU

~ =

Character Deletion / Insertion

Non-Crossing Inputs

N

/7 N\ N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

NN

Non-Crossing Inputs
= Tree Edit distance

N

/7 N\ N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

NN

Non-Crossing Inputs
= Tree Edit distance

N

/7 N\ N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

—

O(n%)
O(n?)
O(n’ log n)
O(n’)

& \//
Tai 1979]

'Shasha, Zhang 1989]
Klein 1998] [Dulucq, Touzet 2003] [Bille 2005]

'Demaine, Mozes, Rossman, W, 2007]

Non-Crossing Inputs
= Tree Edit distance

N

/7 N\ N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA

NN

O’ logn) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

N

/7 N\ N\
AGCUCAGGAUGUCAGUGAC

O(n’log n) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

O(n’logn) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

O’ logn) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

N N

/7 N\
AGCUCAGGAUGUCAGUGAC

GCUGCGAUCGCGACUGGUA
X /nlogn

O’ logn) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

N

GAUGUC

GCUGCGAUCGCGACUGGUA
\\\\ii\\;\\ii;///////

nlog n

N M

O’ logn) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

nlog n

N M

O’ logn) [Klein 1998]

Non-Crossing Inputs
= Tree Edit distance

O’ logn) [Klein 1998]

Our Result: d-crossing inputs

N N

KoCul e kucucacudéac

GCUGCGAUCGCGACUGGUA

e

Our Result: d-crossing inputs

GCUGCGAUCGCGACUGGUA

e

Our Result: d-crossing inputs

GCUGCGAUCGCGACUGGUA
N

O(dn’ log n)

Our Result: d-crossing inputs

GCUGCGAUCGCGACUGGUA
N

O(dn’log n) Vs. O(n?)

Our Result: d-crossing inputs

TN

AGCUCAGGAUGUCAGUGAC

d d

GCUGCGAUCGCGACUGGUA
N

O(dn’ log n)

Our Result: d-crossing inputs

TN

AGCUCAGGAUGUCAGUGAC

d d

GCUGCGAUCGCGACUGGUA
N

O(dn’log n) = n° x dnlogn

Our Result: d-crossing inputs

TN

AGCUCAGGAUGUCAGUGAC

d d

O(dn’log n) = n° x dnlogn

The Algorithm

The Algorithm

/\ N A
AGCUCAGGAUGUCAGUGACGA

The Algorithm

NN

/)
AGCUCAGGAUGUCAGUGACGA

|. Compute every of length < 2d in O(dn”)

The Algorithm

/} N A
AGCUCAGGAUGUCAGUGACGA

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

The Algorithm

/} N A
AGCUCAGGAUGUCAGUGACGA

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs

The Algorithm

/ N\ N A
AGCUCAGGAUGUCAGUGACGA

<d <d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

The Algorithm

/ N\ N A
AGCUCAGGAUGUCAGUGACGA

<d <d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

The Algorithm

/\ N A
AGCUCAGGAUGUCAGUGACGA

<d <d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

The Algorithm

/\ N A
AGCUCAGGAUGUCAGUGACGA

<d <d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

The Algorithm

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

“ACGCUCAGCGAUGUCAGUGACGA -

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

s
s’
d

+AGC AGCGGAUGUCAGUGACGA -

/M\
<>

<2d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

“ACGCUCAGCGAUGUCAGUGACGA -

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

—— 2
>2d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

—— 2
>2d

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

“ACGCUCAGCGAUGUCAGUGACGA -

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Why does this work!?

|. Compute every of length < 2d in O(dn”)
2. Pick largest arc in every cluster

3. Recursively compute infix below these arcs
+ its extension by d to both left and right

4. Extend largest infix to the left and then to the right

Thank You!

and happy birthday CPM

