Fast RNA Structure Alignment for Crossing Input Structures

Rolf Backofen
Gad M. Landau
Mathias Möhl
Dekel Tsur
Oren Weimann

Combinatorial Optimisation
Optimatorial Combinisation

Combinatorial Optimisation
Optimatorial Combinisation

Combinatorial Optimisation
Optimatorial Combinisation

Combinatorial Optimisation
Optimatorial Combinisation

Combinatorial Optimisation
Optimatorial Combinisation

Every two prefixes

Combinatorial Optimisation
Optimatorial Combinisation

Every two prefixes \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Combinatorial Optimisation
Optimatorial Combinisation

Every two infixes

Combinatorial Optimisation
Optimatorial Combinisation

Every two infixes

CombinatorialOptimisation Optimatorial Combinisation

Every two infixes \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

AGCUCAGGAUGUCAGUGAC GCUGCGAUCGCGACUGGUA

Additional edit operations:

Additional edit operations: Arc Deletion / Insertion

Additional edit operations: Arc Deletion / Insertion

Additional edit operations:

Additional edit operations: Arc Match / Relabel

Additional edit operations: Arc Match / Relabel

Consensus Structure

Consensus Structure

Consensus Structure

Arbitrary Consensus Structure: NP-hard

Arbitrary Consensus Structure: Non-crossing

[Jiang et al. 2002]

 $O(n^4)$

Arbitrary Consensus Structure: Non-crossing

[Jiang et al. 2002]

[Jiang et al. 2002]

Arbitrary Consensus Structure: Non-crossing

Arc Match / Relabel

Arc Match / Relabel

Arc Match / Relabel

Arc Match / Relabel

Non-Crossing Inputs

 $O(n^6)$ [Tai 1979]

 $O(n^4)$ [Shasha, Zhang 1989]

 $O(n^3 \log n)$ [Klein 1998] [Dulucq, Touzet 2003] [Bille 2005]

 $O(n^3)$ [Demaine, Mozes, Rossman, W, 2007]

 $O(dn^3 \log n)$

 $O(dn^3 \log n)$ Vs. $O(n^4)$

 $O(dn^3 \log n)$

 $O(dn^3 \log n) = n^2 \times dn \log n$

$$O(dn^3 \log n) = n^2 \times dn \log n$$

I. Compute every infix of length < 2d in $O(dn^3)$

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

The Algorithm

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

- I. Compute every infix of length < 2d in $O(dn^3)$
- 2. Pick largest arc in every cluster
- 3. Recursively compute infix below these arcs + its extension by d to both left and right
- 4. Extend largest infix to the left and then to the right

Thank You! and happy birthday CPM