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Introduction: Online pattern matching
I Consider a text, T (length n) and a pattern P (length m)
I We assume we have P in advance but T arrives online...

T :

P :

a b c ? ? ? ? ? ? ?

a b a (dist = 1)

I Find the distance, d(i),between T [i , i + m − 1] and P for all i .

(Hamming distance shown)

I We are concerned with worst-case time per text character.

(which we term Pseudo-Realtime)
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Local and non-local pattern matching
A distance is local if it can be written as:

d(i) =
m−1∑
j=0

∆(P[j], T [i + j])

(where ∆ is some function acting on alphabet symbols)

T :

P :

I Hamming, L1, L2, less-than and k-mismatch. . . are all local.
I Edit distance, k-difference, rearangement distance etc. are

non-local.
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Local online pattern matching (CEPP, 2008)1

I Split the pattern into O(log m) consecutive subpatterns where
each subpattern is half the length of the previous.

P:
m
2

m
4

m
8

m
16

. . .S1 S2 S3 S4

I Compute distances by summing the distance from each Sj to T .

1Clifford, Efremenko, Porat and Porat. CPM 2008
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Local online pattern matching (CEPP,2008)

Example: (using Hamming distance)

T:

P:

b a c b b a b a a c a c a b a a b c b c

a b b a b c a b (dist = 4)
2 1 0 1+ + +

Plan:

I Compute distances from each subpattern, Sj , to T using an
offline algorithm as a black box.

I Split T into overlapping partitions so that each distance is
computed before it is needed.
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Local online pattern matching (CEPP,2008)

T:

P:

3|Sj |
2

b a a c a c a b a a b c b cb a c b b a

b c a ca b b a

|Sj |
2

|Sj |

I Text partitions are different for each subpattern, Sj .

I Compute matches in a text partition using an offline algorithm.
I Distribute the work across the next |Sj |/2 characters.
I Time complexity increases by at worst multiplicative O(log m).
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Results

Problem Offline Online/PsR Methodper char time penalty
local matching various O(log m) Splitting (CEPP,2008)

function various O(log m) PsR Cross-correlations
parameterised O(log |Σ|) O(1) Realtime KMP

edit distance/LCS O(m) O(1) Immediate
k-differences O(k) O(log m) Split & Feed

swap-mismatch O(
p

m log m) O(1) Split & Correct
swap O(log m log |Σ|) O(log m) Split & Correct

overlap O(log m) O(log m) Split & Correct
k-diff with transpositions O(k) O(log m) Split & Feed

self normalised O(log m) O(log m) PsR Cross-correlations
faulty bits O(m log m) O(1) Immediate

flipped bits O(log m) O(log m) PsR Cross-correlations
L1 rearrangement O(m) O(1) Immediate
L2 rearrangement O(log m) O(log m) PsR Cross-correlations
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Methods for non-local problems

PsR cross-correlations: Replace cross-correlations with
pseudo-realtime cross-correlations.

Split and Correct: Split the pattern into subpatterns and correct
for non-local effects at the boundaries between subpatterns.

Split and Feed: Split the pattern into subpatterns and ‘feed’ the
distances from one subpattern into the input of the next.

m
2

m
4

m
8

m
16

. . .
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Method: PsR Cross-correlations

The cross-correlation between X and Y is defined by:

(X ⊗ Y )[i] =

|Y |−1∑
j=0

X [i + j]Y [j]

I Offline: O(|X | log |Y |) total time (via FFTs).
I Pseudo-realtime: O(log2 |Y |) time per character.

I The problem is local so apply the method of (CEPP,2008).

Method: Peel apart your favourite pattern matching algorithm and
replace the cross-correlation step.
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Method: Split and Correct
Example Problem: (Swap-Mismatch)
For each i , find the minimum number of moves to transform P into
T [i , i + m − 1]. No two moves can be applied to the same character.
The valid moves are:

I swap (exchange two adjacent characters)
I mismatch (replace a character).

T:

P:

x a n b a d b a b c e a p w

a b c b b a c b

(AEP,2006)2 solved this problem offline in O(n
√

m log m) time.

2Amir, Eisenberg and Porat, Algorithmica 2006
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Method: Split and Correct

I Consider splitting the pattern into O(log m) subpatterns...
I What about the swaps at the boundaries?

I Only four possible cases

? ? ? ?

m
2

m
4

m
8

m
16

. . .

1. Compute distances for all transformed subpatterns using the
black box method.

2. Stitch the solutions for the subpatterns together by calculating
the optimal swaps at each boundary.
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Method: Split and Feed
Example Problem: (k-differences)
For each i , find the minimum number of moves, d(i), to transform P
into a suffix of T [1, i]. We only output if d(i) is ≤ k .The valid moves
are:

I mismatch (replace a character).
I insert (add a character).
I delete (remove a character).

T:

P:

b a n a n a p e a r a p p l e

p l e a s e

(LV,1988)3 give an offline solution in O(nk) time.

3Landau and Viskin, Comput. Syst. Sci. 2006
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Method: Split and Feed - a naive approach

I Consider splitting the pattern into O(log m) subpatterns...
I What about alignment of subpatterns?

I Inserts and deletes change subpattern alignment.

P:

T: b a n a n a p e a r a p p l e

a p p e a r e d

4 2 1 1

I Worse, the optimal transformation of P may contain suboptimal
transformations of subpatterns.

Plan: ‘Charge’ subpatterns for starting at each alignment.
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Method: Split and Feed - charging subpatterns

I Modify (LV,1988) to include starting costs as part of the input.
I Requires O(`k) time if the input has length O(`).

C:

T:

P:

0 1 2 1 1 0 1 2 3 2 1 2 2 1 0 1 0

b a n a n a p e a r a p p l e

p a r t

I Starting costs reflect the moves used by previous subpatterns.
I Subpatterns now require the output of previous subpatterns

before computation can begin.

Raphaël Clifford and Benjamin Sach
Non-local Distances Slide 15/18



Method: Split and Feed - charging subpatterns

I Modify (LV,1988) to include starting costs as part of the input.
I Requires O(`k) time if the input has length O(`).

C:

T:

P:

0 1 2 1 1 0 1 2 3 2 1 2 2 1 0 1 0

b a n a n a p e a r a p p l e

p a r

I Starting costs reflect the moves used by previous subpatterns.
I Subpatterns now require the output of previous subpatterns

before computation can begin.

Raphaël Clifford and Benjamin Sach
Non-local Distances Slide 15/18



Method: Split and Feed - modified partitioning
I Split the pattern into halving subpatterns,

S1, S2 . . . Sf where 4k ≤ |Sf | ≤ 8k .

T:

P:

7|Sj |
4

b a a c a cb a c b b a a b c a b c a b

a b b a b c a c

|Sj |
8

|Sj |

I Again, text partitions are different for each Sj .

I For all j < f , compute distances using modified (LV,1988).
I Distribute the work across the next |Sj |/8 characters.
I Are the starting costs available in time? What about Sf ?
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Method: Split and Feed - a closer look
I Split the pattern into halving subpatterns,

S1, S2 . . . Sf where 4k ≤ |Sf | ≤ 8k .

T:

P:

|Sj |
|Sj |
4

|Sj |
8

|Sj |
2

a cb a c b starts ends

|Sj |
8

|Sj |

I Consider any alignment of the Sj ending in the ends section.

I As k ≤ |Sj |/4, any match must begin in the starts section.

I Therefore we only need Sj−1 output from the starts section.

I And Sj−1 text partitions occur with twice the frequency . . .

I What about Sf ? It’s not very big. . . use dynamic programming.
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An Open Problem
I The black box method of (CEPP,2008) generalises well to 2D

local pattern matching problems but naively requires O(nm)
space. Can this be reduced to O(m2)?

(xkcd.com)

Thank you for listening.
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