Finding All Sorting Tandem Duplication Random Loss Operations

<u>Matthias Bernt</u>¹, Ming-Chiang Chen³, Daniel Merkle², Hung-Lung Wang³, Kun-Mao Chao³, Martin Middendorf¹

¹Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Germany

> ²Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

³Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

Outline

- 2 All Sorting TDRLs
 - A Restricted Case
 - The General Case

All Sorting TDRLs

Late Breaking Findings

Results 000000

Genome Rearrangement

>species1 .. G1 G2 G3 G4 G5 G6 G7 .. >species2 .. G4 G2 G7 G1 -G3 G5 G6 ..

>species*m* .. G7 G1 G2 G6 G5 G4 G3 ..

www.tolweb.org

Gene arrangements = permutations.

All Sorting TDRLs

Late Breaking Findings

Results

Tandem Duplication Random Loss (TDRL)

12345678 X2XX5X781X34X6XX 25781346

Definition (TDRL)

TDRL $\tau(F, S)$ defined by:

- F the set of elements kept in the first copy and
- S the set of elements kept in the second copy.

All Sorting TDRLs

Late Breaking Findings

Results 000000

Tandem Duplication Random Loss (TDRL)

Definition (TDRL)

TDRL $\tau(F, S)$ defined by:

- F the set of elements kept in the first copy and
- S the set of elements kept in the second copy.

All Sorting TDRLs

Late Breaking Findings

Results

Relevance of TDRLs

 S. Purpuratus
 C. miniata

 Nd4_ICO2 KIATPBIATPEICO3 - S2 IND3 IND4 IHISTI ND5 ADE (CYTBIFIT2S) E TP 20 NLT 24 W G X

 E P NLT W V ND4LICO2 KIATPBIATPEICO3 - S2 IND3 IND4 IHISTI ND5 ADE (CYTBIFIT2S) E TP 20 NLT 24 W G X

C. Sloani E. Plecanoides

 ATHEIATE COSIGINOS
 FINDELINDEIHIST
 ETINDELINDE
 FINDELINDE
 ETINDELINDE
 ETINDE
 ETINDE

 S. fontinalis
 B. nectabanus

 Image: state of a state of a

 L. polyphemus
 S. coleoptrata

 NON AIR N SELECTIONS HIMMED ROOM THE NON COM SILVERNIUM AN ACTIVE
 NON COM SILVERNIUM AND ACTIVE

 AIR SELECTIONS HIMMED ROOM THE NON COM SILVERNIUM AND ACTIVE
 NON COM SILVERNIUM AND ACTIVE

All Sorting TDRLs

Late Breaking Findings

Results 000000

Relevance of TDRLs

Asymmetry provides additional phylogenetic information

Sorting by TDRLs

Definition (Sorting by TDRLs)

Given a permutation π . Find a shortest sequence of TDRLs $\tau_1, \ldots, \tau_{d(\pi)}$ such that $\pi \circ \tau_1 \circ \ldots \circ \tau_{d(\pi)} = \iota$. The TDRL distance is the length of the sequence, denoted by $d(\pi)$.

Definition (Chain of a permutation π)

A chain of a permutation π is a maximal list (e_1, \ldots, e_k) of elements of π where $e_{i+1} = e_i + 1$ and $\pi^{-1}(e_i) < \pi^{-1}(e_{i+1})$. Number of chains of π : $\rho(\pi)$.

Sorting \equiv Merge the chains in order to get one chain. Indexing Scheme: c < c' iff $\forall e \in c, \forall e' \in c' : e < e'$

Sorting by TDRLs

Definition (Sorting by TDRLs)

Given a permutation π . Find a shortest sequence of TDRLs $\tau_1, \ldots, \tau_{d(\pi)}$ such that $\pi \circ \tau_1 \circ \ldots \circ \tau_{d(\pi)} = \iota$. The TDRL distance is the length of the sequence, denoted by $d(\pi)$.

Definition (Chain of a permutation π)

A chain of a permutation π is a maximal list (e_1, \ldots, e_k) of elements of π where $e_{i+1} = e_i + 1$ and $\pi^{-1}(e_i) < \pi^{-1}(e_{i+1})$. Number of chains of π : $\rho(\pi)$.

Sorting \equiv Merge the chains in order to get one chain. Indexing Scheme: c < c' iff $\forall e \in c, \forall e' \in c' : e < e'$

All Sorting TDRLs

Late Breaking Findings

Sorting by TDRLs [Chaudhuri et al., SODA, 2006]

TDRL Distance: $d(\pi) = \lceil \log_2(\rho(\pi)) \rceil$

Radix-Sort inspired algorithm:

- Get the binary representation of the chain index of each element
- In the *i*-th step: keep the elements of chains with a 0 at the *i*-th least significant bit in the first copy

All Sorting TDRLs

Late Breaking Findings

All Sorting TDRLs Problem Definition

Question 1: Are there alternative sorting TDRL scenarios?

Definition (All Sorting TDRLs)

Find the set of TDRLS { $\tau : d(\pi \circ \tau) < d(\pi)$ }.

Question 2: How many sorting TDRLs are there?

Definition (Number of Sorting TDRLs)

Determine $|\{\tau : d(\pi \circ \tau) < d(\pi)\}|$.

Basic Properties

Observations

- Elements kept in the 1st (2nd) copy are moved to the left (right)
- The order of the elements kept in the same copy is not changed

 $C_1 C_2 C_3$

Restricted TDRLs

Definition (Restricted TDRL)

All elements of a chain are kept in the same copy.

Proposition

Two chains c_i and c_j can be connected with a TDRL iff j = i + 1. This can be done by keeping the elements of c_i in the 1st copy and the elements of c_{i+1} in the 2nd copy.

Proposition

Three chains c_i , c_{i+1} , and c_{i+2} can not be

connected at once.

 \Rightarrow Restricted TDRL distance = TDRL distance

All Sorting TDRLs

Late Breaking Findings

Results 000000

Reformulation

• Restricted TDRL \equiv Binary string *s* of length $\rho(\pi)$: $s_i = 1 \leftrightarrow c_i$ is kept in the 1st copy $s_i = 2 \leftrightarrow c_i$ is kept in the 2nd copy

• c_i and c_{i+1} get connected iff $s_i s_{i+1} = 12$

$$\frac{s_0}{1}$$
 $\frac{s_1}{2}$ $\frac{s_2}{1}$

Question:

• How many strings of length *n* with at least *k* 12-transitions?

Introduction 0000000	All Sorting TDRLs 00●00000	Late Breaking Findings
String Count		

Results

Number of strings of length n which have exactly k 12-transitions.

$$s_{1} = 1 \land s_{n} = 1 \rightarrow \binom{n-1}{2k} \qquad 1 \land 2 \land 1 \qquad 1 \land 2 \qquad 2 \land 1 \qquad 1 \\ s_{1} = 1 \land s_{n} = 2 \rightarrow \binom{n-1}{2k-1} \qquad 1 \land 2 \qquad 2 \land 1 \qquad 1 \\ s_{1} = 2 \land s_{n} = 1 \rightarrow \binom{n-1}{2k+1} \qquad 2 \qquad 2 \land 1 \qquad 1 \land 2 \qquad 2 \land 1 \qquad 2 \\ s_{1} = 2 \land s_{n} = 2 \rightarrow \binom{n-1}{2k} \qquad 2 \qquad 2 \land 1 \qquad 1 \land 2 \qquad 2 \land 1 \qquad 1 \\ s_{1} = 2 \land s_{n} = 2 \rightarrow \binom{n-1}{2k} \qquad 2 \qquad 2 \land 1 \qquad 1 \land 2 \qquad 2 \land 1 \qquad 2 \\ = \binom{n+1}{2k+1}$$

Number of strings of length *n* which have at least *k* 12-transitions.

$$=\sum_{i=k}^{\lfloor \frac{n}{2} \rfloor} \binom{n+1}{2i+1}$$

Result

Theorem

For a permutation π with ρ chains there are

$$\sum_{=\rho-2^{\lceil \log_2(\rho)\rceil-1}}^{\lfloor \frac{p}{2} \rfloor} {\rho+1 \choose 2i+1}$$

sorting restricted TDRLs.

For $\rho = 2^x$:

- Only one sorting TDRL
- Only one sorting TDRL scenario

In general:

• Each sorting scenario is unique after $\lceil \log_2(2^{\lceil \log_2(\rho) \rceil} - \rho + 1) \rceil$ sorting TDRLs.

All Sorting TDRLs

Late Breaking Findings

Results 000000

All Sorting TDRLs

21 at θ-positions breaks a chain → ρ increased by 1
12 at φ-positions connect chains → ρ decreased by 1
Question: How many binary strings of length *n* with k ≤ Δρ.

All Sorting TDRLs

Late Breaking Findings

Results

Dynamic Programming Approach

 $a_{j,k}^{x}$: Number of possible binary strings of length *j* ending with $x \in \{1,2\}$ that change the number of chains by *k*.

All Sorting TDRLs

Late Breaking Findings

Results 000000

Dynamic Programming Approach

 $a_{j,k}^{x}$: Number of possible binary strings of length *j* ending with $x \in \{1,2\}$ that change the number of chains by *k*.

$$a_{j,k}^{2} = \begin{cases} a_{j-1,k+1}^{1} + a_{j-1,k}^{2} & \text{if } p_{j-1} = \phi \\ a_{j-1,k}^{1} + a_{j-1,k}^{2} & \text{else} \end{cases}$$
$$a_{j,k}^{1} = \begin{cases} a_{j-1,k}^{1} + a_{j-1,k-1}^{2} & \text{if } p_{j-1} = \theta \\ a_{j-1,k}^{1} + a_{j-1,k}^{2} & \text{else} \end{cases}$$

 $a_{1,0}^1 = 1$, $a_{1,0}^2 = 1$ other values initialised to 0

Number of sorting TDRL:
$$\sum_{i=\rho-2^{\lceil \log_2(\rho)\rceil-1}}^{\lfloor \frac{\rho}{2} \rfloor} a_{n,i}^1 + a_{n,i}^2$$

All Sorting TDRLs

Late Breaking Findings

Results

Dynamic Programming Approach

Sorting TDRL events can be enumerated by backtracking.

All Sorting TDRLs

Late Breaking Findings

Results

Equalities

Number of sorting TDRLs:

$$\sum_{i=0}^{2^{\lceil \log_2(\rho(\pi)) \rceil} - \rho(\pi)} \binom{n}{i}$$

Number of sorting restricted TDRLs:

$$\sum_{i=0}^{2^{\lceil \log_2(
ho(\pi))
ceil}-
ho(\pi)} inom{
ho(\pi)}{i}$$

Riffle Shuffle

All Sorting TDRLs

Late Breaking Findings

Results 000000

$\mathsf{TDRL} \bigvee_{A \ C \ E \ B \ D}^{A \ B \ C \ D \ E} \mathsf{Riffle Shuffle}$

Riffle Shuffle Distance:

- Schwenk Elementary Problem: E3143, Am. Math Mon., 1986
- Schwenk E3143, Am. Math Mon., 1988

All Sorting TDRLs

Late Breaking Findings

Results ●00000

Number of Sorting TDRLs

• Only 1 sorting TDRL for $\rho = 2^x$

All Sorting TDRLs

Late Breaking Findings

Results 000000

Number of Chains in Simulated Permutations

Apply k "random" TDRLs on ι

• Unique sorting scenarios for $ho \in \{2,4\}$ (and ho = 8) are very likely

All Sorting TDRLs

Late Breaking Findings

Results 00●000

Mitochondrial Data

Previously unpublished scenario of two TDRLs:

S. fontinalis

CO1 -52 <mark>D CO2</mark> K ATP8 ATP6 CO3 G ND3 R ND4L ND4 H <mark>S1 L1 ND5</mark> -ND6 -E CYTB T -P F 12S V 16S L2 ND1 I -Q M ND2 <mark>W</mark> -A -N -C -Y

CO1 -S2 K R ND4L ND4 H -ND6 -E CYTB T -P F 12S V 16S L2 ND1 I -Q M ND2 -A -N -C -Y D CO2 ATP8 ATP6 CO3 G ND3 S1 L1 ND5 W

/ CO1 <mark>-S2 K R ND4L ND4</mark> H -ND6 -E CYTB <mark>T -P F 12S V 16S L2 ND1 I -Q M ND2</mark> -A -N <mark>-C</mark>-Y D CO2 ATP8 ATP6 CO3 G ND3 S1 L1 ND5 <mark>V</mark>

* <mark>CO1 H -ND6 -E CYTB 12S V 16S L2 ND1 -A -N -</mark>Y D CO2 ATP8 ATP6 CO3 G ND3 S1 L1 ND5 <mark>-S2 K R ND4L ND4 T -P F I -Q M ND2 -C V</mark>

Support:

- 4 chains \rightarrow unique scenario
- P. myriaster → S. fontinalis needs 3 TDRLs
- Reversal distance is 15
- Transposition distance is 7
- There exists no TDRL median with score 2 or less
- Fragments of duplicated sequences support TDRLs [Miya05]

Conclusion

- Method for enumerating all sorting TDRLs
- Closed formulas for the number of sorting TDRLs
- Identification of unique TDRL sorting scenarios possible
- Identification of likely unique TDRLs scenario in mitochondria

Thank You!

ND4L|CO2|K|ATP8|ATP6|CO3|-S2|ND3|ND4|H|S1|ND5|-ND6|CYTB|F|12S|E|T|P -Q NL1 -A W C -V E|P NL1 W -V ND4L|CO2|K|ATP8|ATP6|CO3|-S2|ND3|ND4|H|S1|ND5|-ND6|CYTB|F|12S|T -Q -A C