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Biological Background

Remarks on the Double Cut and Join Operation
A. Bergeron1, J. Mixtacki2,3 and J. Stoye2

1 Comparative Genomics Laboratory, Université du Québec à Montréal, Canada
2 Technische Fakultät, Universtät Bielefeld, Germany
3 International NRW Graduate School in Bioinformatics and Genome Research, Universtät Bielefeld, Germany

Operations on chromosomes

Given two genomes A and B with the same gene content.

A

B

Gene: Represented by a signed identifier.
Sequence: List of signed identifiers (x1 . . . xk), where k ≥ 0.

Operations on sequences that do not modify the genome:

• Flipping the sequence (x1 . . . xk) yields (−xk . . . − x1).

• Splitting (x1 . . . xi . . . xk) yields (x1 . . . xi) and (xi . . . xk).

•Merging two sequences is the inverse of splitting.

Genome: Set of sequences of genes, in which each gene occurs
once, except possibly as the first and last element of a single se-
quence, with the same sign.
Chromosome: Any sequence of a genome.

circular linear

A = {( b e b), ( a c −d), ( f g)}

B = {( a b a), ( c d), ( e), ( f g f)}

Classical operations on chromosomes:

•Translocations exchange two chromosome ends.

• Fusions and fissions are translocations involving or creating
empty chromosomes.

• Inversions reverse the order and the orientation of a segment.

•Block interchanges exchange two segments.

DCJ operation [2]: Transforms two sequences

X = (x1 . . . xi xi+1 . . . xk) and Y = (y1 . . . yj yj+1 . . . yl)

into two new sequences

X ′ = (x1 . . . xi yj+1 . . . yl) and Y ′ = (y1 . . . yj xi+1 . . . xk).

Effects of a DCJ operation:

(1) X, Y linear
k > 0; l > 0; 0 < i < k; 0 < j < l

(Internal) Translocation

(2) X, Y linear
k > 0; l > 0; i = k; j = 0

Fusion

(3) X, Y linear
k > 0; l = 0; i < k

Fission

(4) X circular, Y linear
0 6= i 6= k

Fusion into one linear chromosome

(5) X, Y circular
0 6= i 6= k and 0 6= j 6= l

Fusion into one circular chromosome

(6) (x1 . . . xk)(y1 . . . yl) circular
x1 = yl and xk = y1

Fission into two circular chromosomes

(7) (x1 . . . xk)(y1 . . . yl) linear
xk = y1

Fission into one linear and one circular
chromosome

(8) (x1 . . . xk)(−yl . . . − y1) circular
x1 = yl and xk = y1

Inversion of a circular chromosome

(9) (x1 . . . xk)(−yl . . . − y1) linear
xk = y1

Inversion of a linear chromosome

Sorting by DCJ operations:

A = {( b e b), ( a c −d), ( f g)} (case (4))

{( a b e c −d), ( f g)} (case (7))

{( a b a), ( e c −d), ( f g)} (case (9))

{( a b a), ( e c d), ( f g)} (case (3))

{( a b a), ( c d), ( e), ( f g)} (case (7))

B = {( a b a), ( c d), ( e), ( f g f)}

Modeling genomes by signed permutations

Given two genomes A and B with n genes.

Let lA (cA) be the number of linear (circular) chromosomes of A.

Let lB (cB) be the number of linear (circular) chromosomes of B.

A = {( b e b), ( a c −d), ( f g)}

B = {( a b a), ( c d), ( e), ( f g f)}

First step:

• Extend genome A by lB and B by lA empty chromosomes.

•Add caps at the ends of the lA + lB linear chromosomes, e.g.

Â1 = {(b e b), (C1 a c −d C2), (C3 f g C4), (C5 C6), (C7 C8)}

B̂1 = {(a b a), (C1 c d C2), (C3 e C4), (f g f ), (C5 C6), (C7 C8)}

Second step:

• Linearize each circular chromosomes of Â and B̂.

{(b e b′), (C1 a′ a c −d C2), (C3 f ′ f g C4), (C5 C6), (C7 C8)}

{(a b′ b a′), (C1 c d C2), (C3 e C4), (f g f ′), (C5 C6), (C7 C8)}

•Chain the chromosomes and add a first element 0 and a last
element n + 2(lA + lB) + cA + cB + 1

PÂ1

= (0 3 10 2 5 4 1 6 −7 8 9 14 12 13 11 15 16 17 18 19)

PB̂1

= (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)

Elementary intervals and cycles

Point: A pair p · q of consecutive elements.

Let N = n + 2(lA + lB) + cA + cB + 1 be the number of points.

Point p · q of PÂ (of PB̂) is white, if one of the conditions holds:

• p = 0 or q = N

• p and q belong to different chromosomes in Â (in B̂)

• q and p are the first and last elements of a circular chromo-
some in B̂ (in Â).

Otherwise p · q is a black point.

Note: Both PÂ and PB̂ have n + lA + lB black points and
lA + lB + cA + cB + 1 white points.

Elementary interval Ik: The interval whose endpoints are:

1. the right point of k, if k is positive, otherwise its left point;

2. the left point of k + 1, if k + 1 is positive, otherwise its right
point.

Cycle: Sequence of points that are linked by elementary inter-
vals.

PÂ1

= (0 3 10 2 5 4 1 6 −7 8 9 14 12 13 11 15 16 17 18 19)

I5
v v

I3
v v

I1
v v

I6
v v

I7
v v

I9
v v

I10
v v

I12
v

I13
v v

I15
v I17

v

Number of

black cycles = 5

PB̂1

= (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
f v f v f v v v f v v f v v f v f v f

Note: Genome A and B are identical if and only if the number of
black cycles is maximized and equals n + lA + lB.

The DCJ capping

Let B̂ be the result of capping B such that PB̂ = Id.

Capping of genome A: Assignment of caps to genome A, such
that the two resulting genomes Â and B̂ are co-tailed.

1) Add unlabeled caps at the chromosome ends.

Internal point: Black point that is between two genes.
External point: Any other black point.

Path: Sequence of black points that are linked by elementary
intervals Ik, where k · k + 1 is an internal point of PB̂.

PÂ2

= (0 3 10 2 C 4 1 6 −7 C C 14 12 13 C C C C C 19)

I1
v v

I3
v v I6

v v I12
v

I13
v v

2) Labeling of the caps by closing paths.

PÂ2

= (0 3 10 2 9 4 1 6 −7 8 15 14 12 13 16 5 11 17 18 19)

I1
v v

I3
v v

I5
v v

I6
v v

I7
v v

I9
v v

I10
v v

I12
v

I13
v v

I15
v v

I17
v

Number of

black cycles = 6

Proposition [2]: By DCJ capping the number of black cycles c

is maximized.

Computing the DCJ distance

DCJ distance d(A,B): The minimum number of DCJ operations
needed to transform A into B.

Theorem [2]: Let Â and B̂ be co-tailed genomes given by the
DCJ capping. Then we have

d(A,B) = b − c

where b = n + lA + lB is the number of black points and c the
number of black cycles of the signed permutation PÂ.

Example (cont’d):

PÂ2

has eleven black points and six black cycles, therefore:

d(A, B) = 11 − 6 = 5

Sorting with a minimum number of block interchanges

A block interchange can be modeled by two DCJ operations, case
(7) followed by case (4).

Theorem: With the DCJ capping, there exists a sorting sequence
of length d(A, B) with the minimum number of block inter-
changes.

The number of block interchanges depends on the number of
intrachromosomal unoriented components [1] of PÂ. One can
show that intrachromosomal unoriented components created by
the DCJ capping cannot be sorted by inversions and transloca-
tions without increasing b − c. Therefore they are unavoidable.

References

[1] A. Bergeron, J. Mixtacki, and J. Stoye. On Sorting by Translo-
cations. In RECOMB 2005 Proceedings, volume 3500 of
LNBI, pages 615–629. Springer Verlag, 2005.

[2] S. Yancopoulos, O. Attie and R. Freibergs. Efficient sorting of
genomic permuations by translocations, inversion and block
interchange. In Bioinformatics 21(16), 3340-3346, 2005.

Genome is the entire DNA of a living organism
Gene is a segment of DNA that is involved e.g. in
producing a protein, and its orientation depends on the
DNA strand that it lies on
Genome consists of chromosomes
Chromosomes are linear or circular

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Operations on two chromosomes:
Translocations exchange two chromosome ends:

or

Fusions and fissions are translocations involving or
creating empty chromosomes

Operations on one chromosome:
Inversions reverse the order and the orientation of a
segment:

Block interchanges exchange two segments
Transpositions are block interchanges whose exchanged
segments are adjacent

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Genome Rearrangements

Genome rearrangements change the content and/or the order
of genes of a genome:

inversions
transpositions
translocations
fusions and fissions
...

(Picture: Palmer & Herbon, 1988)

The number of rearrangements needed to transform one
genome into another is a measure for the evolutionary distance
between two species

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Genomic distance
d(A, B): minimum number of operations needed to transform
genome A into genome B

What kind of genome model?
Which set of operations?

HP distance dHP (HP 1995, T 2002, O-FS 2003, JN 2007)

Linear chromosomes
Translocations, fusions, fissions and inversions

DCJ distance dDCJ (YAF 2005, BMS 2006)

Linear and circular chromosomes are allowed
All classical operations are included

Our Goal:

dHP = dDCJ + t

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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The Double Cut and Join (DCJ) Model

Multi-chromosomal, linear genomes with the same N genes:

Gene is represented by a signed integer between 1 and N
Chromosome is an ordered sequence of signed genes,
flanked by two unsigned telomere markers ◦ = −◦

(◦ 1 5 -4 3 2 -6 ◦)

Interval (l , . . . , r) is a set of consecutive genes or telomere
markers within a chromosome; with extremities {l ,−r}
Adjacency is an interval of length 2
Telomere is an adjacency that contains a telomere marker

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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The Double Cut and Join (DCJ) Model

A = {(◦, 3, 2, 1, 4, ◦), (◦, 6, 5, ◦)}

B = {(◦, 1, 2, 3, 4, ◦), (◦, 5, 6, ◦)}

Definition 1
Adjacency graph AG(A, B): vertices are the adjacencies of
genomes A and B and edges connect either the two
adjacencies in which g appears as extremity +g, or as −g.

s s s s s s s s{◦,−3} {3,−2} {2,−1} {1,−4} {4,−◦} {◦,−6} {6,−5} {5,−◦}

s s s s s s s s
{◦,−1} {1,−2} {2,−3} {3,−4} {4,−◦} {◦,−5} {5,−6} {6,−◦}
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DCJ operation acts on two vertices of a graph with vertices of
degree one or two in one of the following three ways:'
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Theorem 1 (BMS 2006)
Let A and B be genomes defined on N genes, then we have

dDCJ(A, B) = N − (C + I/2)

where C = # of cycles and I = # of odd paths in AG(A, B).

DCJ-sorting operation reduces the DCJ distance by 1

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Definition 2
A DCJ-sorting operation is oriented if it does not create circular
chromosomes.

For linear genomes, oriented operations are necessarily
inversions,
translocations,
fusions, and
fissions.

Proposition 1
For two linear genomes A and B, we have that

dDCJ(A, B) ≤ dHP(A, B).

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Components

A = {(◦, 2, 1, 3, 5, 4, ◦), (◦, 6, 7, -11, -9, -10, -8, 12, 16, ◦), (◦, 15, 14, -13, 17, ◦)},
B = {(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, 10, 11, 12, ◦), (◦, 13, 14, 15, ◦), (◦, 16, 17, ◦)}.

Definition 3
An interval (l , . . . , r) of A is a component if there exists an
interval in B:
(a) with the same extremities {l ,−r},
(b) with the same set of genes, and
(c) that is not the union of two such intervals.

◦ 2 1 3 5 4 ◦ ◦ 6 7 -11 -9 -10 -8 12 16 ◦ ◦ 15 14 -13 17 ◦

Proposition 2
Components are either disjoint, nested, or overlap on one gene.

Chain: successive linked components
Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Components and Oriented Sorting
Oriented DCJ-sorting operation:

1 4 3 -2 5 ⇒ 1 2 -3 -4 5

r r r r{1,−4} {4,−3} {3, 2} {−2,−5}

r r r r
{1,−2} {2,−3} {3,−4}{4,−5}

!!!!!!!!
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Q
Q
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Q
r r r r{1,−2} {2, 3} {−3, 4}{−4,−5}

r r r r
{1,−2} {2,−3} {3,−4}{4,−5}
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Lemma 2
If all elements of a component have the same sign, then no
inversion acting on one path/cycle can create a new cycle.

Definition 5
Component is oriented: there exists an oriented DCJ-sorting
operation, otherwise it is unoriented.

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Components and Oriented Sorting
Oriented DCJ-sorting operation:

◦ 4 3 2 1 ◦ ⇒ ◦ 4 3 2 -1 ◦

r r r r r{◦,−4} {4,−3} {3,−2} {2,−1}{1,−◦}

r r r r r
{◦,−1} {1,−2} {2,−3} {3,−4}{4,−◦}
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!!!!!!!!
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r r r r r{◦,−4} {4,−3} {3,−2}{2, 1} {−1,−◦}

r r r r r
{◦,−1} {1,−2} {2,−3}{3,−4} {4,−◦}
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Proposition 4
A component is oriented if and only if either its elements have
positive and negative signs, or its adjacency graph has two
even paths.

Theorem 2
dHP = dDCJ if and only if there are no unoriented components.

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Destroying Unoriented Components

A = {(◦, 2, 1, 3, 5, 4, ◦), (◦, 6, 7,−11,−9,−10,−8, 12, 16, ◦), (◦, 15, 14,−13, 17, ◦)},
B = {(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, 10, 11, 12, ◦), (◦, 13, 14, 15, ◦), (◦, 16, 17, ◦)}.

Definition 6

The forest FX of chromosome X is defined by the construction:

1. Each non-trivial component is a round node.

2. Each maximal chain is a square node whose (ordered) children are the
round nodes.

3. A square node is the child of the smallest component that contains this
chain.

◦ 2 1 3 5 4 ◦ ◦ 6 7 -11 -9 -10 -8 12 16 ◦ ◦ 15 14 -13 17 ◦

FX1 : �
��r

(◦, . . . , 3)

H
HHr

(3, . . . , ◦)

FX2 : r(7, . . . , 12)

r(−11, . . . ,−8)

FX3 : r(◦, . . . ,−13)

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Destroying Unoriented Components

Definition 7
The tree T is given by the construction:

1. The root is a round node.
2. All trees of forests {FX1 , FX2 , . . . , FXK } of chromosomes

{X1, X2, . . . , XK} are children of the root. r
��

���

HH
HHH

���b×
(◦, . . . , 3)

HHHb×
(3, . . . , ◦) r(7, . . . , 12)

b(−11, . . . ,−8)

r(◦, . . . ,−13)

Round nodes are painted...
black: the root and all oriented components
white: unoriented components that do not contain telomeres
grey: unoriented components that contain one or two telomeres

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Destroying unoriented components

Proposition 7 (Component Cutting)
Unoriented component C:
any inversion within the same cycle/path
orients C and leaves the number
of cycles and paths unchanged.

r
��

��

HH
HH

��b×
C

HHb× r
b

r

Proposition 8 (Component Merging)
Unoriented components A and B:
a DCJ operation between A and B
destroys or orients all components
on the path from A to B, without
creating new unoriented components.

r
�

���

H
HHH

��b× HHb× r
bA

rB

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Unoriented Sorting

T ′: smallest subtree of T
that contains all the
unoriented components

T : q
��

��
HH

HH
��a× HHa× q

a
q

T ′: q
��

��
��a× HHa× q

a
Definition 8
A cover of T ′ is a collection of paths joining all the unoriented
components, such that each terminal node of a path belongs to
a unique path.

Each cover of T ′ describes a set of operations that
orients all the unoriented components
Short path: contains only one white
or one grey component
Long path: contains two or more
white or grey components

r
���

��
�

��b× H
HHb× r

b
Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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General HP Distance Formula

Cost of a cover is the sum of the costs of its paths:
1) Cost of a short path: 1
2) Cost of a long path with two grey components: 1
3) Cost of all other long paths: 2

r
�

����
���b× HHHb×

1
r
b1Cost t = 2

Theorem 3
If t is the cost of an optimal cover of T ′, then:

dHP(A, B) = dDCJ(A, B) + t .

Closed formula for t is given in Theorems 4 and 5 (see paper).

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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Summary and outlook

Relation between the DCJ and the HP genome
rearrangement models

Components are defined directly in the genome

Properties of components like inclusion and linkage are
represented in a tree

Simple proof of the HP distance formula

Linear-time algorithm for the HP distance (in my thesis)

Thank you for your attention!

Bergeron, Mixtacki, and Stoye HP via DCJ CPM 2008
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