
Improved Approximate String Matching and
Regular Expression Matching on Ziv-Lempel
Compressed Texts

Philip Bille
IT University of Copenhagen

Rolf Fagerberg
University of Southern Denmark

Inge Li Gørtz
Technical University of Denmark

Approximate String Matching

• The edit distance between two strings is the minimum number of insertions,
deletions, and substitutions needed to convert one string to the other. E.g.,
edit-distance(“cocoa”, “cola”) = 2.

• Let and be strings and let (integer) be an error threshold.

• The approximate string matching problem is to find all ending positions of
substrings in whose edit distance to is at most .

P Q k

P kQ

> 0

Results

[Sellers1980]

[LV1989]

[CH2002]

|Q| = u

Time Space

 and

O(um)

O(uk)

O(m)

O(m)

O

(
uk4

m
+ u

)
O(m)

|P | = m

Reference

Q = ananas

Z = (0,a)(0,n)(1,n)(1,s)

Z =

a

s n

n
0

1 2

34z0 z1 z2 z3 z4

Ziv-Lempel 1978 compression

Approximate String Matching on ZL78 compressed
texts

• Let be a string and be a ZL78 compressed representation of a string .

• Given and , the compressed approximate string matching problem is to
solve the approximate string matching for and without decompressing .

• Goal: Do it more efficiently than decompressing and using the best
(uncompressed) approximate string matching algorithm.

QP Z

P Z
P Q Z

Z

Applications

• Textual data bases (e.g. DNA sequence collections) issues:

• Save space = keep data in compressed form.

• Search efficiently.

• Solution: Compressed string matching algorithms.

|Z| = n|P | = m

Results

• Let and .

• Kärkkäinen, Navarro, and Ukkonen [KNU2003]:

• time and space.

• Our result (Theorem 1): For any parameter :

• expected time and

• space.

O(n(τ +m + t(m, 2m + 2k, k)) + occ)

O(n/τ +m + s(m, 2m + 2k, k)) + occ)

O(nmk + occ) O(nmk)

τ ≥ 1

[KNU2003]

LV +

This
paperCH +

τ = mk

τ = k4 +m
O(nk4 + nm + occ)

O
(n
mk
+m + occ

)

O

(
n

k4 +m
+m + occ

)

Example Results

Time Space

and

O(nmk + occ)

O(nmk + occ)

O(nmk)

|P | = m |Z| = n

Reference

Z =

Selecting Compression Elements

• For parameter , select a subset of the compression elements of Z
such that:

• .

• From any compression element , the distance (minimum number of
references) to any compression element in is at most .

τ ≥ 1 C

|C| = O(n/τ)

zi
C 2τ

Z =

Selecting Compression Elements

• Maintain using dynamic perfect hashing while scanning from left-to-right.

• Initially, set .

• To process element follow references until we encounter :

• If the distance from to is less than we are done.

• Otherwise (), insert element the element at distance into .

C Z

C = {z0}

y ∈ Czi+1

l zi+1 y 2τ

l = 2τ τ C

• Lemma: For any parameter , is constructed in

• expected time and

• space.

Z =

Selecting Compression Elements

τ ≥ 1 C

O(nτ)

O(n/τ)

Q =

Computing Matches

• Strategy:

• Process from left-to-right.

• At we compute all matches ending in the substring encoded by .

Z

zi zi

phrase(zi)phrase(zi−1)

phrase(zi)phrase(zi−1)

rsuf(zi−1)

.

rpre(zi)

Q =

Computing Overlapping Matches

• Let be the positions in of .

• Goal: Find all overlapping matches for , i.e., the matches starting before
and ending in .

• Decompress substrings and of length around .

• Run favorite (uncompressed) approximate string matching algorithm to find
matches of P in . Add offset to these to get the
overlapping matches for .

[ui , ui + li − 1] Q phrase(zi)

zi
[ui , ui + li − 1]

rpre(zi) rsuf(zi−1) m + k ui

rsuf(zi−1) · rpre(zi)
zi

ui

m + k

zi

Computing the Relevant Prefix and Suffix

• For parameter , select a subset of the compression elements of
according to Lemma 1.

• For each element in at distance more than from add “shortcut” to
element at distance .

τ ≥ 1 C Z

C m + k z0
m + k

Computing the Relevant Prefix

• Follow references to nearest element in .

• Follow shortcut if present.

• Compute the relevant prefix by decompressing length substring.

m + k

C

m + k

zi

Computing the Relevant Suffix

• Follow references to decompress substring of length .

• If the phrase is shorter than , recursively apply to until we have
characters.

m + k

m + k

m + k zi−1 m + k

zi

Analysis

• Time = preprocess + n(find nearest element + decompress + match) =

• Space = preprocess + decompress + match =

O(nτ + n(τ +m + t(m, 2m + 2k, k))

O(n/τ +m + s(m, 2m + 2k, k))

phrase(zi)phrase(zi−1)

rsuf ′(zi)

Computing Internal Matches

• Goal: Find all internal matches for , i.e., all matches starting and ending
within .

• Compute and store all the internal match sets indexed by compression
elements using dynamic perfect hashing.

• Decompress substring of length ending at .

• Internal matches for =

[ui , ui + li − 1]
zi

rsuf ′(zi) min(li , m + k) ui + li − 1

zi
reference(zi)

⋃
P rsuf ′(zi)(internal matches for) (matches of in)

Analysis

• Time = n (decompress + match + internal matches) =

• Space = decompress + match + total number of internal matches =

O(n(m + t(m,m + k, k)) + occ)

O(m + s(m,m + k, k) + occ)

Putting the Pieces Together

• Merging overlapping and internal matches we get all matches for ending
within .

• Implies Theorem 1: For any parameter :

• expected time and

• space.

• Does not hold for ZLW compressed texts, unless space is used.

• For space the bounds hold in the worst-case and work for both ZL78
and ZLW.

[ui , ui + li − 1]
zi

O(n(τ +m + t(m, 2m + 2k, k)) + occ)

O(n/τ +m + s(m, 2m + 2k, k)) + occ)

τ ≥ 1

Ω(n)

Ω(n)

Regular Expression Matching

• A regular expression is a generalized pattern composed from simple
characters using union, concatenation, and Kleene star.

• Given a regular expression and a string the regular expression matching
problem is to find all ending positions of substrings in that matches a string
in the language generated by .

R Q

Q

R

Regular Expression Matching

• Let and .

• Classic solution [Thompson1968]: time and space.

• Several improvements based on the Four-Russian technique or word-level
parallelism [Myers1992, NR2004, BFC2005, Bille2006].

|R| = m |Q| = u

O(um) O(m)

Compressed Regular Expression Matching

• Let and .

• Navarro [Navarro2003] simplified and without word-level parallel techniques:

• time and space.

• Our result (Theorem 2): For any parameter :

• time and

• space.

• E.g. gives time and space.

O(nm2 + occ ·m logm) O(nm2)

τ ≥ 1

O(nm(m + τ) + occ ·m logm)

O(nm2/τ + nm)

τ = m O(nm2 + occ ·m logm) O(nm)

|R| = m |Z| = n

Remarks

• Compressed strings are large and therefore space space may not be
feasible for large texts.

• Our result for compressed approximate string matching is one of the very few
algorithms for compressed matching that uses space.

• More sublinear space compressed string matching algorithms are needed!

Ω(n)

o(n)

