Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts

Philip Bille IT University of Copenhagen

Rolf Fagerberg University of Southern Denmark

Inge Li Gørtz Technical University of Denmark

Approximate String Matching

- The edit distance between two strings is the minimum number of insertions, deletions, and substitutions needed to convert one string to the other. E.g., edit-distance("cocoa", "cola") = 2.
- Let *P* and *Q* be strings and let k (integer > 0) be an error threshold.
- The approximate string matching problem is to find all ending positions of substrings in *Q* whose edit distance to *P* is at most *k*.

Results

|P| = m and |Q| = u

Ziv-Lempel 1978 compression

0

3

n

2

Approximate String Matching on ZL78 compressed texts

- Let *P* be a string and *Z* be a ZL78 compressed representation of a string *Q*.
- Given *P* and *Z*, the compressed approximate string matching problem is to solve the approximate string matching for *P* and *Q* without decompressing *Z*.
- Goal: Do it more efficiently than decompressing *Z* and using the best (uncompressed) approximate string matching algorithm.

Applications

- Textual data bases (e.g. DNA sequence collections) issues:
 - Save space = keep data in compressed form.
 - Search efficiently.
- Solution: Compressed string matching algorithms.

Results

- Let |P| = m and |Z| = n.
- Kärkkäinen, Navarro, and Ukkonen [KNU2003]:
 - O(nmk + occ) time and O(nmk) space.
- Our result (Theorem 1): For any parameter $\tau \ge 1$:
 - $O(n(\tau + m + t(m, 2m + 2k, k)) + occ)$ expected time and
 - $O(n/\tau + m + s(m, 2m + 2k, k)) + occ)$ space.

Example Results

|P| = m and |Z| = n

Selecting Compression Elements

- For parameter τ ≥ 1, select a subset C of the compression elements of Z such that:
 - $|C| = O(n/\tau)$.
 - From any compression element z_i , the distance (minimum number of references) to any compression element in C is at most 2τ .

Selecting Compression Elements

- Maintain *C* using dynamic perfect hashing while scanning *Z* from left-to-right.
- Initially, set $C = \{z_0\}$.
- To process element Z_{i+1} follow references until we encounter $y \in C$:
 - If the distance / from Z_{i+1} to y is less than 2τ we are done.
 - Otherwise ($l = 2\tau$), insert element the element at distance τ into C.

Selecting Compression Elements

- Lemma: For any parameter $\tau \ge 1$, C is constructed in
 - $O(n\tau)$ expected time and
 - $O(n/\tau)$ space.

Computing Matches

• Strategy:

- Process *Z* from left-to-right.
- At Z_i we compute all matches ending in the substring encoded by Z_i .

Computing Overlapping Matches

$$Q = \cdots \qquad phrase(z_{i-1}) \qquad phrase(z_i) \qquad \cdots$$

- Let $[u_i, u_i + l_i 1]$ be the positions in Q of phrase (z_i) .
- Goal: Find all overlapping matches for z_i , i.e., the matches starting before u_i and ending in $[u_i, u_i + l_i 1]$.
- Decompress substrings rpre(z_i) and rsuf(z_{i-1}) of length m + k around u_i .
- Run favorite (uncompressed) approximate string matching algorithm to find matches of P in rsuf(z_{i-1}) · rpre(z_i). Add offset to these to get the overlapping matches for z_i.

Computing the Relevant Prefix and Suffix

- For parameter τ ≥ 1, select a subset C of the compression elements of Z according to Lemma 1.
- For each element in *C* at distance more than *m* + *k* from *z*₀ add "shortcut" to element at distance *m* + *k*.

Computing the Relevant Prefix

- Follow references to nearest element in C.
- Follow shortcut if present.
- Compute the relevant prefix by decompressing length m + k substring.

Computing the Relevant Suffix

- Follow references to decompress substring of length m + k.
- If the phrase is shorter than *m* + *k*, recursively apply to *z*_{*i*-1} until we have *m* + *k* characters.

Analysis

• Time = preprocess + n(find nearest element + decompress + match) =

 $O(n\tau + n(\tau + m + t(m, 2m + 2k, k)))$

• Space = preprocess + decompress + match =

 $O(n/\tau + m + s(m, 2m + 2k, k))$

Computing Internal Matches

- Goal: Find all *internal matches* for z_i , i.e., all matches starting and ending within $[u_i, u_i + l_i 1]$.
- Compute and store all the internal match sets indexed by compression elements using dynamic perfect hashing.
- Decompress substring rsuf'(z_i) of length min(l_i , m + k) ending at $u_i + l_i 1$.
- Internal matches for $Z_i =$

(internal matches for reference(z_i)) \bigcup (matches of P in rsuf'(z_i))

Analysis

• Time = n (decompress + match + internal matches) =

O(n(m + t(m, m + k, k)) + occ)

• Space = decompress + match + total number of internal matches =

O(m + s(m, m + k, k) + occ)

Putting the Pieces Together

- Merging overlapping and internal matches we get all matches for z_i ending within [u_i, u_i + l_i − 1].
- Implies Theorem 1: For any parameter $\tau \ge 1$:
 - $O(n(\tau + m + t(m, 2m + 2k, k)) + occ)$ expected time and
 - $O(n/\tau + m + s(m, 2m + 2k, k)) + occ)$ space.
- Does not hold for ZLW compressed texts, unless $\Omega(n)$ space is used.
- For Ω(n) space the bounds hold in the worst-case and work for both ZL78 and ZLW.

Regular Expression Matching

- A *regular expression* is a generalized pattern composed from simple characters using union, concatenation, and Kleene star.
- Given a regular expression R and a string Q the *regular expression matching problem* is to find all ending positions of substrings in Q that matches a string in the language generated by R.

Regular Expression Matching

- Let |R| = m and |Q| = u.
- Classic solution [Thompson1968]: O(um) time and O(m) space.
- Several improvements based on the Four-Russian technique or word-level parallelism [Myers1992, NR2004, BFC2005, Bille2006].

Compressed Regular Expression Matching

- Let |R| = m and |Z| = n.
- Navarro [Navarro2003] simplified and without word-level parallel techniques:
 - $O(nm^2 + \operatorname{occ} \cdot m \log m)$ time and $O(nm^2)$ space.
- Our result (Theorem 2): For any parameter $\tau \ge 1$:
 - $O(nm(m + \tau) + occ \cdot m \log m)$ time and
 - $O(nm^2/\tau + nm)$ space.
- E.g. $\tau = m$ gives $O(nm^2 + \operatorname{occ} \cdot m \log m)$ time and O(nm) space.

Remarks

- Compressed strings are large and therefore Ω(n) space space may not be feasible for large texts.
- Our result for compressed approximate string matching is one of the very few algorithms for compressed matching that uses o(n) space.
- More sublinear space compressed string matching algorithms are needed!