
Outline

Compressed Text Indexes with Fast Locate

Rodrigo González1 and Gonzalo Navarro1

1Department of Computer Science
University of Chile

Compressed Text Indexes with Fast Locate, CPM 2007

González, Navarro Compressed Text Indexes with Fast Locate

Outline

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Outline

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Outline

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Outline

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Motivation

In pattern matching, the main problem consists in
searching a text T for a pattern P, where text and pattern
are sequences of symbols from an alphabet Σ of size σ .
Many different indexing data structures have been
proposed for this aim, such as inverted lists, suffix trees,
suffix arrays and compressed self-indexes.
In compressed self-indexes, locate the occurrences
position in T where P occurs, is still hundreds to
thousands of times slower than their classical
counterparts. While classical indexes pay O(occ) time to
locate the occ occurrences, self-indexes pay O(occ logε n).

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Motivation

In pattern matching, the main problem consists in
searching a text T for a pattern P, where text and pattern
are sequences of symbols from an alphabet Σ of size σ .
Many different indexing data structures have been
proposed for this aim, such as inverted lists, suffix trees,
suffix arrays and compressed self-indexes.
In compressed self-indexes, locate the occurrences
position in T where P occurs, is still hundreds to
thousands of times slower than their classical
counterparts. While classical indexes pay O(occ) time to
locate the occ occurrences, self-indexes pay O(occ logε n).

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Motivation

In pattern matching, the main problem consists in
searching a text T for a pattern P, where text and pattern
are sequences of symbols from an alphabet Σ of size σ .
Many different indexing data structures have been
proposed for this aim, such as inverted lists, suffix trees,
suffix arrays and compressed self-indexes.
In compressed self-indexes, locate the occurrences
position in T where P occurs, is still hundreds to
thousands of times slower than their classical
counterparts. While classical indexes pay O(occ) time to
locate the occ occurrences, self-indexes pay O(occ logε n).

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Results obtained

A new suffix array compression technique that builds on
well-known regularity properties that show up in suffix
arrays when the text they index is compressible.
With this compression we reduce the suffix array to
20–70% of its original size, depending on its
compressibility.
We prove that the compression ratio we achieve depends
on the k -th order empirical entropy of T (Hk log(1/Hk))

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Results obtained

A new suffix array compression technique that builds on
well-known regularity properties that show up in suffix
arrays when the text they index is compressible.
With this compression we reduce the suffix array to
20–70% of its original size, depending on its
compressibility.
We prove that the compression ratio we achieve depends
on the k -th order empirical entropy of T (Hk log(1/Hk))

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Results obtained

A new suffix array compression technique that builds on
well-known regularity properties that show up in suffix
arrays when the text they index is compressible.
With this compression we reduce the suffix array to
20–70% of its original size, depending on its
compressibility.
We prove that the compression ratio we achieve depends
on the k -th order empirical entropy of T (Hk log(1/Hk))

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Results obtained

We can obtain a cell from the compressed suffix array (i.e.,
locate) only 2–20 times slower than the original SA.
The access pattern is local, which makes the scheme
suitable for secondary memory

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Results obtained

Results obtained

We can obtain a cell from the compressed suffix array (i.e.,
locate) only 2–20 times slower than the original SA.
The access pattern is local, which makes the scheme
suitable for secondary memory

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Exposing the runs

The suffix array A can be partitioned into runs. A run is a
maximal segment that appears repeated (shifted by 1)
elsewhere, ie, A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ `. The
number of such runs is at most nHk + σk for any k .

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Exposing the runs

We convert these runs into true repetitions, representing A
in differential form: A′[i] = A[i] − A[i − 1] if i > 1. So
A′[j + s] = A′[i + s] for 1 ≤ s ≤ `.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Re-Pair

Re-Pair is a dictionary-based compression method:

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Re-Pair

The result of the compression is the table of rules (call it R)
plus the sequence of (original and new) symbols into which
A′ has been compressed (call it C).
Any portion of C can be easily decompressed in optimal
time and fast in practice, by adding some absolute
samples.
We can limit the size of any compressed symbol in C.
We can limit the size of the dictionary.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Re-Pair

The result of the compression is the table of rules (call it R)
plus the sequence of (original and new) symbols into which
A′ has been compressed (call it C).
Any portion of C can be easily decompressed in optimal
time and fast in practice, by adding some absolute
samples.
We can limit the size of any compressed symbol in C.
We can limit the size of the dictionary.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Re-Pair

The result of the compression is the table of rules (call it R)
plus the sequence of (original and new) symbols into which
A′ has been compressed (call it C).
Any portion of C can be easily decompressed in optimal
time and fast in practice, by adding some absolute
samples.
We can limit the size of any compressed symbol in C.
We can limit the size of the dictionary.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Re-Pair

The result of the compression is the table of rules (call it R)
plus the sequence of (original and new) symbols into which
A′ has been compressed (call it C).
Any portion of C can be easily decompressed in optimal
time and fast in practice, by adding some absolute
samples.
We can limit the size of any compressed symbol in C.
We can limit the size of the dictionary.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Compressing Repair Rules

We introduce a novel technique to compress the Re-Pair
dictionary, which might be of independent interest.
In principle storing each rule requires 2 integers.
We design a technique to save space in the dictionary R.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Compressing Repair Rules

We introduce a novel technique to compress the Re-Pair
dictionary, which might be of independent interest.
In principle storing each rule requires 2 integers.
We design a technique to save space in the dictionary R.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Compressing Repair Rules

We introduce a novel technique to compress the Re-Pair
dictionary, which might be of independent interest.
In principle storing each rule requires 2 integers.
We design a technique to save space in the dictionary R.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Compressing Repair Rules

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Compressing Repair Rules

We gain almost one integer per rule, if the rule is used by
any other rule.
We design an algorithm to carry out this compression in
time O(|R|).
Larsson and Moffat use different compression methods for
Re-Pair dictionary. Ours still permits accessing it at
random without decompressing it.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Faster compression

The original Re-Pair algorithm runs in O(n) time, but
requires 5n integers of extra space.
We design a version of Re-Pair that requires less than 2n
integers, but it is rather slow.
Alternatively we show how to use specific properties of
suffix arrays to obtain much faster compression losing only
1%–14% of compression.
The idea to replace the original algorithm to select pairs by
another guided by the function Ψ.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Faster compression

The original Re-Pair algorithm runs in O(n) time, but
requires 5n integers of extra space.
We design a version of Re-Pair that requires less than 2n
integers, but it is rather slow.
Alternatively we show how to use specific properties of
suffix arrays to obtain much faster compression losing only
1%–14% of compression.
The idea to replace the original algorithm to select pairs by
another guided by the function Ψ.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Faster compression

The original Re-Pair algorithm runs in O(n) time, but
requires 5n integers of extra space.
We design a version of Re-Pair that requires less than 2n
integers, but it is rather slow.
Alternatively we show how to use specific properties of
suffix arrays to obtain much faster compression losing only
1%–14% of compression.
The idea to replace the original algorithm to select pairs by
another guided by the function Ψ.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Faster compression

The original Re-Pair algorithm runs in O(n) time, but
requires 5n integers of extra space.
We design a version of Re-Pair that requires less than 2n
integers, but it is rather slow.
Alternatively we show how to use specific properties of
suffix arrays to obtain much faster compression losing only
1%–14% of compression.
The idea to replace the original algorithm to select pairs by
another guided by the function Ψ.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Faster compression

We note that the function Ψ (A[Ψ(i)] = A[i] + 1), which is
similar to the suffix links of the suffix tree, can be used to
obtain a much faster compression algorithm.
We navigate A′ using Ψ, adding symbols to the dictionary
and replacing the repeated pairs.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

Faster compression

We note that the function Ψ (A[Ψ(i)] = A[i] + 1), which is
similar to the suffix links of the suffix tree, can be used to
obtain a much faster compression algorithm.
We navigate A′ using Ψ, adding symbols to the dictionary
and replacing the repeated pairs.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Compression performance

Collection, Re-Pair Re-Pair Re-Pair Ψ
Size (MB) Compression Time (s) Time (s)
xml, 100 25986 260
dna, 100 11150 546
english, 100 93421 485
pitches, 50 15371 180
proteins, 100 3143 641
sources, 100 106173 377

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Compression performance

Collection Re-Pair
Compression

xml

dna

english

pitches

proteins

sources

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Attached to a compressed self-index

This structure can be used attached to a compressed
self-index. The self-index identifies the segment of the
(virtual) suffix array where the occurrences lie.
In this case our compressed SA is the location mechanism
of a new self-index.
We compare the combination AF-FMI + our suffix array
against existing self-indexes, giving them all the same
space to operate.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Attached to a compressed self-index

This structure can be used attached to a compressed
self-index. The self-index identifies the segment of the
(virtual) suffix array where the occurrences lie.
In this case our compressed SA is the location mechanism
of a new self-index.
We compare the combination AF-FMI + our suffix array
against existing self-indexes, giving them all the same
space to operate.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Attached to a compressed self-index

This structure can be used attached to a compressed
self-index. The self-index identifies the segment of the
(virtual) suffix array where the occurrences lie.
In this case our compressed SA is the location mechanism
of a new self-index.
We compare the combination AF-FMI + our suffix array
against existing self-indexes, giving them all the same
space to operate.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Decompression performance

Time to extract positions from SA.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Decompression performance

Time to extract positions from SA.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Like a full-text index

A simpler way to use our structure is like a replacement of
the classical suffix array. We use the absolute samples to
boost the binary searching.
We compare against Mäkinen’s Compact Suffix Array,
which is similar in spirit (compressed SA separately from
text).

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Like a full-text index

A simpler way to use our structure is like a replacement of
the classical suffix array. We use the absolute samples to
boost the binary searching.
We compare against Mäkinen’s Compact Suffix Array,
which is similar in spirit (compressed SA separately from
text).

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Like a full-text index

Time to binary search and locate the occ, simulating a classical SA.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Like a full-text index

Time to binary search and locate the occ, simulating a classical SA.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Like a full-text index

Time to binary search and locate the occ, simulating a classical SA.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

Secondary memory

Thanks to its local
decompression prop-
erties, on average, if
the compression ratio
is 0 ≤ c ≤ 1, we per-
form d c·occ

B e disk ac-
cesses for locating the
occ occurrences, be-
ing B the disk block
size measured in inte-
gers.

Collection Compression with
dictionary of 2%

xml

dna

english

pitches

proteins

sources

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Conclusions

New method to compress a suffix array, permitting fast
local decompression.
New self-index with a much faster locate.
A viable alternative to classical suffix arrays.
A secondary-memory version.
Improvements to the original Re-Pair method.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Conclusions

New method to compress a suffix array, permitting fast
local decompression.
New self-index with a much faster locate.
A viable alternative to classical suffix arrays.
A secondary-memory version.
Improvements to the original Re-Pair method.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Conclusions

New method to compress a suffix array, permitting fast
local decompression.
New self-index with a much faster locate.
A viable alternative to classical suffix arrays.
A secondary-memory version.
Improvements to the original Re-Pair method.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Conclusions

New method to compress a suffix array, permitting fast
local decompression.
New self-index with a much faster locate.
A viable alternative to classical suffix arrays.
A secondary-memory version.
Improvements to the original Re-Pair method.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Conclusions

New method to compress a suffix array, permitting fast
local decompression.
New self-index with a much faster locate.
A viable alternative to classical suffix arrays.
A secondary-memory version.
Improvements to the original Re-Pair method.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Outline
1 Motivation

Results obtained
2 Compressing the Suffix Array

Exposing the runs
Re-Pair
Compressing Repair Rules
Faster compression

3 Experimental Results
Compression performance
Attached to a compressed self-index
Like a full-text index
Secondary memory

4 Conclusions and Future Work
Conclusions
Future Work

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Future work

Improve construction time without worsening the
compression ratios achieved.
Improve and implement the secondary memory index,
which is right now a theoretical proposal.
Study the improvements on Re-Pair on their own value.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Future work

Improve construction time without worsening the
compression ratios achieved.
Improve and implement the secondary memory index,
which is right now a theoretical proposal.
Study the improvements on Re-Pair on their own value.

González, Navarro Compressed Text Indexes with Fast Locate

Motivation
Compressing the Suffix Array

Experimental Results
Conclusions and Future Work

Conclusions
Future Work

Future work

Improve construction time without worsening the
compression ratios achieved.
Improve and implement the secondary memory index,
which is right now a theoretical proposal.
Study the improvements on Re-Pair on their own value.

González, Navarro Compressed Text Indexes with Fast Locate

	Outline
	Main Talk
	Motivation
	Results obtained

	Compressing the Suffix Array
	Exposing the runs
	Re-Pair
	Compressing Repair Rules
	Faster compression

	Experimental Results
	Compression performance
	Attached to a compressed self-index
	Like a full-text index
	Secondary memory

	Conclusions and Future Work
	Conclusions
	Future Work

