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Sorting a permutation by transpositions

Definition
A transposition ρ is an operation, on a permutation
π = π1π2 . . . πn, that moves a block of contiguous elements and
place it elsewhere.



Introduction Our approach Going further Future Work Bibliography

Sorting a permutation by transpositions

Definition
A transposition ρ is an operation, on a permutation
π = π1π2 . . . πn, that moves a block of contiguous elements and
place it elsewhere.

Example

π = 6 3 1 2 4 5



Introduction Our approach Going further Future Work Bibliography

Sorting a permutation by transpositions

Definition
A transposition ρ is an operation, on a permutation
π = π1π2 . . . πn, that moves a block of contiguous elements and
place it elsewhere.

Example

π = 6 3 1 2 4 5



Introduction Our approach Going further Future Work Bibliography

Sorting a permutation by transpositions

Definition
A transposition ρ is an operation, on a permutation
π = π1π2 . . . πn, that moves a block of contiguous elements and
place it elsewhere.

Example

π = 6 3 1 2 4 5
6



Introduction Our approach Going further Future Work Bibliography

Sorting a permutation by transpositions

Definition
A transposition ρ is an operation, on a permutation
π = π1π2 . . . πn, that moves a block of contiguous elements and
place it elsewhere.

Example

π = 6 3 1 2 4 5
6

ρ · π = 1 2 6 3 4 5



Introduction Our approach Going further Future Work Bibliography

Sorting a permutation by transpositions

Definition
A transposition ρ is an operation, on a permutation
π = π1π2 . . . πn, that moves a block of contiguous elements and
place it elsewhere.

The Problem
The transposition distance problem consists in finding the
minimal number of transpositions needed to sequentially
transform any permutation π = π1π2 . . . πn into the identity
permutation Id = 12 . . . n. This transposition distance is
denoted d(π).
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A biological origin for the problem

2 DNA sequences containing the same n genes, in some
different orders, are each represented by a permutation.

Hypothesis:

• Same set of genes

• No gene duplications

Estimate the evolutionary distance between two different
organisms: finding out which evolutionary events are more
probable to have modified one genome into another.

Genome Rearrangement
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Definition
The parsimonious transposition distance between two
species is the minimal number of transpositions needed to
change one gene order into the other one.

Hypothesis

• The genomes have only one chromosome.
• There are only transpositions (so nor inversions nor

inverse transpositions).
• The shortest sequence of rearrangements is the more

probable.
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Why are we interested in this problem?

Complexity:

• It is not known yet if this problem has polynomial
complexity.

• Therefore, it is a nice theoretical computer science
problem to explore

Beauty of the combinatorial problem

What more can be said....
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The cycle graph

Properties of
cycles:
- oriented or not

BP2 [BP]
Approx. factor =
2

- Crossing or
non-interfering

- Short or long

TSort [BP]
Approx. factor =
1.75

0 5 4 3 2 1 6

Other
properties:
- Odd or even
- Strongly

oriented
- Strongly non-

interfering
- Strongly-

crossing
...

TransSort [BP]
Approx. factor =
1.5
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Coding the permutation

For a given permutation π, we can compute two codes.

From these codes, we can derive an approximate transposition
distance from the permutation.

Intuitive definitions of the codes
For a position i in a permutation π, the left code at this position
is the number of elements bigger than πi to its left.

For a position i in a permutation π, the right code at this
position is the number of elements smaller than πi to its right.
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Example of left and right codes

Our goal
Raising the number of zeros in either the left or right code of π.
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Example of left and right codes

Left code

lc(π) = 0 1
π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Intuitive definition
For a position i in a permutation π, the left code at this position
is the number of elements bigger than πi to its left.

Our goal
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Example of left and right codes

Left code

lc(π) = 0 1 2
π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Intuitive definition
For a position i in a permutation π, the left code at this position
is the number of elements bigger than πi to its left.

Our goal
Raising the number of zeros in either the left or right code of π.
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Example of left and right codes

Left code

lc(π) = 0 1 2 3 1 1 lc(Id) = 0 0 0 0 0 0
π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Intuitive definition
For a position i in a permutation π, the left code at this position
is the number of elements bigger than πi to its left.
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Raising the number of zeros in either the left or right code of π.
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Example of left and right codes

Right code

rc(π) = 5 2 1 0 0 0 rc(Id) = 0 0 0 0 0 0
π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Intuitive definition
For a position i in a permutation π, the right code at this
position is the number of elements smaller than πi to its right.

Our goal
Raising the number of zeros in either the left or right code of π.
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Example of left and right codes

Right code

rc(π) = 5 2 1 0 0 0 rc(Id) = 0 0 0 0 0 0
π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Intuitive definition
For a position i in a permutation π, the right code at this
position is the number of elements smaller than πi to its right.

Our goal
Raising the number of zeros in either the left or right code of π.



Introduction Our approach Going further Future Work Bibliography

Plateau

Definition
Let us call plateau any maximal length sequence of contiguous
elements in a number sequence that have the same nonzero
value. The number of plateaux in a code c is denoted p(c).
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p(π) = 3
rc(π) = 5 2 1 0 0 0 p(rc(π)) = 3
lc(π) = 0 1 2 3 1 1 p(lc(π)) = 4
π = 6 3 2 1 4 5

Definition
p(π) = min{p(lc(π)),p(rc(π))}



Introduction Our approach Going further Future Work Bibliography

Plateau

Definition
Let us call plateau any maximal length sequence of contiguous
elements in a number sequence that have the same nonzero
value. The number of plateaux in a code c is denoted p(c).

p(π) = 3
rc(π) = 5 2 1 0 0 0 p(rc(π)) = 3
lc(π) = 0 1 2 3 1 1 p(lc(π)) = 4
π = 6 3 2 1 4 5

Definition
p(π) = min{p(lc(π)),p(rc(π))} p(π) = 0 ⇐⇒ π = Id
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Removing a plateau

Lemma 1
Given a permutation π = π1 . . . πn, the leftmost plateau of lc(π)
can be removed by a transposition to the left without creating
any new plateau in the code.

Example
lc(π) = 0 1 2 3 1 1
π = 6 3 2 1 4 5

?
6

ρ(2,3,1)

0 0 2 3 1 1
3 6 2 1 4 5

Lemma 2
d(π) ≤ p(π)
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Lemma 1
Given a permutation π = π1 . . . πn, the leftmost plateau of lc(π)
can be removed by a transposition to the left without creating
any new plateau in the code.

Example
lc(π) = 0 1 2 3 1 1
π = 6 3 2 1 4 5

?
6

ρ(2,3,1)

0 0 2 3 1 1
3 6 2 1 4 5

Lemma 2
d(π) ≤ p(π)
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Removing a plateau

Lemma 1
Given a permutation π = π1 . . . πn, the leftmost plateau of lc(π)
can be removed by a transposition to the left without creating
any new plateau in the code.

Example
lc(π) = 0 1 2 3 1 1
π = 6 3 2 1 4 5

?
6

ρ(2,3,1)

0 0 2 3 1 1
3 6 2 1 4 5

Lemma 2
d(π) ≤ p(π)
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Algorithm EasySorting

Algorithm EasySorting
(input: π a permutation of [n])

lc(π) = left code of π
rc(π) = right code of π
lp(π) = p(lc(π))
rp(π) = p(rc(π))
RETURN p(π) = min{lp(π), rp(π)}

rc(π) = 5 2 1 0 0 0 rp(π) = 3
lc(π) = 0 1 2 3 1 1 lp(π) = 4
π = 6 3 2 1 4 5 p(π) = 3
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Algorithm EasySorting

Algorithm EasySorting
(input: π a permutation of [n])

lc(π) = left code of π
rc(π) = right code of π
lp(π) = p(lc(π))
rp(π) = p(rc(π))
RETURN p(π) = min{lp(π), rp(π)}

To list the p(π) transpositions needed to sort π, while computing
p(lc(π)) and p(rc(π)), we need only to record both ends (start
and finish) of the plateaux considered as well as their code va-
lues.
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5

?ρ(3,4,5)
6
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5

?ρ(3,4,5)
6

5 2 0 0 0 0
6 3 1 2 4 5
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5

?ρ(3,4,5)

5 2 0 0 0 0
6 3 1 2 4 5

?
6

ρ(2,3,5)
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5

?ρ(3,4,5)

5 2 0 0 0 0
6 3 1 2 4 5

?
6

ρ(2,3,5)

5 0 0 0 0 0
6 1 2 3 4 5
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5

?ρ(3,4,5)

5 2 0 0 0 0
6 3 1 2 4 5

?ρ(2,3,5)

5 0 0 0 0 0
6 1 2 3 4 5

?
6

ρ(1,2,7)
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Algorithm EasySorting

rc(π) = 5 2 1 0 0 0
π = 6 3 2 1 4 5

?ρ(3,4,5)

5 2 0 0 0 0
6 3 1 2 4 5

?ρ(2,3,5)

5 0 0 0 0 0
6 1 2 3 4 5

?
6

ρ(1,2,7)

0 0 0 0 0 0
1 2 3 4 5 6
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Complexity and Approximation Ratio

Algorithm EasySorting (input: π a permutation of [n])

lc(π) = left code of π (easily computed in O(n2))
rc(π) = right code of π (easily computed in O(n2))
lp(π) = p(lc(π))(easily computed in O(n))
rp(π) = p(rc(π))(easily computed in O(n))
RETURN p(π) = min{lp(π), rp(π)}

The complexity of EasySorting is in O(n2).

The approximation ratio of EasySorting is 3.
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Complexity and Approximation Ratio

Algorithm EasySorting (input: π a permutation of [n])

lc(π) = left code of π (easily computed in O(n2))
rc(π) = right code of π (easily computed in O(n2))
lp(π) = p(lc(π))(easily computed in O(n))
rp(π) = p(rc(π))(easily computed in O(n))
RETURN p(π) = min{lp(π), rp(π)}

The complexity of EasySorting is in O(n2).

The approximation ratio of EasySorting is 3.
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Complexity and Approximation Ratio

Algorithm EasySorting (input: π a permutation of [n])

lc(π) = left code of π (easily computed in O(n2))
rc(π) = right code of π (easily computed in O(n2))
lp(π) = p(lc(π))(easily computed in O(n))
rp(π) = p(rc(π))(easily computed in O(n))
RETURN p(π) = min{lp(π), rp(π)}

The complexity of EasySorting is in O(n2).

The approximation ratio of EasySorting is 3.
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Complexity and Approximation Ratio
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Experimental results

Comparison of the number of wrong calculations on small
permutations

EasySort BP2
n Total 6= d(π) 6= d(π)

2 2 0 0
3 6 0 0
4 24 0 1
5 120 6 7
6 720 108 86
7 5040 1423 792
8 40320 17577 9162
9 362880 211863 100332
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Experimental results
Comparison of the mean of the transposition distances and
computational time for large permutations

EasySort BP2
n sample size distance time distance time

10 1000 5,59 - 5,06 -
16 1000 10,63 - 8,50 -
32 1000 25,02 - 17,76 -
64 1000 55,45 - 36,09 0,00167
128 1000 117,96 0,00106 72,57 0,00484
256 1000 244,38 0,00255 145,18 0,02288
512 1000 498,91 0,00761 290,56 0,1160

1000 100 985,63 0,02874 567,53 1,299
5000 100 4982,05 0,5824 2840,89 144,8
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Can we do better?
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Can we do better?

EasySorting removes only 1 plateau by transposition.



Introduction Our approach Going further Future Work Bibliography

Can we do better?

EasySorting removes only 1 plateau by transposition.

Can we remove more plateaux with each transposition?
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Can we do better?

EasySorting removes only 1 plateau by transposition.

Can we remove more plateaux with each transposition?

YES !!
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Other entities

Some of the entities for the algorithms Mountain and MADFRP
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Experimental results

Comparison of the number of wrong calculations on small
permutations

EasySort Mountain MADFRP BP2
n Total 6= d(π) 6= d(π) 6= d(π) 6= d(π)

2 2 0 0 0 0
3 6 0 0 0 0
4 24 0 0 0 1
5 120 6 6 1 7
6 720 108 103 29 86
7 5040 1423 1314 484 792
8 40320 17577 15941 7416 9162
9 362880 211863 190528 102217 100332
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Experimental results
Comparison of the mean of the transposition distances and
computational time for large permutations

Mountain BP2
n sample size distance time distance time

10 1000 5,46 - 5,06 -
16 1000 10,11 - 8,50 -
32 1000 23,60 - 17,76 -
64 1000 52,50 - 36,09 0,00167
128 1000 113,29 0,00181 72,57 0,00484
256 1000 237,23 0,00529 145,18 0,02288
512 1000 488,57 0,0234 290,56 0,1160

1000 100 971,72 0,1152 567,53 1,299
5000 100 4958,75 4,448 2840,89 144,8
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Advantages and drawbacks of our algorithms

Advantages of our algorithms

• Simplicity
• Quickness of execution

Drawbacks of our algorithms

• Bigger approximated transposition distances
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• Simplicity
• Quickness of execution

Drawbacks of our algorithms

• Bigger approximated transposition distances
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Advantages and drawbacks of our algorithms

Advantages of our algorithms

• Simplicity
• Quickness of execution

Drawbacks of our algorithms

• Bigger approximated transposition distances
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Future Work

Future work and Open problems
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Future Work

Future work and Open problems

• Treating the entities independently of their kind from the
ends of the permutation to the center instead of treating
the kinds of entities one by one.

• Implementing the entities (other than plateaux) with the left
and right codes.
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Future work and Open problems

• Treating the entities independently of their kind from the
ends of the permutation to the center instead of treating
the kinds of entities one by one.

• Implementing the entities (other than plateaux) with the left
and right codes.

General open problems about sorting by transpositions
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Future Work

Future work and Open problems

• Treating the entities independently of their kind from the
ends of the permutation to the center instead of treating
the kinds of entities one by one.

• Implementing the entities (other than plateaux) with the left
and right codes.

General open problems about sorting by transpositions

• Finding the class of complexity of this problem.
• Finding the transposition diameter in function of n.
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Thank you !!
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