A new and faster method of sorting by transpositions

Maxime Benoît-Gagné et Sylvie Hamel

Département d'Informatique et de Recherche Opérationnelle Université de Montréal

Combinatorial Pattern Matching 2007

Introductio 0 000 000 Our approach

Going further

Future Work

Bibliography

Outline

Introduction

Definition of the problem Biological Application What has been done before

Our approach - Basis

Coding a permuation Sorting with Plateaux Results

Going further

More efficient sorting + Results

Summary and Future Work

Bibliography

Going further

Sorting a permutation by transpositions

Definition

A **transposition** ρ is an operation, on a permutation

 $\pi = \pi_1 \pi_2 \dots \pi_n$, that moves a block of contiguous elements and place it elsewhere.

Going further

Sorting a permutation by transpositions

Definition

A **transposition** ρ is an operation, on a permutation

 $\pi = \pi_1 \pi_2 \dots \pi_n$, that moves a block of contiguous elements and place it elsewhere.

Example

$$\pi$$
 = 6 3 1 2 4 5

Going further

Sorting a permutation by transpositions

Definition

A **transposition** ρ is an operation, on a permutation

 $\pi = \pi_1 \pi_2 \dots \pi_n$, that moves a block of contiguous elements and place it elsewhere.

Example

$$\pi$$
 = 6 3 1 2 4 5

Going further

Sorting a permutation by transpositions

Definition

A **transposition** ρ is an operation, on a permutation

 $\pi = \pi_1 \pi_2 \dots \pi_n$, that moves a block of contiguous elements and place it elsewhere.

Example

$$\pi = 6 3 1 2 4 5$$

Going further

Sorting a permutation by transpositions

Definition

A **transposition** ρ is an operation, on a permutation $\pi = \pi_1 \pi_2 \dots \pi_n$, that moves a block of contiguous elements and place it elsewhere.

Example

$$\pi = \begin{array}{c} & 6 & 3 & 1 & 2 & 4 & 5 \\ & & & & \\ \rho \cdot \pi & = & 1 & 2 & 6 & 3 & 4 & 5 \end{array}$$

Going further

Sorting a permutation by transpositions

Definition

A **transposition** ρ is an operation, on a permutation $\pi = \pi_1 \pi_2 \dots \pi_n$, that moves a block of contiguous elements and place it elsewhere.

The Problem

The **transposition distance problem** consists in finding the minimal number of transpositions needed to sequentially transform any permutation $\pi = \pi_1 \pi_2 \dots \pi_n$ into the identity permutation Id = 12...*n*. This transposition distance is denoted $d(\pi)$.

Going further

A biological origin for the problem

2 DNA sequences containing the same *n* genes, in some different orders, are each represented by a permutation.

Hypothesis:

- Same set of genes
- No gene duplications

Estimate the evolutionary distance between two different organisms: finding out which evolutionary events are more probable to have modified one genome into another.

Genome Rearrangement

ъ

・ ロ ト ・ 雪 ト ・ 目 ト ・

Going further

A biological origin for the problem

2 DNA sequences containing the same *n* genes, in some different orders, are each represented by a permutation.

Hypothesis:

- Same set of genes
- No gene duplications

Estimate the evolutionary distance between two different organisms: finding out which evolutionary events are more probable to have modified one genome into another.

Genome Rearrangement

ж

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Going further

A biological origin for the problem

2 DNA sequences containing the same *n* genes, in some different orders, are each represented by a permutation.

Hypothesis:

- · Same set of genes
- No gene duplications

Estimate the evolutionary distance between two different organisms: finding out which evolutionary events are more probable to have modified one genome into another.

Genome Rearrangement

ж

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Going further

A biological origin for the problem

2 DNA sequences containing the same *n* genes, in some different orders, are each represented by a permutation.

Hypothesis:

- · Same set of genes
- No gene duplications

Estimate the evolutionary distance between two different organisms: finding out which evolutionary events are more probable to have modified one genome into another.

Genome Rearrangement

Going further

A biological origin for the problem

2 DNA sequences containing the same *n* genes, in some different orders, are each represented by a permutation.

Hypothesis:

- Same set of genes
- No gene duplications

Estimate the evolutionary distance between two different organisms: finding out which evolutionary events are more probable to have modified one genome into another.

Genome Rearrangement

(日)、(間)、(目)、(日)、(日)

Going further

A biological origin for the problem

2 DNA sequences containing the same *n* genes, in some different orders, are each represented by a permutation.

Hypothesis:

- Same set of genes
- No gene duplications

Estimate the evolutionary distance between two different organisms: finding out which evolutionary events are more probable to have modified one genome into another.

Genome Rearrangement

Introduction	Our approach	Going further	Future Work	Bibliography
0 000 00	00 000000 00	0000		

Definition

The **parsimonious transposition distance** between two species is the minimal number of transpositions needed to change one gene order into the other one.

Hypothesis

- The genomes have only one chromosome.
- There are only transpositions (so nor inversions nor inverse transpositions).
- The shortest sequence of rearrangements is the more probable.

Introduction	Our approach	Going further	Future Work	Bibliography
	00 000000 00	0000		

Definition

The **parsimonious transposition distance** between two species is the minimal number of transpositions needed to change one gene order into the other one.

Hypothesis

- The genomes have only one chromosome.
- There are only transpositions (so nor inversions nor inverse transpositions).
- The shortest sequence of rearrangements is the more probable.

Introduction	Our approach	Going further	Future Work	Bibliography
	00 000000 00	0000		

Definition

The **parsimonious transposition distance** between two species is the minimal number of transpositions needed to change one gene order into the other one.

Hypothesis

- The genomes have only one chromosome.
- There are only transpositions (so nor inversions nor inverse transpositions).
- The shortest sequence of rearrangements is the more probable.

ŏoe

Going further

Why are we interested in this problem?

Complexity:

- It is not known yet if this problem has polynomial complexity.
- Therefore, it is a nice theoretical computer science problem to explore

Beauty of the combinatorial problem

Why are we interested in this problem?

Complexity:

- It is not known yet if this problem has polynomial complexity.
- Therefore, it is a nice theoretical computer science problem to explore

Beauty of the combinatorial problem

Why are we interested in this problem?

Complexity:

- It is not known yet if this problem has polynomial complexity.
- Therefore, it is a nice theoretical computer science problem to explore

Beauty of the combinatorial problem

Why are we interested in this problem?

Complexity:

- It is not known yet if this problem has polynomial complexity.
- Therefore, it is a nice theoretical computer science problem to explore

Beauty of the combinatorial problem

Why are we interested in this problem?

Complexity:

- It is not known yet if this problem has polynomial complexity.
- Therefore, it is a nice theoretical computer science problem to explore

Beauty of the combinatorial problem

Why are we interested in this problem?

Complexity:

- It is not known yet if this problem has polynomial complexity.
- Therefore, it is a nice theoretical computer science problem to explore

Beauty of the combinatorial problem

Intr	oduction
0	
000	D
00	

Going further

Future Work

Bibliography

The other approaches

æ

ヘロト 人間 とく ヨン 人 ヨン

Introc	luction
0	
000	

Going further

Future Work

ヘロト 人間 とくほ とくほ とう

Bibliography

The other approaches

2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 **1995** Guyer and al. [GHV] $O(n^2)$ to exp.

æ

i	nt		d		41.	~n	
	ш	10	u	uc	u	UII	

•0

Our approach

Going further

Future Work

Bibliography

The other approaches

イロン 不得 とくほ とくほ とうほ

	nt	rn	aı	int	IO	n
5		•••	uc	101	•••	

...

Our approach

Going further

Future Work

Bibliography

The other approaches

イロン 不得 とくほ とくほ とうほ

ntro	dud	tion		

•0

Our approach

Going further

Future Work

Bibliography

The other approaches

Introduction ○ ○ ● ○	Our approach 00 000000 00	Going further	Future Work	Bibliograp

The other approaches

Introduction	Our approach	Going further	Future Work	Bibliography			
0 000 • 0	00 000000 00	0000					
The other approaches							

i	nt		d		41.	~n	
	ш	10	u	uc	u	UII	

.

Our approach

Going further

Future Work

Bibliography

The other approaches

2005 [BP] by Walter and al. [WSO+] O(n³) 2004 **2003** Hartman [H] $O(n^2)$ 2002 **2001** [BP] by Walter and al. [O, WOa, WOb] $O(n^5)$ **2000** Walter and al. [WDM] $O(b^2)$ 1999 $O(n^4)$ Christie [C] 1998 Bafna and Pevzner [BP] $O(n^2)$ 1997 1996 **1995** Guyer and al. [GHV] $O(n^2)$ to exp.

<mark>Mu</mark> ふりつ E 〈E〉〈E〉〈E〉〈P〉〈ロ〉

Introduction

0 000 0● Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

oriented or not

BP2 [BP] Approx. factor = 2

- Crossing or non-interfering
- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Introduction

0 000 0● Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

- Crossing or non-interfering
- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Introduction

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

- Crossing or non-interfering
- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロト ・ 四ト ・ ヨト ・ ヨト

э
0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles: - oriented or not

BP2 [BP] Approx. factor = 2

Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロト ・ 四ト ・ ヨト ・ ヨト

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

- Crossing or non-interfering
- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

TSort [BP] Approx. factor =

1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering

- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

- oriented or not

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even

- Strongly oriented

- Strongly noninterfering

- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

BP2 [BP]

Approx. factor = 2

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering

- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

э

- Crossing or non-interfering

- Short or long

TSort [BP] Approx. factor = 1.75

0 000 00 Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering

- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 0● Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 0● Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

・ロット (雪) (日) (日)

0 000 0● Our approach

Going further

Future Work

Bibliography

The cycle graph

Properties of cycles:

BP2 [BP] Approx. factor = 2

- Short or long

TSort [BP] Approx. factor = 1.75

Other properties:

- Odd or even
- Strongly oriented
- Strongly noninterfering
- Stronglycrossing

TransSort [BP] Approx. factor = 1.5

(日)

Our approach

Going further

Future Work

Bibliography

Coding the permutation

For a given permutation π , we can compute two **codes**.

From these codes, we can derive an approximate transposition distance from the permutation.

Intuitive definitions of the codes

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

э

・ロット (雪) ・ (日) ・ (日)

Our approach

Going further

Future Work

Bibliography

Coding the permutation

For a given permutation π , we can compute two **codes**.

From these codes, we can derive an approximate transposition distance from the permutation.

Intuitive definitions of the codes

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Our approach

Going further

Future Work

Bibliography

Coding the permutation

For a given permutation π , we can compute two **codes**.

From these codes, we can derive an approximate transposition distance from the permutation.

Intuitive definitions of the codes

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

Our approach

Going further

Future Work

Bibliography

Coding the permutation

For a given permutation π , we can compute two **codes**.

From these codes, we can derive an approximate transposition distance from the permutation.

Intuitive definitions of the codes

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

人口 医水黄 医水黄 医水黄素 计目录

Our approach

Going further

Future Work

Bibliography

Coding the permutation

For a given permutation π , we can compute two **codes**.

From these codes, we can derive an approximate transposition distance from the permutation.

Intuitive definitions of the codes

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

人口 医水黄 医水黄 医水黄素 计目录

Our approach

Going further

Future Work

ヘロト 人間 とく ヨン 人 ヨン

Bibliography

Example of left and right codes

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

イロト 不得 トイヨト イヨト

Bibliography

Example of left and right codes

Left code

Our goal Raising the number of zeros in either the left or right code of π

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Our goal Raising the number of zeros in either the left or right code of π .

æ

・ロン ・四 と ・ ヨ と ・ ヨ と

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

π = 6 3 2 1 4 5 Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ж

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Introd	uct	ion
0		
000		
00		

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = \pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5 \qquad Id = 1 \ 2 \ 3 \ 4 \ 5 \ 6$$

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ж

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$ Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$ Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5 \qquad Id = 1 \ 2 \ 3 \ 4 \ 5 \ 6$

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0 \ 1$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$ Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0 \ 1$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$ Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0 \ 1$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$ Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$$lc(\pi) = 0 \ 1 \ 2$$

 $\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$ Id = 1 2 3 4 5 6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ъ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Left code

$lc(\pi)$	=	0	1	2	3	1	1	lc(Id) =	0	0	0	0	0	0
π	=	6	3	2	1	4	5	Id =	1	2	3	4	5	6

Intuitive definition

For a position *i* in a permutation π , the **left code** at this position is the number of elements bigger than π_i to its left.

Our goal Raising the number of zeros in either the left or right code of π .

ж

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Right code

$rc(\pi)$	=	5	2	1	0	0	0	<i>rc</i> (Id) =	0	0	0	0	0	0
π	=	6	3	2	1	4	5	Id =	1	2	3	4	5	6

Intuitive definition

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

Our goal Raising the number of zeros in either the left or right code of π

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Our approach

Going further

Future Work

Bibliography

Example of left and right codes

Right code

$rc(\pi)$	=	5	2	1	0	0	0	<i>rc</i> (Id) =	0	0	0	0	0	0
π	=	6	3	2	1	4	5	Id =	1	2	3	4	5	6

Intuitive definition

For a position *i* in a permutation π , the **right code** at this position is the number of elements smaller than π_i to its right.

Our goal

Raising the number of zeros in either the left or right code of π .

(日)

troduction	Our approach ○○ ●○○○○○ ○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

Introduction 0 000 00	Our approach ○○ ●○○○○○○ ○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$\begin{array}{rcl} rc(\pi) &=& 5 & 2 & 1 & 0 & 0 & 0 \\ lc(\pi) &=& 0 & 1 & 2 & 3 & 1 & 1 \\ \pi &=& 6 & 3 & 2 & 1 & 4 & 5 \end{array}$$

Introduction 0 000 00	Our approach ○○ ●○○○○○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$\begin{array}{rcl} rc(\pi) &=& 5 & 2 & 1 & 0 & 0 & 0 \\ lc(\pi) &=& 0 & 1 & 2 & 3 & 1 & 1 \\ \pi &=& 6 & 3 & 2 & 1 & 4 & 5 \end{array}$$

Introduction 0 000 00	Our approach ⊙⊙ ●○○○○○ ○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$rc(\pi) = 5 \ 2 \ 1 \ 0 \ 0 \ 0$$
$$lc(\pi) = 0 \ 1 \ 2 \ 3 \ 1 \ 1$$
$$\pi = 6 \ 3 \ 2 \ 1 \ 4 \ 5$$

$$p(rc(\pi)) = 3$$

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图

Introduction 0 000 00	Our approach ○○ ●○○○○○ ○○	Going further	Future Work	Bibliography
	F	Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$rc(\pi) = 5 2 1 0 0 0$$

$$lc(\pi) = 0 1 2 3 1 1$$

$$\pi = 6 3 2 1 4 5$$

$$p(rc(\pi)) = 3$$

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图
Introduction 0 000 00	Our approach ○○ ●○○○○○ ○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$rc(\pi) = 5 2 1 0 0 0$$

$$lc(\pi) = 0 1 2 3 1 1$$

$$\pi = 6 3 2 1 4 5$$

$$p(rc(\pi)) = 3$$

 $p(lc(\pi)) = 4$

・ロト・日本・モト・モト モ

Introduction 0 000 00	Our approach ○○ ●○○○○○ ○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$rc(\pi) = 5 2 1 0 0 0$$

$$lc(\pi) = 0 1 2 3 1 1$$

$$\pi = 6 3 2 1 4 5$$

$$p(rc(\pi)) = 3$$

 $p(lc(\pi)) = 4$

Definition $p(\pi) = min\{p(lc(\pi)), p(rc(\pi))\}$

0 0000 000	Our approach 	Going further	Future Work	Bibliography
	F	Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$rc(\pi) = 5 2 1 0 0 0$$

$$lc(\pi) = 0 1 2 3 1 1$$

$$\pi = 6 3 2 1 4 5$$

 $p(\pi) = 3$ $p(rc(\pi)) = 3$ $p(lc(\pi)) = 4$

Definition $p(\pi) = min\{p(lc(\pi)), p(rc(\pi))\}$

Introduction 0 000 00	Our approach ○○ ●○○○○○ ○○	Going further	Future Work	Bibliography
		Plateau		

Let us call **plateau** any maximal length sequence of contiguous elements in a number sequence that have the same nonzero value. The number of plateaux in a code c is denoted p(c).

$$rc(\pi) = 5 2 1 0 0 0$$

$$lc(\pi) = 0 1 2 3 1 1$$

$$\pi = 6 3 2 1 4 5$$

$$p(\pi) = 3$$

 $p(rc(\pi)) = 3$
 $p(lc(\pi)) = 4$

Definition

 $p(\pi) = min\{p(lc(\pi)), p(rc(\pi))\}$

 $\rho(\pi) = 0 \iff \pi = \mathrm{Id}$

◆□ ▶ ◆ @ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≧

Our approach

Going further

Future Work

Bibliography

Removing a plateau

Lemma 1

Given a permutation $\pi = \pi_1 \dots \pi_n$, the leftmost plateau of $lc(\pi)$ can be removed by a transposition to the left without creating any new plateau in the code.

Lemma 2 $d(\pi) \le p(\pi)$

Our approach

Going further

Future Work

Bibliography

Removing a plateau

Lemma 1

Given a permutation $\pi = \pi_1 \dots \pi_n$, the leftmost plateau of $lc(\pi)$ can be removed by a transposition to the left without creating any new plateau in the code.

Example

$lc(\pi)$	=	0 6	1 3	2 2	3 1	1 4	1 5
↓ ρ(2 , 3 ,	1)					
		0	0	2	3	1	15
		0	0	~		-	J

Lemma 2 $d(\pi) \leq p(\pi)$

Our approach

Going further

Future Work

Bibliography

Removing a plateau

Lemma 1

Given a permutation $\pi = \pi_1 \dots \pi_n$, the leftmost plateau of $lc(\pi)$ can be removed by a transposition to the left without creating any new plateau in the code.

Example

$\begin{array}{cc} lc(\pi) &= \\ \pi &= \end{array}$	0	1	2	3	1	1
	6	3	2	1	4	5
↓ ρ(2,3,	1)					
	0	0	2	3	1	1
	3	6	2	1	4	5

Lemma 2 $d(\pi) \leq p(\pi)$

000

Our approach

Going further

Future Work

Bibliography

Algorithm EasySorting

Algorithm EasySorting (input: π a permutation of [*n*]) $lc(\pi) = left code of \pi$ $rc(\pi) = right code of \pi$ $lp(\pi) = p(lc(\pi))$ $rp(\pi) = p(rc(\pi))$ RETURN $p(\pi) = min\{lp(\pi), rp(\pi)\}$

$$\begin{array}{rrrr} rc(\pi) &=& 5 & 2 & 1 & 0 & 0 & 0 \\ lc(\pi) &=& 0 & 1 & 2 & 3 & 1 & 1 \\ \pi &=& 6 & 3 & 2 & 1 & 4 & 5 \end{array} \qquad \begin{array}{rrr} rp(\pi) = 3 \\ lp(\pi) = 4 \\ p(\pi) = 3 \end{array}$$

・ コット (雪) (小田) (コット 日)

Our approach

Going further

Future Work

Bibliography

Algorithm EasySorting

Algorithm EasySorting (input: π a permutation of [*n*]) $lc(\pi) = left code of \pi$ $rc(\pi) = right code of \pi$ $lp(\pi) = p(lc(\pi))$ $rp(\pi) = p(rc(\pi))$ RETURN $p(\pi) = min\{lp(\pi), rp(\pi)\}$

To list the $p(\pi)$ transpositions needed to sort π , while computing $p(lc(\pi))$ and $p(rc(\pi))$, we need only to record both ends (start and finish) of the plateaux considered as well as their code values.

ь	n	÷	м	~			~	÷ĩ	~	n	
		ι		v	u	u	c	u	U		

Our approach

Going further

Future Work

Bibliography

Algorithm EasySorting

$$rc(\pi) = 5 2 1 0 0 0$$

 $\pi = 6 3 2 1 4 5$

₩

1	Our approach	Going further	Future Work
	00 000●00 00	0000	

Algorithm EasySorting

$$rc(\pi) = 5 2 1 0 0 0 \pi = 6 3 2 1 4 5 \downarrow \rho(3,4,5)$$

щ.

Bibliography

Our approach	Going further	Future Work
	0000	

Algorithm EasySorting

$$\begin{array}{rcl} rc(\pi) &=& 5 & 2 & 1 & 0 & 0 & 0 \\ \pi &=& 6 & 3 & 2 & 1_{\uparrow} & 4 & 5 \\ \downarrow \rho(3,4,5) & & & & \\ & & 5 & 2 & 0 & 0 & 0 & 0 \\ & & & 6 & 3 & 1 & 2 & 4 & 5 \end{array}$$

₩

Bibliography

l _P	÷	ro	du	oti	on
	11	10	uu	Gu	UII

Our approach 000●00 000●00 Going further

Future Work

Bibliography

Algorithm EasySorting

$$rc(\pi) = 5 2 1 0 0 0
\pi = 6 3 2 1 4 5
\downarrow \rho(3,4,5)
5 2 0 0 0 0
6 3 1 2 4 5
\downarrow \rho(2,3,5)$$

æ

ヘロト 人間 とく ヨン 人 ヨン

ь	n÷	20	di	10	41.	~ *	
	ш	10	uι	лC	u	01	

Our approach

Going further

Future Work

Bibliography

Algorithm EasySorting

$$rc(\pi) = 5 2 1 0 0 0
\pi = 6 3 2 1 4 5
\downarrow \rho(3,4,5)
5 2 0 0 0 0
6 3 1 2 4 5
\downarrow \rho(2,3,5)
5 0 0 0 0 0
6 1 2 3 4 5$$

æ

ヘロト 人間 とく ヨン 人 ヨン

	24.00			
		10.		-

Our approach

Going further

Future Work

ヘロト 人間 とく ヨン 人 ヨン

Bibliography

Algorithm EasySorting

$$rc(\pi) = 5 2 1 0 0 0
\pi = 6 3 2 1 4 5
\downarrow \rho(3,4,5)
5 2 0 0 0 0
6 3 1 2 4 5
\downarrow \rho(2,3,5)
5 0 0 0 0 0
6 1 2 3 4 5
\downarrow \rho(1,2,7)$$

щ

æ

Int	KOO	luoi	lion
шц	100	luci	1011

Our approach ○○ ○○○●○○ Going further

Future Work

ヘロト 人間 とく ヨン 人 ヨン

Bibliography

Algorithm EasySorting

$$rc(\pi) = 5 2 1 0 0 0
\pi = 6 3 2 1 4 5
\downarrow \rho(3,4,5)
5 2 0 0 0 0
6 3 1 2 4 5
\downarrow \rho(2,3,5)
5 0 0 0 0 0
6 1 2 3 4 5
\downarrow \rho(1,2,7)
0 0 0 0 0 0
1 2 3 4 5 6$$

æ

Our approach

Going further

Future Work

Bibliography

Complexity and Approximation Ratio

Algorithm EasySorting (input: π a permutation of [n]) $lc(\pi) = left code of \pi$ (easily computed in $\mathcal{O}(n^2)$) $rc(\pi) = right code of \pi$ (easily computed in $\mathcal{O}(n^2)$) $lp(\pi) = p(lc(\pi))$ (easily computed in $\mathcal{O}(n)$) $rp(\pi) = p(rc(\pi))$ (easily computed in $\mathcal{O}(n)$) RETURN $p(\pi) = min\{lp(\pi), rp(\pi)\}$

The complexity of EasySorting is in $O(n^2)$.

The approximation ratio of EasySorting is 3.

Our approach

Going further

Future Work

Bibliography

Complexity and Approximation Ratio

Algorithm EasySorting (input: π a permutation of [n]) $lc(\pi) = left code of \pi$ (easily computed in $\mathcal{O}(n^2)$) $rc(\pi) = right code of \pi$ (easily computed in $\mathcal{O}(n^2)$) $lp(\pi) = p(lc(\pi))$ (easily computed in $\mathcal{O}(n)$) $rp(\pi) = p(rc(\pi))$ (easily computed in $\mathcal{O}(n)$) RETURN $p(\pi) = min\{lp(\pi), rp(\pi)\}$

The complexity of EasySorting is in $O(n^2)$.

The approximation ratio of EasySorting is 3.

Our approach ○○ ○○ ○○ ○○ Going further

Future Work

Bibliography

Complexity and Approximation Ratio

Algorithm EasySorting (input: π a permutation of [n]) $lc(\pi) = left code of \pi$ (easily computed in $\mathcal{O}(n^2)$) $rc(\pi) = right code of \pi$ (easily computed in $\mathcal{O}(n^2)$) $lp(\pi) = p(lc(\pi))$ (easily computed in $\mathcal{O}(n)$) $rp(\pi) = p(rc(\pi))$ (easily computed in $\mathcal{O}(n)$) RETURN $p(\pi) = min\{lp(\pi), rp(\pi)\}$

The complexity of EasySorting is in $O(n^2)$.

The approximation ratio of EasySorting is 3.

・ロット (雪) ・ (日) ・ (日) ・ 日

Our approach	Going further	Future Work
00 00000 00	0000	

Complexity and Approximation Ratio

э

・ロット (雪) (日) (日)

Bibliography

Our approach

Going further

Future Work

Bibliography

Experimental results

Comparison of the number of wrong calculations on small permutations

		EasySort		BP2
n	Total	$\neq d(\pi)$		$ eq \textit{d}(\pi) $
2	2	0		0
3	6	0		0
4	24	0		1
5	120	6		7
6	720	108		86
7	5040	1423		792
8	40320	17577		9162
9	362880	211863		100332

Introduction	
0000	

Going further

Future Work

Bibliography

Experimental results

Comparison of the mean of the transposition distances and computational time for large permutations

		EasySort		BP2	
n	sample size	distance	time	distance	time
10	1000	5,59	-	5,06	
16	1000	10,63	-	8,50	-
32	1000	25,02	-	17,76	_
64	1000	55,45	-	36,09	0,00167
128	1000	117,96	0,00106	72,57	0,00484
256	1000	244,38	0,00255	145,18	0,02288
512	1000	498,91	0,00761	290,56	0,1160
1000	100	985,63	0,02874	567,53	1,299
5000	100	4982,05	0,5824	2840,89	144,8

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ ● ◆ ○ ●

0000

Our approach

Going further

Future Work

Bibliography

Can we do better?

Our approach

Going further

Future Work

Bibliography

Can we do better?

EasySorting removes only 1 plateau by transposition.

Our approach

Going further

Future Work

Bibliography

Can we do better?

EasySorting removes only 1 plateau by transposition.

Can we remove more plateaux with each transposition?

Our approach

Going further

Future Work

Bibliography

Can we do better?

EasySorting removes only 1 plateau by transposition.

Can we remove more plateaux with each transposition?

YES !!

troduction	Our approach	Going further	Future Work	Bibliography
00	000000			

In 0000

Other entities

Some of the entities for the algorithms Mountain and MADFRP

æ

(日)

Introduction	
0	
000	

Going further

Future Work

Bibliography

Experimental results

Comparison of the number of wrong calculations on small permutations

		EasySort	Mountain	MADFRP	BP2
n	Total	$ eq \textit{\textit{d}}(\pi)$	$\neq d(\pi)$	$\neq d(\pi)$	$\neq d(\pi)$
2	2	0	0	0	0
3	6	0	0	0	0
4	24	0	0	0	1
5	120	6	6	1	7
6	720	108	103	29	86
7	5040	1423	1314	484	792
8	40320	17577	15941	7416	9162
9	362880	211863	190528	102217	100332

Introduction
0
000
00

Going further

Future Work

Bibliography

Experimental results

Comparison of the mean of the transposition distances and computational time for large permutations

		Mountain		BP2	
n	sample size	distance	time	distance	time
10	1000	5,46	-	5,06	-
16	1000	10,11	-	8,50	-
32	1000	23,60	-	17,76	_
64	1000	52,50	-	36,09	0,00167
128	1000	113,29	0,00181	72,57	0,00484
256	1000	237,23	0,00529	145,18	0,02288
512	1000	488,57	0,0234	290,56	0,1160
1000	100	971,72	0,1152	567,53	1,299
5000	100	4958,75	4,448	2840,89	144,8

◆□> < □> < □> < □> < □> < □> < □</p>

Going further

Future Work

Bibliography

Advantages and drawbacks of our algorithms

Advantages of our algorithms

- Simplicity
- Quickness of execution

Drawbacks of our algorithms

Going further

Future Work

Bibliography

Advantages and drawbacks of our algorithms

Advantages of our algorithms

- Simplicity
- Quickness of execution

Drawbacks of our algorithms

Going further

Future Work

Bibliography

Advantages and drawbacks of our algorithms

Advantages of our algorithms

- Simplicity
- Quickness of execution

Drawbacks of our algorithms

Going further

Future Work

Bibliography

Advantages and drawbacks of our algorithms

Advantages of our algorithms

- Simplicity
- Quickness of execution

Drawbacks of our algorithms

Going further

Future Work

Bibliography

Advantages and drawbacks of our algorithms

Advantages of our algorithms

- Simplicity
- Quickness of execution

Drawbacks of our algorithms

Our approach

Going further

Future Work

Bibliography

Future Work

Future work and Open problems

Our approach

Going further

Future Work

Bibliography

Future Work

Future work and Open problems

- Treating the entities independently of their kind from the ends of the permutation to the center instead of treating the kinds of entities one by one.
- Implementing the entities (other than plateaux) with the left **and** right codes.

Introductio

Our approach

Going further

Future Work

Bibliography

Future Work

Future work and Open problems

- Treating the entities independently of their kind from the ends of the permutation to the center instead of treating the kinds of entities one by one.
- Implementing the entities (other than plateaux) with the left **and** right codes.

General open problems about sorting by transpositions

Introducti 0 000 Our approach

Going further

Future Work

Bibliography

Future Work

Future work and Open problems

- Treating the entities independently of their kind from the ends of the permutation to the center instead of treating the kinds of entities one by one.
- Implementing the entities (other than plateaux) with the left **and** right codes.

General open problems about sorting by transpositions

- Finding the class of complexity of this problem.
- Finding the transposition diameter in function of *n*.

Introduction

0000

Our approach

Going further

Future Work

Bibliography

Thank you !!

Introductio

Our approach

Going further

Future Work

Bibliography

For Further Reading

- [BP] V. Bafna and P.A. Pevzner, Sorting by transpositions, SIAM Journal on Discrete Maths, 11(2): 224-240, 1998.
- [C] D. A. Christie, Genome rearrangements problems, PhD thesis, Glasgow University, 1998.
- [EH] I. Elias and T. Hartman, A 1.375-approximation algorithm for sorting by transpositions, Lecture Notes in Bioinformatics 3692, 204-215, 2005.
- -[GHV] S. A. Guyer and L. S. Heath and J. P. C. Vergara, Subsequence and run heuristics for sorting by transpositions, 4th DIMACS International Algorithm Implementation Challenge, 1995.
- [H] T. Hartman, A simpler 1.5-approximation algorithm for sorting by transpositions, Lecture Notes in Computer Science 2676, 156-169, 2003.
- [O] E. T. G. Oliveira, Implementations of algorithms for the problem of sorting by transpositions, Master's thesis, University of Brasilia, 2001.
- [WDM] M. E. M. T. Walter and Z. Dias and J. Meidanis, A new approach for approximating the transposition distance, *Proceedings of SPIRE*, 199-208, 1995.
- [WOa] M. E. M. T. Walter and E. T. G. de Oliveira, Extending the theory of Bafna and Pevzner for the problem of sorting by transpositions, *CNMAC*), volume 3(1), 213-222, 2002.
- [WOb] M. E. M. T. Walter and E. T. G. de Oliveira, The problem of sorting by transpositions and the algorithm of Bafna and Pevzner, XXII Seminário Integrado de Software e Hardware (SEMISH), 2002.
- [WSO+] M. E. M. T. Walter et al., Improving the algorithm of Bafna and Pevzner for the problem of sorting by transpositions: a practical approach, Journal of Discrete Algorithms, 3: 342-361, 2005.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ