New Algorithms for Text Fingerprinting

Roman Kolpakov

Liapunov French-Russian Institute,

Moscow State University, Moscow, Russia

Mathieu Raffinot

CNRS, Poncelet Laboratory,

Independent University of Moscow, Moscow, Russia

Fingerprints

$$\Sigma = \{a_1, \dots, a_q\}$$

$$s = s_1 \dots s_n \in \Sigma^*$$

Def:

$$C(s) = \{a_i \in \Sigma \mid \exists j \ a_i = s_j\} \subseteq \Sigma - fingerprint \text{ of } s$$

$$C_s(i,j) = C(s_i \dots s_j), \quad s_i \dots s_j - location \text{ of } C_s(i,j)$$

$$\mathcal{F}(s) = \{C \subseteq \Sigma \mid \exists i, j \ C = C_s(i,j)\}$$

Maximal locations

 $C \subseteq \Sigma$

Def: $s_i \dots s_j - maximal\ location\ of\ C = C_s(i,j)\ in\ s\ iff$

1. if i > 1, $s_{i-1} \notin C$

2. if j < n, $s_{j+1} \notin C$

Ex: $ab\underline{acadc}$ — maximal location of fingerprint $\{a, c, d\}$

 $\mathcal{L}(s)$ — set of all maximal locations in s

Prop: $|\mathcal{F}(s)| \leq |\mathcal{L}(s)| \leq n|\Sigma|$

 $|\mathcal{L}(s)|$ can be asymptotically less than $n|\Sigma|$

Ex

$$\Sigma_k = \{a_1, a_2, \dots, a_k\}, \quad k = 1, 2, \dots$$

$$w_1 = a_1$$

$$w_k = w_{k-1} a_k w_{k-1} \in \Sigma_k^* \text{ for } k > 1$$

$$|w_k| \cdot |\Sigma_k| = k \cdot (2^k - 1)$$

 $\mathcal{L}(w_k) = 2^{k+1} - (k+2) = o(|w_k| \cdot |\Sigma_k|)$

+

Our problems

- 1. Compute the set $\mathcal{F}(s)$
- 2. For a given $C \subseteq \Sigma$, find if $C \in \mathcal{F}(s)$
- 3. For a given $C \subseteq \Sigma$, find all maximal locations of C

in s

Amir, Apostolico, Landau, Satta 2003:

Problems 2 and 3 can be solved in $O(|\Sigma| \log n)$ time and $O(|\Sigma| \log n + K)$ time respectively (K - size of output)Problem 1 can be solved in $O(n|\Sigma|\log|\Sigma|\log n)$ time

Didier, Schmidt, Stoye, Tsur 2006:

Problem 1 can be solved in $O(\min\{n|\Sigma|\log|\Sigma|,n^2\})$

0

Our results

Problem 1 can be solved in $O((n + |\mathcal{L}(s)|) \log |\Sigma|)$ time

Problems 2 and 3 can be solved in $O(|\Sigma|)$ time and $O(|\Sigma|+K)$ time respectively (K-size of output)

Naming technique

fingerprint arrays — fingerprint names

Ex: $10101100 \longrightarrow [7]$

Fingerprint tree

of $\mathcal{F}(s)$ $n_0 + 1, n_0 + 2, \dots, n_0 + t$ — ordered fingerprint names

Edges are labeled by tuples $\{(n_l, n_r), l, r\}$

segment of length l+r in fingerprint array: Tuple $\{(n_l, n_r), l, r\}$ points to the corresponding

 $O(|\mathcal{F}(s)|\log |\Sigma|)$ time and $O(|\mathcal{F}(s)|)$ space. **Prop:** Fingerprint tree can be constructed in

The corresponding segment can be computed from

 $\{(n_l, n_r), l, r\}$ in O(l+r) time

 \leftarrow

can be done in $O(|\Sigma|)$ time Search of a given fingerprint array in fingerprint tree

 \leftarrow

retrieved in $O(|\Sigma| + K)$ time (K - size of output)All maximal locations of a given fingerprint can be

Conclusions

- $O((n + |\mathcal{F}(s)|) \log |\Sigma|)$ time bound for Problem 1?
- sets of strings (in particular, regular languages) computing fingerprints (common fingerprints) for
- on-line computation of $\mathcal{F}(s)$