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Motivation

Previous work

@ In recent work, Sadakane and Grossi [SODA'06]
introduced a scheme to represent any sequence S using
NH(S) + O(==—((k + 1) log o + loglog n)) bits of space.

log, n
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Motivation

Previous work

@ In recent work, Sadakane and Grossi [SODA'06]
introduced a scheme to represent any sequence S using
NH(S) + O(5g 7 ((k + 1) log o + loglog n)) bits of space.

@ The representation permits us to extract any substring of
size ©(log, n) in constant time, and thus it completely

replaces S under the RAM model.

¥
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Motivation

Previous work

@ In recent work, Sadakane and Grossi [SODA'06]
introduced a scheme to represent any sequence S using
NH(S) + O(==—((k + 1) log o + loglog n)) bits of space.

log, n
@ The representation permits us to extract any substring of
size ©(log, n) in constant time, and thus it completely
replaces S under the RAM model.
@ This permits converting any succinct structure using
o(nlog o) bits of space on top of S, into a compressed
structure using nH(S) + o(nlog o) bits overall, for any ﬁ

k = o(log, n). B
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Motivation

@ We extend previous works, by obtaining slightly better
space complexity and the same time complexity using a
simpler scheme based on statistical encoding.
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Motivation

@ We extend previous works, by obtaining slightly better
space complexity and the same time complexity using a
simpler scheme based on statistical encoding.

@ We show that the scheme supports appending symbols in
constant amortized time.
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Motivation

@ We extend previous works, by obtaining slightly better
space complexity and the same time complexity using a
simpler scheme based on statistical encoding.

@ We show that the scheme supports appending symbols in
constant amortized time.

@ We prove some results on the applicability of the scheme
for full-text self-indexing.
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Example: a simple rank structure

[o70[170[101010]704170 1010001011011
Sequence

Definition

ranki (S, i) = number of ones in S[1...i].
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[0170[7T 1010 1010][10 411010100010 110 1 1]
Sequence

Super Blocks 0] 5] 10] 15
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Example: a simple rank structure

Blocks

0] 11310f 1310 1] 2] 0] 2]

Sequence

Super Blocks 0] 5] 10] 15
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Example: a simple rank structure

rank(14)=

* ——
[07T0[110[1010710][101101010]00 101 10 1 1]
Sequence <
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Example: a simple rank structure

rank(14)=5+

-
[07T0[110[1010710]101101010]00 101 10 1 1|
Sequence <

Super Blocks 0] 5] 10] 15
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Example: a simple rank structure

rank(14)=5+1+
Blocks

o] 1131 0] 13]0] 1] 2] 0] 2]

Sequence

Super Blocks 0] 5] 10] 15
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Example: a simple rank structure

rank(14)=5+1+1
Blocks

o] 11310f 13]0] 1] 2] 0] 2]

Sequence

Super Blocks 0] 5] 10] 15

rank,(S,14) =5+1+1. |
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The k-th order empirical entropy

@ The empirical entropy is defined for any string S and can
be used to measure the performance of compression

algorithms without any assumption on the input.
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I Statistical encoding
Summary

The k-th order empirical entropy

@ The empirical entropy is defined for any string S and can
be used to measure the performance of compression
algorithms without any assumption on the input.

@ The k-th order empirical entropy captures the dependence
of symbols upon their context. For k > 0, nHy(S) provides
a lower bound to the output of any compressor that
considers a context of size k to encode every symbol of S.

1
He(S) = = > [ws|Ho (ws). | §
wezk Lﬁﬁ
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Semi-static Statistical encoding

@ Given a k-th order modeler, which will yield the
probabilities p1, p2, . - ., pn for the symbols, we will encode
the successive symbols of S trying to use — log p; bits for
s;. If we reach exactly — log p; bits, the overall number of
bits produced will be nHy (S) + O(k logn).
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Summary

Semi-static Statistical encoding

@ Given a k-th order modeler, which will yield the
probabilities p1, p2, . - ., pn for the symbols, we will encode
the successive symbols of S trying to use — log p; bits for
s;. If we reach exactly — log p; bits, the overall number of
bits produced will be nHy (S) + O(k logn).

@ Different encoders provide different approximations to the
ideal — log p; bits (Huffman coding, Arithmetic coding).

ﬁ
Gonzéalez, Navarro Statistical Encoding of Succinct Data Structures




ckg r°9”d Motivation

k-th order empirical entropy

- Statistical encoding
Summary

Semi-static Statistical encoding

@ Given a k-th order modeler, which will yield the
probabilities p1, p2, . - ., pn for the symbols, we will encode
the successive symbols of S trying to use — log p; bits for
s;. If we reach exactly — log p; bits, the overall number of
bits produced will be nHy (S) + O(k logn).

@ Different encoders provide different approximations to the
ideal — log p; bits (Huffman coding, Arithmetic coding).

@ Given a statistical encoder E and a semi-static modeler

over sequence S[1, n], we call E(S) the bitwise output of ;
E. We call fy (E, S) the extra space in bits needed to ﬁ
encode S using E, on top of nH,(S). ob
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Semi-static Statistical encoding

Encoders

@ Arithmetic coding essentially expresses S using a number
in [0, 1) which lies within a range of size P =py - p2-- - pn.
We need —logP = — " log p; bits to distinguish a number
within that range (plus two extra bits for technical reasons).
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Semi-static Statistical encoding

Encoders

@ Arithmetic coding essentially expresses S using a number
in [0, 1) which lies within a range of size P =py - p2-- - pn.
We need —logP = — " log p; bits to distinguish a number
within that range (plus two extra bits for technical reasons).

@ These are usually some limitations to the near-optimality
achieved by Arithmetic coding in practice. They are
scaling, very low probabilities and adaptive encoding.
None of them is a problem in our scheme. ﬁ
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Entropy-bound succinct data structure

Entropy-bound succinct data structure

@ Given a sequence S[1,n] over an alphabet A of size o, we
encode S into a compressed data structure S’ within
entropy bounds. To perform all the original operations over
S under the RAM model, it is enough to allow extracting
any b = % log, n consecutive symbols of S, using S’, in
constant time.
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Entropy-bound succinct data structure

Data structures

Sequence
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Entropy-bound succinct data structure

Data structures
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o |U| =< 1" |Ei| = nHi(S)+O(k log n)+ S0 f (E, S)),
which depends on the statistical encoder E used.

Other structures
3
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Space requirement

o |U| =< 1" |Ei| = nHi(S)+O(k log n)+ S0 f (E, S)),
which depends on the statistical encoder E used.

@ Huffman: fy (Huffman, S;) < b, thus we achive
nHy (S) + O(k log n) + n bits.

Other structures
3
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Summary

Space requirement

o |U| =< 3370 |Eil = nHi(S)+O(k logn)+ 52170 i (E, i),
which depends on the statistical encoder E used.

@ Huffman: fy (Huffman, S;) < b, thus we achive
nHy(S) + O(k logn) + n bits.

@ Arithmetic: fk(Arithmetic S ) < 2, thus we achive
nHy(S) + O(k log n)+| = bits.

Other structures
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Space requirement

o |U| =< 1" |Ei| = nHi(S)+O(k log n)+ S0 f (E, S)),
which depends on the statistical encoder E used.

@ Huffman: fy (Huffman, S;) < b, thus we achive
nHy(S) + O(k logn) + n bits.

@ Arithmetic: fy (Arithmetic, S;j) < 2, thus we achive
nH, (S) + O(k logn) 4+ 2" bits.

log, n

Other structures

@ Contexts: (n/b)klogc = O(nklogo/log, n) ﬁ
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Summary

Space requirement

o |U| =< 3370 |Eil = nHi(S)+O(k logn)+ 52170 i (E, i),
which depends on the statistical encoder E used.

@ Huffman: fy (Huffman, S;) < b, thus we achive
nHy(S) + O(k logn) + n bits.

@ Arithmetic: fy (Arithmetic, S;j) < 2, thus we achive
nH, (S) + O(k logn) 4+ 2" bits.

log, n

@ Contexts: (n/b)klogc = O(nklogo/log, n) ﬁ
@ Positions: O(nloglogn/log, n) ot
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Summary

Space requirement

o |U| =< 3370 |Eil = nHi(S)+O(k logn)+ 52170 i (E, i),
which depends on the statistical encoder E used.

@ Huffman: fy (Huffman, S;) < b, thus we achive
nHy(S) + O(k logn) + n bits.

@ Arithmetic: fy (Arithmetic, S;j) < 2, thus we achive
NHK(S) + O(k logn) + a5 bits.

@ Contexts: (n/b)klogc = O(nklogo/log, n) ﬁ
@ Positions: O(nloglogn/log, n) ot
@ Table: o* n'/2logn/2
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Entropy-bound succinct data structure

Space requirement

Theorem

Let S[1, n] be a sequence over an alphabet A of size . Our
data structure uses nHy(S) + O(@(k log o + log log n)) bits
of space for any k < (1 —¢)log, n and any constant 0 < € < 1,
and it supports access to any substring of S of size ©(log, n)
symbols in O(1) time.

Our structure takes space nHy(S) + o(nlog o) if k = o(log,, n).

ﬁ
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Summary

Supporting appends

The structure supports appending symbols in constant
amortized time and retains the same space and query time
complexities.

Append scheme
Step 1

IEBDS | |Buffer |

Step 3

IEBDS I IEBDS I IEBDS' IEBDSI |Buffer I

Step 4 k
[Entropy Bound Data Structure ] [Buffer ] ﬁ
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Outline

e Application to full-text indexing
@ Succinct full-text self-indexes ﬁ
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The Burrows-Wheeler Transform

Application to full-text indexing T R

Succinct full-text self-indexes

Definition
@ A succinct full-text index is an index that uses space
proportional to the compressed text. Those indexes that
contain sufficient information to recreate the original text
are known as self-indexes. Some examples are the
FM-index family and the LZ-index.
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The Burrows-Wheeler Transform
The wavelet tree

Entrop o]
pplication to
Summary

Burrows-Wheeler Transform (BWT)

BWT

@ The FM-index family is based on the Burrows-Wheeler
Transform (BWT). The BWT of a text T, T°" = bwt(T), is
a reversible transformation from strings to strings, which is
easier to compress by local optimization methods.

ﬁ
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The Burrows-Wheeler Transform
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Entropy-bo

Summary

Burrows-Wheeler Transform (BWT)

@ The FM-index family is based on the Burrows-Wheeler
Transform (BWT). The BWT of a text T, T = bwt(T), is
a reversible transformation from strings to strings, which is
easier to compress by local optimization methods.

@ An important property of the transformation is: if
T[k] = TP"i], then T [k — 1] = TP"[LF(i)], where

ﬁ
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The Burrows-Wheeler Transform
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Summary

Burrows-Wheeler Transform (BWT)

@ The FM-index family is based on the Burrows-Wheeler
Transform (BWT). The BWT of a text T, T = bwt(T), is
a reversible transformation from strings to strings, which is
easier to compress by local optimization methods.

@ An important property of the transformation is: if
T[k] = TP"i], then T [k — 1] = TP"[LF(i)], where
o LF (i) = C[T"™[i]] + Occ(T""[i],i).
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Succinct full-text self-indexes
The Burrows-Wheeler Transform
The wavelet tree

Entropy-bo

Summary

Burrows-Wheeler Transform (BWT)

@ The FM-index family is based on the Burrows-Wheeler
Transform (BWT). The BWT of a text T, T = bwt(T), is
a reversible transformation from strings to strings, which is
easier to compress by local optimization methods.
@ An important property of the transformation is: if
T[k] = TP"i], then T [k — 1] = TP"[LF(i)], where
o LF(i) = C[TP™i]] + Occ(T™i],i).
e C|c] is the total number of text characters which are
alphabetically smaller than c.

ﬁ
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Succinct full-text self-indexes
The Burrows-Wheeler Transform
The wavelet tree

Entropy-bo

Summary

Burrows-Wheeler Transform (BWT)

@ The FM-index family is based on the Burrows-Wheeler
Transform (BWT). The BWT of a text T, T = bwt(T), is
a reversible transformation from strings to strings, which is
easier to compress by local optimization methods.
@ An important property of the transformation is: if
T[K] = TPi], then T[k — 1] = T°™[LF(i)], where
o LF(i) = C[TP"[i]] + Occ(TPMi],i).
e C|c] is the total number of text characters which are
alphabetically smaller than c.
e Occ(c,i) is the number of occurrences of character c in the
prefix TPW[1,i]. ﬁ
(13
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Succinct full-text self-indexes
The Burrows-Wheeler Transform
The wavelet tree

Entropy-bo

Summary

Burrows-Wheeler Transform (BWT)

@ The FM-index family is based on the Burrows-Wheeler
Transform (BWT). The BWT of a text T, T = bwt(T), is
a reversible transformation from strings to strings, which is
easier to compress by local optimization methods.
@ An important property of the transformation is: if
T[k] = TP"i], then T [k — 1] = TP"[LF(i)], where
o LF(i) = C[TP"[i]] + Occ(TPMi],i).
e C|c] is the total number of text characters which are
alphabetically smaller than c.
e Occ(c,i) is the number of occurrences of character c in the
prefix TPW[1,i]. ﬁ

@ This property permits navigating the text T backwards. [
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Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing T R

Succinct full-text self-indexes

Wavelet tree
@ The original FM-index solves Occ by storing some
directories over S and compressing S. To give

constant-time access to S they require exponential space
ino.

ﬁ
ilgt

Gonzéalez, Navarro Statistical Encoding of Succinct Data Structures



Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing T R

Succinct full-text self-indexes

Wavelet tree

@ The original FM-index solves Occ by storing some
directories over S and compressing S. To give
constant-time access to S they require exponential space
ino.

@ The wavelet tree wt(S) built on S is a binary tree, built on
the alphabet symbols, such that the root represents the
whole alphabet and each node has the information telling
which of its characters belongs to the left/right child. ﬁ
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Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing T R

Wavelet tree

Sequence

[A[D]F[F[E[F[C]CIA[B]A[BIE[HIGIE[A[E[F]A[A]AIGB[BIA]A[GIFICIA[F]

[o[o[ ][ 1] 1] e[ 1] oo e[ o[ 1[ 1] 1] 1] o] 1] 1] ol of ol 1[o[c[o] o] 1] 1] o] o] 1] A,B,C,D=0
E,F,G,H=1
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Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing T R

Wavelet tree

Sequence

[A[D]F[F[E[F[C]CIA[B]A[BIE[HIGIE[A[E[F]A[A]AIGB[BIAJA[GIFICIA[F]

[o[o[ ][ 1] 1] e[ 1] oo el o[ 1[ 1] 1] 1]o] 1] 1] ol o ol 1[o[ e[ o] o] 1] 1] o] o] 1] A,B,C,D=0
E,F,G,H=1

ABCD

BJA[BJAJAJAJA[E[B[A[A[C]A]
olofofofofo] o] o] e] o] o[ 1] o]AB=0
¢,b=1
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Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing T R

Wavelet tree

Sequence

[A[D]F[F[E[F[C]CIA[B]A[BIE[HIGIE[A[E[F]A[A]AIGB[BIA]A[GIFICIA[F]

[o[o[ ][ 1] 1] e[ 1] ol of e[ o[ 1[ 1] 1] 1]o] 1] 1] ol o ol 1[o[ e[ o] o] 1] 1] o] o] 1] A,B,C,D=0
E,F,G,H=1

ABCD

AJAJA[BIBJAJA[CIA|
ol o] o] o[ o[ o] o] 1] 0]A,B=0

[BIA]
[ofo]
/ C.o=1
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Succinct full-text self-indexes
- R . The Burrows-Wheeler Transform
Application to full-text indexing T

Wavelet tree

Sequence

[A[o[FIF[EIF]CIC]A[BA[BIFIHIGIE[A[EIF]A[AJA]GIBIB]A]AGIFICIA[F]
[ofo[1[+[«T1Te[ 1] oofofof [ 1] 1] 1] o 1[ 1[0 of o 1] O] o o o[ 1] 1] O] O] 1]
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Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing i

Outline

e Application to full-text indexing ﬁ

@ The Burrows-Wheeler Transform ; [BE

Gonzéalez, Navarro Statistical Encoding of Succinct Data Structures



Succinct full-text self-indexes
The Burrows-Wheeler Transform
The wavelet tree

Application to full-text indexing

Relationship between TP and T

We could encode S = bwt(T) within nHy (S) + o(nlog o) bits,
but how this relates to nHy (T )?

Let S = bwt(T), where T[1,n] is a text over an alphabet of size
o. Then Hi(S) < 1+ Hy(T)logo + o(1) for any
k < (1—¢)log,nandany constant 0 < e < 1.
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Succinct full-text self-indexes
The Burrows-Wheeler Transform

Application to full-text indexing i

Relationship between TP and T

Application

@ We can get at least the same results of the Run-Length
FM-Index by compressing bwt(T ) using our structure.

@ We can implement the original FM-index (5nHk(T ) +
O(ncologlogn/log, n + (o/€)°+3/2n7log, nloglogn) bits)
using nHy (T )log o + n + o(n) bits.

ﬁ
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The Burrows-Wheeler Transform

Application to full-text indexing T eEvEie

Outline

e Application to full-text indexing ﬁ
gt

@ The wavelet tree
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Succinct full-text self-indexes
The Burrows-Wheeler Transform
The wavelet tree

Entropy-bound succinct d ure
Application to full-text indexing
Summary

Relationship between wt(S) and S

@ wt(S) takes nHp + o(nlog o) bits of space and permits
answering Occ queries in time O(log o)
@ Many FM-index variants build on the wavelet tree:
@ SSA takes nHg + o(nlog o) bits of space
o RLFM-index takes nHi log o + o(nlog o)
@ AF-FM-index takes nHy + o(nlog o)
@ In all cases the bitmaps of the wt(S) are compressed to
their Hp, but we can now compress them to Hy.

@ Is k-th order entropy preserved across a wavelet tree? (it is ﬁ

for k = 0) :
<65
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Succinct full-text self-indexes
The Burrows-Wheeler Transform
The wavelet tree

Application to full-text indexing

Lemma

The ratio between Hy (wt(S)) and Hy(S), can be at least
Q(logk). More precisely, Hi (wt(S))/Hk(S) can be Q(logk) and
Hy (S)/Hk (wt(S)) can be Q(n/(k logn)).

Consequence

Applying our structure over the bitmaps of the wavelet tree
does not perfectly translate into nHy (S) overall space, as there
is a penalty factor of at least k in the worst case. But in the
best, it can be much better than nHy (S).
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Summary

@ We presented a scheme based on k-th order modeling
plus statistical encoding to convert any succinct data
structure on sequences into a compressed data structure.
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@ We presented a scheme based on k-th order modeling
plus statistical encoding to convert any succinct data
structure on sequences into a compressed data structure.

@ This simplifies and slightly improves previous work.
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Summary

@ We presented a scheme based on k-th order modeling
plus statistical encoding to convert any succinct data
structure on sequences into a compressed data structure.

@ This simplifies and slightly improves previous work.

@ We presented a scheme to append symbols to the original
sequence within the same space complexity and with
constant amortized cost per appended symbol.
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Entro
1o Summary

Summary

Summary

@ We presented a scheme based on k-th order modeling
plus statistical encoding to convert any succinct data
structure on sequences into a compressed data structure.

@ This simplifies and slightly improves previous work.

@ We presented a scheme to append symbols to the original
sequence within the same space complexity and with
constant amortized cost per appended symbol.

@ We found relationships between the entropies of two
fundamental structures used for compressed text indexing. ﬁ
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Summary

Future work

@ Making our structure fully dynamic
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Future work

@ Making our structure fully dynamic

@ Better understanding how the entropies evolve upon
transformations such bwt or wt.
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Summary

Future work

@ Making our structure fully dynamic

@ Better understanding how the entropies evolve upon
transformations such bwt or wt.

@ Testing our structure in practice.
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Summary

Summary

Future work

@ Making our structure fully dynamic

@ Better understanding how the entropies evolve upon
transformations such bwt or wt.

@ Testing our structure in practice.

@ Currently working on another way to solve the same
problem. That would permit full dynamism using recent
work (see next talk).
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Summary

Summary

Thank you!!
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