

Statistical Encoding of Succinct Data Structures

Rodrigo González¹ Gonzalo Navarro¹

¹Department of Computer Science Universidad de Chile

Combinatorial Pattern Matching, 2006

Outline

1

Background

- Motivation
- The k-th order empirical entropy
- Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

Outline

1

Background

- Motivation
- The k-th order empirical entropy
- Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

Outline

1

Background

- Motivation
- The k-th order empirical entropy
- Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation

k-th order empirical entropy Statistical encoding

Outline

1

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Motivation

Previous work

- In recent work, Sadakane and Grossi [SODA'06] introduced a scheme to represent any sequence *S* using $nH_k(S) + O(\frac{n}{\log_{\sigma} n}((k+1)\log \sigma + \log \log n))$ bits of space.
- The representation permits us to extract any substring of size Θ(log_σ n) in constant time, and thus it completely replaces S under the RAM model.
- This permits converting any succinct structure using o(n log σ) bits of space on top of S, into a compressed structure using nH_k(S) + o(n log σ) bits overall, for any k = o(log_σ n).

(日) (四) (三) (三)

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Motivation

Previous work

- In recent work, Sadakane and Grossi [SODA'06] introduced a scheme to represent any sequence *S* using $nH_k(S) + O(\frac{n}{\log_{\sigma} n}((k+1)\log \sigma + \log \log n))$ bits of space.
- The representation permits us to extract any substring of size Θ(log_σ n) in constant time, and thus it completely replaces S under the RAM model.
- This permits converting any succinct structure using o(n log σ) bits of space on top of S, into a compressed structure using nH_k(S) + o(n log σ) bits overall, for any k = o(log_σ n).

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Motivation

Previous work

- In recent work, Sadakane and Grossi [SODA'06] introduced a scheme to represent any sequence *S* using $nH_k(S) + O(\frac{n}{\log_{\sigma} n}((k+1)\log \sigma + \log \log n))$ bits of space.
- The representation permits us to extract any substring of size Θ(log_σ n) in constant time, and thus it completely replaces S under the RAM model.
- This permits converting any succinct structure using o(n log σ) bits of space on top of S, into a compressed structure using nH_k(S) + o(n log σ) bits overall, for any k = o(log_σ n).

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Motivation

Our work

- We extend previous works, by obtaining slightly better space complexity and the same time complexity using a simpler scheme based on statistical encoding.
- We show that the scheme supports appending symbols in constant amortized time.
- We prove some results on the applicability of the scheme for full-text self-indexing.

(日)

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Motivation

Our work

- We extend previous works, by obtaining slightly better space complexity and the same time complexity using a simpler scheme based on statistical encoding.
- We show that the scheme supports appending symbols in constant amortized time.
- We prove some results on the applicability of the scheme for full-text self-indexing.

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Motivation

Our work

- We extend previous works, by obtaining slightly better space complexity and the same time complexity using a simpler scheme based on statistical encoding.
- We show that the scheme supports appending symbols in constant amortized time.
- We prove some results on the applicability of the scheme for full-text self-indexing.

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

Sequence

Definition

$$rank_1(S, i) =$$
 number of ones in $S[1 \dots i]$.

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

rank(14)=

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

rank(14)=5+

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Example: a simple rank structure

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Outline

(1

- Background
 - Motivation

• The k-th order empirical entropy

- Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

The *k*-th order empirical entropy

Definition

- The empirical entropy is defined for any string *S* and can be used to measure the performance of compression algorithms without any assumption on the input.
- The *k*-th order empirical entropy captures the dependence of symbols upon their context. For *k* ≥ 0, *nH_k*(*S*) provides a lower bound to the output of any compressor that considers a context of size *k* to encode every symbol of *S*.

$$H_k(S) = \frac{1}{n} \sum_{w \in \Sigma^k} |w_S| H_0(w_S).$$

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

The *k*-th order empirical entropy

Definition

- The empirical entropy is defined for any string *S* and can be used to measure the performance of compression algorithms without any assumption on the input.
- The *k*-th order empirical entropy captures the dependence of symbols upon their context. For *k* ≥ 0, *nH_k*(*S*) provides a lower bound to the output of any compressor that considers a context of size *k* to encode every symbol of *S*.

$$H_{k}(S) = \frac{1}{n} \sum_{w \in \Sigma^{k}} |w_{S}| H_{0}(w_{S}).$$
 (1)

r.6

(a)

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Outline

(1

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Semi-static Statistical encoding

Descriptions

- Given a *k*-th order modeler, which will yield the probabilities *p*₁, *p*₂,..., *p_n* for the symbols, we will encode the successive symbols of *S* trying to use log *p_i* bits for *s_i*. If we reach exactly log *p_i* bits, the overall number of bits produced will be *nH_k(S)* + *O*(*k* log *n*).
- Different encoders provide different approximations to the ideal – log p_i bits (Huffman coding, Arithmetic coding).
- Given a statistical encoder *E* and a semi-static modeler over sequence *S*[1, *n*], we call *E*(*S*) the bitwise output of *E*. We call *f_k*(*E*, *S*) the extra space in bits needed to encode *S* using *E*, on top of *nH_k*(*S*).

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Semi-static Statistical encoding

Descriptions

- Given a *k*-th order modeler, which will yield the probabilities *p*₁, *p*₂,..., *p_n* for the symbols, we will encode the successive symbols of *S* trying to use log *p_i* bits for *s_i*. If we reach exactly log *p_i* bits, the overall number of bits produced will be *nH_k(S)* + *O*(*k* log *n*).
- Different encoders provide different approximations to the ideal – log p_i bits (Huffman coding, Arithmetic coding).
- Given a statistical encoder *E* and a semi-static modeler over sequence *S*[1, *n*], we call *E*(*S*) the bitwise output of *E*. We call *f_k*(*E*, *S*) the extra space in bits needed to encode *S* using *E*, on top of *nH_k*(*S*).

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Semi-static Statistical encoding

Descriptions

- Given a *k*-th order modeler, which will yield the probabilities *p*₁, *p*₂,..., *p_n* for the symbols, we will encode the successive symbols of *S* trying to use log *p_i* bits for *s_i*. If we reach exactly log *p_i* bits, the overall number of bits produced will be *nH_k(S)* + *O*(*k* log *n*).
- Different encoders provide different approximations to the ideal – log p_i bits (Huffman coding, Arithmetic coding).
- Given a statistical encoder *E* and a semi-static modeler over sequence *S*[1, *n*], we call *E*(*S*) the bitwise output of *E*. We call *f_k*(*E*, *S*) the extra space in bits needed to encode *S* using *E*, on top of *nH_k*(*S*).

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Semi-static Statistical encoding

Encoders

- Arithmetic coding essentially expresses *S* using a number in [0, 1) which lies within a range of size $P = p_1 \cdot p_2 \cdots p_n$. We need $-\log P = -\sum \log p_i$ bits to distinguish a number within that range (plus two extra bits for technical reasons).
- These are usually some limitations to the near-optimality achieved by Arithmetic coding in practice. They are scaling, very low probabilities and adaptive encoding. None of them is a problem in our scheme.

・ ロ ト ・ 雪 ト ・ 回 ト ・ 日

Entropy-bound succinct data structure Application to full-text indexing Summary Motivation k-th order empirical entropy Statistical encoding

Semi-static Statistical encoding

Encoders

- Arithmetic coding essentially expresses *S* using a number in [0, 1) which lies within a range of size *P* = *p*₁ · *p*₂ · · · *p_n*. We need − log *P* = − ∑ log *p_i* bits to distinguish a number within that range (plus two extra bits for technical reasons).
- These are usually some limitations to the near-optimality achieved by Arithmetic coding in practice. They are scaling, very low probabilities and adaptive encoding. None of them is a problem in our scheme.

・ 日 ・ ・ 日 ・ ・ 回 ・ ・

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Entropy-bound succinct data structure

Idea

• Given a sequence S[1, n] over an alphabet A of size σ , we encode S into a compressed data structure S' within entropy bounds. To perform all the original operations over S under the RAM model, it is enough to allow extracting any $b = \frac{1}{2} \log_{\sigma} n$ consecutive symbols of S, using S', in constant time.

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea

Data structures

- Decoding Algorithm
- Space requirement
- Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Data structures

Sequence

González, Navarro Statistical Encoding of Succinct Data Structures

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Data structures

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Data structures

González, Navarro Statistical Encoding of Succinct Data Structures

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Data structures

González, Navarro Statistical Encoding of Succinct Data Structures

Å

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Data structures

González, Navarro Statistical Encoding of Succinct Data Structures

Å

2G

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Data structures

González, Navarro Statistical Encoding of Succinct Data Structures
Idea Data structures Decoding Algorithm Space requirement Supporting appends

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Decoding Algorithm

Sequence

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Decoding Algorithm

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Decoding Algorithm

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Decoding Algorithm

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Size of U

- $|U| = \leq \sum_{i=0}^{\lfloor n/b \rfloor} |E_i| = nH_k(S) + O(k \log n) + \sum_{i=0}^{\lfloor n/b \rfloor} f_k(E, S_i)$, which depends on the statistical encoder *E* used.
- Huffman: $f_k(\text{Huffman}, S_i) < b$, thus we achive $nH_k(S) + O(k \log n) + n$ bits.
- Arithmetic: f_k (Arithmetic, S_i) \leq 2, thus we achive $nH_k(S) + O(k \log n) + \frac{4n}{\log_2 n}$ bits.

- Contexts: $(n/b)k \log \sigma = O(nk \log \sigma / \log_{\sigma} n)$
- Positions: $O(n \log \log n / \log_{\sigma} n)$

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Size of U

- $|U| = \leq \sum_{i=0}^{\lfloor n/b \rfloor} |E_i| = nH_k(S) + O(k \log n) + \sum_{i=0}^{\lfloor n/b \rfloor} f_k(E, S_i)$, which depends on the statistical encoder *E* used.
- Huffman: $f_k(\text{Huffman}, S_i) < b$, thus we achive $nH_k(S) + O(k \log n) + n$ bits.

• Arithmetic: $f_k(\text{Arithmetic}, S_i) \le 2$, thus we achive $nH_k(S) + O(k \log n) + \frac{4n}{\log_2 n}$ bits.

- Contexts: $(n/b)k \log \sigma = O(nk \log \sigma / \log_{\sigma} n)$
- Positions: $O(n \log \log n / \log_{\sigma} n)$

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Size of U

- $|U| = \leq \sum_{i=0}^{\lfloor n/b \rfloor} |E_i| = nH_k(S) + O(k \log n) + \sum_{i=0}^{\lfloor n/b \rfloor} f_k(E, S_i)$, which depends on the statistical encoder *E* used.
- Huffman: $f_k(\text{Huffman}, S_i) < b$, thus we achive $nH_k(S) + O(k \log n) + n$ bits.
- Arithmetic: $f_k(\text{Arithmetic}, S_i) \le 2$, thus we achive $nH_k(S) + O(k \log n) + \frac{4n}{\log_2 n}$ bits.

- Contexts: $(n/b)k \log \sigma = O(nk \log \sigma / \log_{\sigma} n)$
- Positions: $O(n \log \log n / \log_{\sigma} n)$

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Size of U

- $|U| = \leq \sum_{i=0}^{\lfloor n/b \rfloor} |E_i| = nH_k(S) + O(k \log n) + \sum_{i=0}^{\lfloor n/b \rfloor} f_k(E, S_i)$, which depends on the statistical encoder *E* used.
- Huffman: $f_k(\text{Huffman}, S_i) < b$, thus we achive $nH_k(S) + O(k \log n) + n$ bits.
- Arithmetic: $f_k(\text{Arithmetic}, S_i) \le 2$, thus we achive $nH_k(S) + O(k \log n) + \frac{4n}{\log_{\sigma} n}$ bits.

- Contexts: $(n/b)k\log \sigma = O(nk\log \sigma / \log_{\sigma} n)$
- Positions: $O(n \log \log n / \log_{\sigma} n)$
 - Table: $\sigma^k n^{1/2} \log n/2$

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Size of U

- $|U| = \leq \sum_{i=0}^{\lfloor n/b \rfloor} |E_i| = nH_k(S) + O(k \log n) + \sum_{i=0}^{\lfloor n/b \rfloor} f_k(E, S_i)$, which depends on the statistical encoder *E* used.
- Huffman: $f_k(\text{Huffman}, S_i) < b$, thus we achive $nH_k(S) + O(k \log n) + n$ bits.
- Arithmetic: $f_k(\text{Arithmetic}, S_i) \le 2$, thus we achive $nH_k(S) + O(k \log n) + \frac{4n}{\log_{\sigma} n}$ bits.

- Contexts: $(n/b)k\log \sigma = O(nk\log \sigma / \log_{\sigma} n)$
- Positions: $O(n \log \log n / \log_{\sigma} n)$

Table: $\sigma^k n^{1/2} \log n/2$

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Size of U

- $|U| = \leq \sum_{i=0}^{\lfloor n/b \rfloor} |E_i| = nH_k(S) + O(k \log n) + \sum_{i=0}^{\lfloor n/b \rfloor} f_k(E, S_i)$, which depends on the statistical encoder *E* used.
- Huffman: $f_k(\text{Huffman}, S_i) < b$, thus we achive $nH_k(S) + O(k \log n) + n$ bits.
- Arithmetic: $f_k(\text{Arithmetic}, S_i) \le 2$, thus we achive $nH_k(S) + O(k \log n) + \frac{4n}{\log_{\sigma} n}$ bits.

- Contexts: $(n/b)k\log \sigma = O(nk\log \sigma / \log_{\sigma} n)$
- Positions: $O(n \log \log n / \log_{\sigma} n)$
- Table: $\sigma^k n^{1/2} \log n/2$

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Space requirement

Theorem

Let S[1, n] be a sequence over an alphabet A of size σ . Our data structure uses $nH_k(S) + O(\frac{n}{\log_{\sigma} n}(k \log \sigma + \log \log n))$ bits of space for any $k < (1 - \epsilon) \log_{\sigma} n$ and any constant $0 < \epsilon < 1$, and it supports access to any substring of S of size $\Theta(\log_{\sigma} n)$ symbols in O(1) time.

Corollary

Our structure takes space $nH_k(S) + o(n \log \sigma)$ if $k = o(\log_{\sigma} n)$.

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Idea Data structures Decoding Algorithm Space requirement Supporting appends

Supporting appends

Theorem

The structure supports appending symbols in constant amortized time and retains the same space and query time complexities.

Step 1 Buffer Step 3 EBDS EBDS Buffer Step 4 Entropy Bound Data Structure Buffer	Append scheme	
Entropy Bound Data Structure Buffer	Step 1 EBDS Buffer Step 3 EBDS EBDS EBDS Step 4 EBDS	
15).	Entropy Bound Data Structure Buffer	66 66

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Succinct full-text self-indexes

Definition

 A succinct full-text index is an index that uses space proportional to the compressed text. Those indexes that contain sufficient information to recreate the original text are known as self-indexes. Some examples are the FM-index family and the LZ-index.

< □ > < □ > < □ > < □ > < □ > < □ >

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Burrows-Wheeler Transform (BWT)

BWT

- The FM-index family is based on the Burrows-Wheeler Transform (BWT). The BWT of a text T, T^{bwt} = bwt(T), is a reversible transformation from strings to strings, which is easier to compress by local optimization methods.
- An important property of the transformation is: if $T[k] = T^{bwt}[i]$, then $T[k-1] = T^{bwt}[LF(i)]$, where

• This property permits navigating the text T backwards.

66

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Burrows-Wheeler Transform (BWT)

BWT

- The FM-index family is based on the Burrows-Wheeler Transform (BWT). The BWT of a text *T*, *T^{bwt} = bwt(T)*, is a reversible transformation from strings to strings, which is easier to compress by local optimization methods.
- An important property of the transformation is: if $T[k] = T^{bwt}[i]$, then $T[k-1] = T^{bwt}[LF(i)]$, where
 - $LF(i) = C[T^{bwt}[i]] + Occ(T^{bwt}[i], i).$
 - C[c] is the total number of text characters which are alphabetically smaller than c.
 - Occ(c, i) is the number of occurrences of character c in the prefix T^{bwt}[1, i].

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Burrows-Wheeler Transform (BWT)

BWT

- The FM-index family is based on the Burrows-Wheeler Transform (BWT). The BWT of a text *T*, *T^{bwt} = bwt(T)*, is a reversible transformation from strings to strings, which is easier to compress by local optimization methods.
- An important property of the transformation is: if $T[k] = T^{bwt}[i]$, then $T[k-1] = T^{bwt}[LF(i)]$, where
 - $LF(i) = C[T^{bwt}[i]] + Occ(T^{bwt}[i], i).$
 - *C*[*c*] is the total number of text characters which are alphabetically smaller than *c*.
 - Occ(c, i) is the number of occurrences of character c in the prefix T^{bwt}[1, i].

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Burrows-Wheeler Transform (BWT)

BWT

- The FM-index family is based on the Burrows-Wheeler Transform (BWT). The BWT of a text *T*, *T^{bwt} = bwt(T)*, is a reversible transformation from strings to strings, which is easier to compress by local optimization methods.
- An important property of the transformation is: if
 T[k] = T^{bwt}[i], then T[k 1] = T^{bwt}[LF(i)], where
 - $LF(i) = C[T^{bwt}[i]] + Occ(T^{bwt}[i], i).$
 - *C*[*c*] is the total number of text characters which are alphabetically smaller than *c*.
 - Occ(c, i) is the number of occurrences of character c in the prefix T^{bwt}[1, i].

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Burrows-Wheeler Transform (BWT)

BWT

- The FM-index family is based on the Burrows-Wheeler Transform (BWT). The BWT of a text *T*, *T^{bwt} = bwt(T)*, is a reversible transformation from strings to strings, which is easier to compress by local optimization methods.
- An important property of the transformation is: if $T[k] = T^{bwt}[i]$, then $T[k-1] = T^{bwt}[LF(i)]$, where
 - $LF(i) = C[T^{bwt}[i]] + Occ(T^{bwt}[i], i).$
 - *C*[*c*] is the total number of text characters which are alphabetically smaller than *c*.
 - Occ(c, i) is the number of occurrences of character c in the prefix T^{bwt}[1, i].

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Burrows-Wheeler Transform (BWT)

BWT

- The FM-index family is based on the Burrows-Wheeler Transform (BWT). The BWT of a text *T*, *T^{bwt} = bwt(T)*, is a reversible transformation from strings to strings, which is easier to compress by local optimization methods.
- An important property of the transformation is: if $T[k] = T^{bwt}[i]$, then $T[k-1] = T^{bwt}[LF(i)]$, where
 - $LF(i) = C[T^{bwt}[i]] + Occ(T^{bwt}[i], i).$
 - *C*[*c*] is the total number of text characters which are alphabetically smaller than *c*.
 - Occ(c, i) is the number of occurrences of character c in the prefix T^{bwt}[1, i].
- This property permits navigating the text T backwards.

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Succinct full-text self-indexes

Wavelet tree

- The original FM-index solves Occ by storing some directories over S and compressing S. To give constant-time access to S they require exponential space in σ.
- The wavelet tree *wt*(*S*) built on *S* is a binary tree, built on the alphabet symbols, such that the root represents the whole alphabet and each node has the information telling which of its characters belongs to the left/right child.

(日)

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Succinct full-text self-indexes

Wavelet tree

- The original FM-index solves Occ by storing some directories over S and compressing S. To give constant-time access to S they require exponential space in σ.
- The wavelet tree wt(S) built on S is a binary tree, built on the alphabet symbols, such that the root represents the whole alphabet and each node has the information telling which of its characters belongs to the left/right child.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Wavelet tree

González, Navarro Statistical Encoding of Succinct Data Structures

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

> < E</p>

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Wavelet tree

Image: A image

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Wavelet tree

> < ≣>

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Wavelet tree

González, Navarro Statistical Encoding of Succinct Data Structures

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Relationship between T^{bwt} and T

We could encode S = bwt(T) within $nH_k(S) + o(n \log \sigma)$ bits, but how this relates to $nH_k(T)$?

Lemma

Let S = bwt(T), where T[1, n] is a text over an alphabet of size σ . Then $H_1(S) \le 1 + H_k(T) \log \sigma + o(1)$ for any $k < (1 - \epsilon) \log_{\sigma} n$ and any constant $0 < \epsilon < 1$.

(a)

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Relationship between T^{bwt} and T

Application

- We can get at least the same results of the Run-Length FM-Index by compressing bwt(T) using our structure.
- We can implement the original FM-index $(5nHk(T) + O(n\sigma \log \log n / \log_{\sigma} n + (\sigma/e)^{\sigma+3/2}n^{\gamma} \log_{\sigma} n \log \log n)$ bits) using $nH_k(T) \log \sigma + n + o(n)$ bits.

(I)

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Outline

- Background
 - Motivation
 - The k-th order empirical entropy
 - Statistical encoding
- 2 Entropy-bound succinct data structure
 - Idea
 - Data structures
 - Decoding Algorithm
 - Space requirement
 - Supporting appends
- 3 Application to full-text indexing
 - Succinct full-text self-indexes
 - The Burrows-Wheeler Transform
 - The wavelet tree

(日)

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Relationship between wt(S) and S

- wt(S) takes $nH_0 + o(n \log \sigma)$ bits of space and permits answering Occ queries in time $O(\log \sigma)$
- Many FM-index variants build on the wavelet tree:
 - SSA takes $nH_0 + o(n \log \sigma)$ bits of space
 - RLFM-index takes $nH_k \log \sigma + o(n \log \sigma)$
 - AF-FM-index takes $nH_k + o(n \log \sigma)$
- In all cases the bitmaps of the wt(S) are compressed to their H_0 , but we can now compress them to H_k .

 Is k-th order entropy preserved across a wavelet tree? (it is for k = 0) 26

k

Succinct full-text self-indexes The Burrows-Wheeler Transform The wavelet tree

Lemma

The ratio between $H_k(wt(S))$ and $H_k(S)$, can be at least $\Omega(\log k)$. More precisely, $H_k(wt(S))/H_k(S)$ can be $\Omega(\log k)$ and $H_k(S)/H_k(wt(S))$ can be $\Omega(n/(k \log n))$.

Consequence

Applying our structure over the bitmaps of the wavelet tree does not perfectly translate into $nH_k(S)$ overall space, as there is a penalty factor of at least *k* in the worst case. But in the best, it can be much better than $nH_k(S)$.

Summary

Summary

- We presented a scheme based on k-th order modeling plus statistical encoding to convert any succinct data structure on sequences into a compressed data structure.
- This simplifies and slightly improves previous work.
- We presented a scheme to append symbols to the original sequence within the same space complexity and with constant amortized cost per appended symbol.
- We found relationships between the entropies of two fundamental structures used for compressed text indexing

Summary

Summary

- We presented a scheme based on k-th order modeling plus statistical encoding to convert any succinct data structure on sequences into a compressed data structure.
- This simplifies and slightly improves previous work.
- We presented a scheme to append symbols to the original sequence within the same space complexity and with constant amortized cost per appended symbol.
- We found relationships between the entropies of two fundamental structures used for compressed text indexing

Summary

Summary

- We presented a scheme based on k-th order modeling plus statistical encoding to convert any succinct data structure on sequences into a compressed data structure.
- This simplifies and slightly improves previous work.
- We presented a scheme to append symbols to the original sequence within the same space complexity and with constant amortized cost per appended symbol.
- We found relationships between the entropies of two fundamental structures used for compressed text indexing.

(日)

Summary

Summary

- We presented a scheme based on k-th order modeling plus statistical encoding to convert any succinct data structure on sequences into a compressed data structure.
- This simplifies and slightly improves previous work.
- We presented a scheme to append symbols to the original sequence within the same space complexity and with constant amortized cost per appended symbol.
- We found relationships between the entropies of two fundamental structures used for compressed text indexing.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Summary

Future work

Making our structure fully dynamic

- Better understanding how the entropies evolve upon transformations such *bwt* or *wt*.
- Testing our structure in practice.
- Currently working on another way to solve the same problem. That would permit full dynamism using recent work (see next talk).

Summary

Future work

- Making our structure fully dynamic
- Better understanding how the entropies evolve upon transformations such *bwt* or *wt*.
- Testing our structure in practice.
- Currently working on another way to solve the same problem. That would permit full dynamism using recent work (see next talk).

Summary

Future work

- Making our structure fully dynamic
- Better understanding how the entropies evolve upon transformations such *bwt* or *wt*.
- Testing our structure in practice.
- Currently working on another way to solve the same problem. That would permit full dynamism using recent work (see next talk).

Summary

Future work

- Making our structure fully dynamic
- Better understanding how the entropies evolve upon transformations such *bwt* or *wt*.
- Testing our structure in practice.
- Currently working on another way to solve the same problem. That would permit full dynamism using recent work (see next talk).

Summary

Thank you!!

González, Navarro Statistical Encoding of Succinct Data Structures

▶ < ≣ >