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@ Finding transcription factor binding sites can
tell us about the cells regulatory network.
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Motif Finding

Transcription factor
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. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag

. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga

. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag
. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacageca
. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta

. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Given p sequences, find the most mutually similar
length-k subsequences, one from each sequence:

argmin Z dist(s;, s;)
S1,..-,8p i<:j
dist(si,sj) = Hamming distance between s; and s;.

Hundreds of papers, many formulations (Tompa05)



Graph Formulation

e For p sequences, complete p-partite graph.
e Node for each sliding window of length k.

e Weight on edge (u,v) = dist(u,v) = # of differences between
subsequences u and v.

gctgttaaTTATCCGGGGTAtcttagga

Goal: Choose one node
from each part to
minimize weight of the
induced subgraph.




Hardness

e NP-hard (Wang+94, Akutsu+00).

e General distance measure = inapproximatible
within O(|V|) = # nodes in the graph
(Chazelle+04).

e Triangle inequality = constant-factor
approximation (Bafna+97).

e Interested in provably optimal solutions.



Integer Programming Formulation

* Binary variables x, for each node

* Binary variables xuv for each edge

Minimize E: Wy Ly

{u,v}€eFE
. Z Ty = 1 for every part |
uev, (IP1)
2. Z Typ = Ty for every part j, node v

ueV;
(Zaslavsky & Singh, 05)



Problem: Instances are Huge

205,146 to 16,637,889 variables

(For the reasonably sized instances in our test set)

Goal: Can we exploit features of the instances
to reduce sizes (or get better formulation)



New Formulation

@ Only small number of possible edge weights, < window length.
@ Dont care which edge is chosen, only that correct cost is paid.

= Merge edges that have same cost; vastly reduce # of variables.




Merging Edges

v.

Binary variables:
@ Xu on the nodes.

@ Yujc for each node u, position j not containing u, and weight c.

Idea: Yujc = 1 if we choose an edge of weight ¢ between node u
and position j.



Reduced # Variables

e N = # nodes per position
e k = length of window = # of possible edge weights - 1

SN

N edge variables 2N(k+1) edge-group
variables

()
() ()

= Need to ensure compatible
edge-groups are chosen. K << N



New Integer Program

o‘(u'so
(IP2) X,
" sl
min 7 Z cie QQJ’
(’U,,j,C) ; q‘/'c"

Z Xy = Choose one node from each position.

ueV;

Z Yoo = N8 If we choose a node, choose a edge

c€D group next fto it.

Z Yoie 2 Yuje We can only choose an edge-group
S that “contains” a chosen node.

Xu/ YUJC = {O,].}



IP1 vs. IP2

Optimum IP2 = optimum IPI.

IP2 has a factor of

O(k/N) fewer variables, and k = motif length
N = sequnce length

O(k) more constraints than IP1.

k is fixed by transcription factor geometry; N
will grow as longer sequences are considered.

LP relaxation of IP2 is weaker than that of IPl.
=) Add constraints to make LP2 as tight as LPL.



Constraining Y Variables

Neighbors of a set of Y vars:

N(ujc) = {(v,i,c) : cost(u,v) = c}
N(Q) = U N(ujc)

Neighbors are compatible

é % For every set Q:
V; Z Yujc ~ Z G

(u,5,¢)€Q (v,3,¢)EN(Q)



Tightening LP2

Thm. If all constraints of the form  are
included, then the resulting LP has the same
optimum as LPl.

Thm (separation algorithm). There is a
polytime algorithm to find a violated constraint
of the form

= Despite exponential # of constraints,
new LP can be solved in polytime.



Testing Data Set

@ 39 families of E. coli transcription factors from
(Robison+98).

@ Binding sites found via various experimental
techniques.

@ 3 - 20 sequences of length > 300 in each family.
@ Length of motif ranges: 11 to 48

@ Up to 5,960 nodes in resulting graphs.



Formulation i1s Accurate

@ Test on real data.
@ Finds biologically relevant solutions.

@ Compare performance to state-of-the-art
probabilistic approach based on Gibbs
sampling.



Accuracy Comparisons

Real motif

False positives (FP)—7 (LTI «False negatives (FN)
Prediction NNy positives (TP)

Nucleotide level measure of
accuracy (Pevzner&Sze,00):

nPC = nTP / (nTP + nFN + )
Compares favorably with Gibbs

sampling strategy: plot our nPC
minus Gibbs nPC.

Transcription Factor



Timing Comparison

@ Speed up for LP2 + cutting planes to reach same
objective function as LP1.

® 10x faster is not uncommon.
® 1 case where LP1 is faster.

Results on 34 Transcription Factor Families

(green indicates LP1 did not finish in < 5 hours)



Conclusion

Able to find provably optimal solutions to real transcription
factor binding site discovery problems.

Large speed up by using bounded number of objective
function costs.

Finds as good or better motifs than other motif-finding
approaches.

Open: how to use triangle inequality and overlapping windows
to further shrink IP.
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Transcription Factor Family
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