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Finding transcription factor binding sites can 
tell us about the cell’s regulatory network.



Motif Finding

Given p sequences, find the most mutually similar 
length-k subsequences, one from each sequence:

dist(si,sj) = Hamming distance between si and sj.

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag
2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga
3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag
4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca
5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Transcription factor

argmin
s1,...,sp

∑

i<j

dist(si, sj)

Hundreds of papers, many formulations (Tompa05)



Graph Formulation

sequence

gctgttaaTTATCCGGGGTAtcttagga

• For p sequences, complete p-partite graph.

• Node for each sliding window of length k.

• Weight on edge (u,v) = dist(u,v) = # of differences between 
subsequences u and v.

Goal: Choose one node 
from each part to
minimize weight of the 
induced subgraph.

Vj



Hardness

• NP-hard (Wang+94, Akutsu+00).

• General distance measure ⇒ inapproximatible 
within O(|V|) = # nodes in the graph 
(Chazelle+04).

• Triangle inequality ⇒ constant-factor 
approximation (Bafna+97).

• Interested in provably optimal solutions.



Integer Programming Formulation

• Binary variables xu for each node

• Binary variables xuv for each edge
xu

xv
Vj Vi

∑

u∈Vj

xu = 1

∑

u∈Vj

xuv = xv

for every part j

for every part j, node v

1.

2.

Minimize
∑

{u,v}∈E

wuvxuv

(Zaslavsky & Singh, 05)

(IP1)



Problem: Instances are Huge

(For the reasonably sized instances in our test set)

205,146 to 16,637,889 variables

Goal: Can we exploit features of the instances 
to reduce sizes (or get better formulation)



New Formulation
Only small number of possible edge weights, ≤ window length.

Don’t care which edge is chosen, only that correct cost is paid.

➡ Merge edges that have same cost; vastly reduce # of variables.



Merging Edges

Binary variables:
Xu on the nodes.
Yujc for each node u, position j not containing u, and weight c.

Idea: Yujc = 1 if we choose an edge of weight c between node u 
and position j.
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Reduced # Variables

2N(k+1) edge-group 
variables 

N2 edge variables

k << N

• N = # nodes per position
• k = length of window = # of possible edge weights - 1

➡ Need to ensure compatible 
edge-groups are chosen.



New Integer Program

min
1

2

∑

(u,j,c)

cYujc

Choose one node from each position.

If we choose a node, choose a edge 
group next to it.

We can only choose an edge-group 
that “contains” a chosen node.

∑

c∈D

Yujc = Xu

∑

u∈Vj

Xu = 1

∑

v∈Vj :

dist(u,v)=c

Yvic ≥ Yujc

Xu u
Yuj0

Yuj2z
y

v

Xu, Yujc ∈ {0,1}

(IP2)



IP1 vs. IP2
Optimum IP2 = optimum IP1.

IP2 has a factor of
O(k/N) fewer variables, and
O(k) more constraints than IP1.

k is fixed by transcription factor geometry; N 
will grow as longer sequences are considered.

LP relaxation of IP2 is weaker than that of IP1.
➡ Add constraints to make LP2 as tight as LP1.

k = motif length
N = sequnce length



Constraining Y Variables

Vi Vj

N(ujc) = {(v,i,c) : cost(u,v) = c}
N(Q) = ∪ N(ujc)

Yujc

For every set Q:∑

(u,j,c)∈Q

Yujc ≤
∑

(v,i,c)∈N(Q)

Yvic

u

(✳)

Neighbors of a set of Y vars:
v

Neighbors are compatible



Tightening LP2
Thm. If all constraints of the form (✳) are 
included, then the resulting LP has the same 
optimum as LP1.

Thm (separation algorithm). There is a 
polytime algorithm to find a violated constraint 
of the form (✳) .

⇒ Despite exponential # of constraints, 
new LP can be solved in polytime.



Testing Data Set

39 families of E. coli transcription factors from 
(Robison+98).

Binding sites found via various experimental 
techniques.

3 - 20 sequences of length ≥ 300 in each family.

Length of motif ranges: 11 to 48

Up to 5,960 nodes in resulting graphs.



Formulation is Accurate

Test on real data.

Finds biologically relevant solutions.

Compare performance to state-of-the-art 
probabilistic approach based on Gibbs 
sampling.



Accuracy Comparisons

Nucleotide level measure of 
accuracy (Pevzner&Sze,00):

nPC = nTP / (nTP + nFN + nFP)

Compares favorably with Gibbs 
sampling strategy: plot our nPC 
minus Gibbs nPC.

Real motif

Prediction
False positives (FP) False negatives (FN)

True positives (TP)
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Fig. 4: Difference between nPC values ob-
tained using the ILP approach and Gibbs
Motif Sampler [20]; data sets with identical
motifs are omitted. Bars above zero indi-
cate that ILP performs better.

Each bar in the chart measures the
difference in nPC between the ILP
approach and Gibbs Motif Sampler,
omitting those transcription factor
datasets for which the found motifs
are identical. Of the 30 problems for
which the integral optimal was found
using LP2, the sum-of-pairwise ham-
ming distances measure more accu-
rately identifies the biologically known
motif in seven cases, with nPC 0.11
better on average. In 20 cases, the two
methods find equally good solutions.
In the remaining 3 cases, Gibbs sam-
pling does better, with nPC 0.08 bet-
ter on average. Since the Gibbs sampling approaches have comparable perfor-
mance to other stochastic motif finding methods [21] and most combinatorial
methods are restricted by the lengths of the motifs considered, our ILP frame-
work provides an effective alternative approach for identifying DNA sequence
motifs.

6 Conclusions

We introduced a novel ILP for the motif finding problem that works well in prac-
tice. There are many interesting avenues for future work. While the underlying
graph problem is similar to that of [4, 9], one central difference is that the edge
weights satisfy the triangle inequality. In addition, edge weights in the graph
are not independent, as each node represents a subsequence from a sliding win-
dow. Incorporating these features into the ILP may lead to further advances in
computational methods for motif finding. It would also be useful to extend the
basic formulation presented here to find multiple co-occurring or repeated mo-
tifs (as supported by many widely-used packages). Finally, we note that graph
pruning and decomposition techniques (e.g., [16, 23]) may allow mathematical
programming formulations to tackle problems of considerably larger size.

Acknowledgments. M.S. thanks the NSF for PECASE award MCB-0093399
and DARPA for award MDA972-00-1-0031.
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Timing Comparison
Speed up for LP2 + cutting planes to reach same 
objective function as LP1.
10x faster is not uncommon.
1 case where LP1 is faster.

Transcription Factor Family
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Fig. 3: (a) Speed-up factor of LP2 over LP1. A triangle indicates problems for which
LP1 did not finish in less than five hours. An asterisk (far right) marks the problem
for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2 (log scale). (c) Ratio of matrix sizes for LP2 to LP1.

nagC five. Running times reported in Fig. 3(b) are the sum of the initial solve
times and of all the iterations. Fig. 3(c) plots (size of LP2)/(size of LP1). As
expected, the size of the constraint matrix is typically smaller for LP2. While in
four cases the matrix for LP2 is larger, often it is < 50% the size of the matrix
for LP1.

When comparing the running times of LP2 with those of LP1, the speed-up
factor is computed as min{primal dualopt LP1, dual primalopt LP1}/LP2,
that is, using the better running time for LP1. For all but one of the datasets,
a significant speed-up when using LP2 is observed, and an order of magnitude
speed-up is common, as shown in Fig. 3(a). For nine problems, while LP2 was
solved, neither simplex variant completed in < 5 hours when solving LP1. For
these problems, the timing for LP1 was set at five hours, giving a lower bound on
the speed up. For one problem, cytR, the reverse was true and LP2 did not finish
within five hours, while LP1 successfully solved the problem. For this dataset,
the timing for LP2 was taken to be five hours, giving an upper bound.

We also compared the performance of our approach, measured by the nu-
cleotide performance coefficient (nPC ) [21], in identifying existing transcrip-
tion factor binding sites to that of Gibbs Motif Sampler [20]. The nPC mea-
sures the degree of overlap between known and predicted motifs, and is de-
fined as nTP/(nTP + nFN + nFP ), where nTP, nFP, nTN, nFN refer to
nucleotide level true positives, false positives, true negatives and false nega-
tives respectively. We compare the nPC values for the two methods in Fig. 4.

Transcription Factor Family
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Fig. 3: (a) Speed-up factor of LP2 over LP1. A triangle indicates problems for which
LP1 did not finish in less than five hours. An asterisk (far right) marks the problem
for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2 (log scale). (c) Ratio of matrix sizes for LP2 to LP1.

nagC five. Running times reported in Fig. 3(b) are the sum of the initial solve
times and of all the iterations. Fig. 3(c) plots (size of LP2)/(size of LP1). As
expected, the size of the constraint matrix is typically smaller for LP2. While in
four cases the matrix for LP2 is larger, often it is < 50% the size of the matrix
for LP1.

When comparing the running times of LP2 with those of LP1, the speed-up
factor is computed as min{primal dualopt LP1, dual primalopt LP1}/LP2,
that is, using the better running time for LP1. For all but one of the datasets,
a significant speed-up when using LP2 is observed, and an order of magnitude
speed-up is common, as shown in Fig. 3(a). For nine problems, while LP2 was
solved, neither simplex variant completed in < 5 hours when solving LP1. For
these problems, the timing for LP1 was set at five hours, giving a lower bound on
the speed up. For one problem, cytR, the reverse was true and LP2 did not finish
within five hours, while LP1 successfully solved the problem. For this dataset,
the timing for LP2 was taken to be five hours, giving an upper bound.

We also compared the performance of our approach, measured by the nu-
cleotide performance coefficient (nPC ) [21], in identifying existing transcrip-
tion factor binding sites to that of Gibbs Motif Sampler [20]. The nPC mea-
sures the degree of overlap between known and predicted motifs, and is de-
fined as nTP/(nTP + nFN + nFP ), where nTP, nFP, nTN, nFN refer to
nucleotide level true positives, false positives, true negatives and false nega-
tives respectively. We compare the nPC values for the two methods in Fig. 4.

(green indicates LP1 did not finish in ≤ 5 hours)



Conclusion

• Able to find provably optimal solutions to real transcription 
factor binding site discovery problems.

• Large speed up by using bounded number of objective 
function costs.

• Finds as good or better motifs than other motif-finding 
approaches.

• Open: how to use triangle inequality and overlapping windows 
to further shrink IP.
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Times & Sizes

Transcription Factor Family
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Fig. 3: (a) Speed-up factor of LP2 over LP1. A triangle indicates problems for which
LP1 did not finish in less than five hours. An asterisk (far right) marks the problem
for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2 (log scale). (c) Ratio of matrix sizes for LP2 to LP1.

nagC five. Running times reported in Fig. 3(b) are the sum of the initial solve
times and of all the iterations. Fig. 3(c) plots (size of LP2)/(size of LP1). As
expected, the size of the constraint matrix is typically smaller for LP2. While in
four cases the matrix for LP2 is larger, often it is < 50% the size of the matrix
for LP1.

When comparing the running times of LP2 with those of LP1, the speed-up
factor is computed as min{primal dualopt LP1, dual primalopt LP1}/LP2,
that is, using the better running time for LP1. For all but one of the datasets,
a significant speed-up when using LP2 is observed, and an order of magnitude
speed-up is common, as shown in Fig. 3(a). For nine problems, while LP2 was
solved, neither simplex variant completed in < 5 hours when solving LP1. For
these problems, the timing for LP1 was set at five hours, giving a lower bound on
the speed up. For one problem, cytR, the reverse was true and LP2 did not finish
within five hours, while LP1 successfully solved the problem. For this dataset,
the timing for LP2 was taken to be five hours, giving an upper bound.

We also compared the performance of our approach, measured by the nu-
cleotide performance coefficient (nPC ) [21], in identifying existing transcrip-
tion factor binding sites to that of Gibbs Motif Sampler [20]. The nPC mea-
sures the degree of overlap between known and predicted motifs, and is de-
fined as nTP/(nTP + nFN + nFP ), where nTP, nFP, nTN, nFN refer to
nucleotide level true positives, false positives, true negatives and false nega-
tives respectively. We compare the nPC values for the two methods in Fig. 4.


