Reconstructing Repeat-Annotated Phylogenetic Trees

Firas Swidan

Michal Ziv-Ukelson

Ron Y. Pinter

Firas Swidan, Wednesday 5th July, 2006

Reconstructing Repeat-Annotated Phylogenetic Trees

Overview

On Thieves

Evolution

Evolution

On Thieves

A full version is to appear in JCB and can be accessed through http://magicmapping.sourceforge.net/download/repeatPhylos.pdf

On Thieves

Thieves

Inspectors

Candidates

Footprints

Thief found

Evolution

On Thieves

What is a thief?

What is a thief?

Firas Swidan, Wednesday 5th July, 2006

Reconstructing Repeat-Annotated Phylogenetic Trees

What is a thief?

Evolution and thieves

On Thieves	Thie
♦ Thieves	
Inspectors	
Candidates	
Footprints	
Thief found	
Evolution	

Thief = Change!

Evolution and thieves

On Thieves

Thieves

- Inspectors
- Candidates
- Footprints
- Thief found
- Evolution

Thief = Change!

Candidates

- On Thieves
- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- Evolution

Candidates

- On Thieves
- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- Evolution

Footprints

- **On Thieves**
- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- **Evolution**

Footprints

- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- **Evolution**

Footprints

- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- **Evolution**

Thief found

- On Thieves
- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- **Evolution**

Thief found

- On Thieves
- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- **Evolution**

Thief found

- On Thieves
- Thieves
- Inspectors
- Candidates
- Footprints
- Thief found
- **Evolution**

On Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- Results

Evolution

Recontstructing ancestral genome order

Comparing *Xanthomonas campestris* pathovar *campestris*, ATCC 33913, and 8004.

MAGIC's result [Swidan et al., PLoS CB, 2006]

Firas Swidan, Wednesday 5th July, 2006

Recontstructing ancestral genome order

Comparing *Xanthomonas campestris* pathovar *campestris*, ATCC 33913, and 8004.

MAGIC's result [Swidan et al., PLoS CB, 2006]

Firas Swidan, Wednesday 5th July, 2006

Recontstructing ancestral genome order

Comparing *Xanthomonas campestris* pathovar *campestris*, ATCC 33913, and 8004.

MAGIC's result [Swidan et al., PLoS CB, 2006]

Mechanism

On Thieves

Evolution

♦ Example

♦ Mechanism

Example (cont)

Results

Recombinations (homologous and illegitimate) are induced by repeats [Kowalczykowski et al., 1994, Smith, 1989].

Mechanism

-		
LVO	11141	OD
		ОП
		~

- ♦ Example
- Mechanism
- Example (cont)
- Results

Recombinations (homologous and illegitimate) are induced by repeats [Kowalczykowski et al., 1994, Smith, 1989].

Mechanism

On Thieves

- Evolution
- ✤ Example
- Mechanism
- Example (cont)
- Results

Recombinations (homologous and illegitimate) are induced by repeats [Kowalczykowski et al., 1994, Smith, 1989].

Example with repeats

MAGIC's result [Swidan et al., PLoS CB, 2006]

Firas Swidan, Wednesday 5th July, 2006

Example with repeats

MAGIC's result [Swidan et al., PLoS CB, 2006]

Firas Swidan, Wednesday 5th July, 2006

On	Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- ♦ Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- ♦ Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- ♦ Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- ♦ Results

Single leaf case:

- Uniqueness proof.
- Reconstruction in linear-time complexity.

Multiple leaf case:

- Uniqueness proof.
- Reconstruction in linear-time complexity.

On Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- ♦ Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

- Example
- Mechanism
- Example (cont)
- Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

- ♦ Example
- Mechanism
- Example (cont)
- ✤ Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

- ♦ Example
- Mechanism
- Example (cont)
- ✤ Results

- Uniqueness proof.
- Reconstruction in linear-time complexity.
- Multiple leaf case:
 - Uniqueness proof.
 - Reconstruction in linear-time complexity.

On Thieves

Evolution

End

