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Common k-Substring Problem

• Given: A set of strings S1, S2, …, Sr and a
length k,

• Determine: If there is a string T of length k
that is a substring of each of S1, S2, …, Sr



Common k-Substring Problem
CTTGCTTAGTCTTTTGCTGTGTGCTAATGTTTCGAAATGT
CTCAGCTAATCTGCGAGAGCTTCAGGGGCGACAATCTACG
AGTGCATACAGACTCTAATACCAAATTGTGGAACACCATC
TGGATAGACTATTCCCCGTTATTACCGCTAATGGAGTCGT
CAGGAATATGTATCTCATACCCCGGCTAATAAGGGTTAGA
ACAAAAGGAAGCGGCGGCTTGACGTGTACCTAATGATCGT
TCTAATGGAACGGGGCACTTCGGCTAAATACAGGGAGAGT
TGTCACATCTAATTTCTACCTTACGACCGTCTCGAGTAGC
TAAACTTGCACTAACCTAATTGTCTGGGTTTGGGAGAGCG
GGCATGCCCCGATGCTGTGTAGCCCTAATAGACCGGATAA



Common k-Substring Problem
CTTGCTTAGTCTTTTGCTGTGTGCTAATGTTTCGAAATGT
CTCAGCTAATCTGCGAGAGCTTCAGGGGCGACAATCTACG
AGTGCATACAGACTCTAATACCAAATTGTGGAACACCATC
TGGATAGACTATTCCCCGTTATTACCGCTAATGGAGTCGT
CAGGAATATGTATCTCATACCCCGGCTAATAAGGGTTAGA
ACAAAAGGAAGCGGCGGCTTGACGTGTACCTAATGATCGT
TCTAATGGAACGGGGCACTTCGGCTAAATACAGGGAGAGT
TGTCACATCTAATTTCTACCTTACGACCGTCTCGAGTAGC
TAAACTTGCACTAACCTAATTGTCTGGGTTTGGGAGAGCG
GGCATGCCCCGATGCTGTGTAGCCCTAATAGACCGGATAA



Common k-Substring in Random
Strings (CSRS) Problem

• Given: A random process P that generates
set of strings S1, S2, …, Sr and a length k,

• Find: The probability that there is a string T
of length k that is a substring of each of S1,
S2, …, Sr



History of the CSRS Problem

• Study began 20+ years ago, when Arratia &
Waterman examined the asymptotic behavior of
the length of the longest perfect alignment
between two random strings.

• Results to date offer good approximation when the
number of random strings is low, but poor
approximations when there are many random
strings in the problem instance.



New Approximations to the
CSRS Problem

• We present 2 new approximations for the
CSRS problem, aimed specifically at
being accurate when there are many
random strings:

1. Independent Words Model
2. Double Independence Model



Independent Words Model

• Independent Words Assumption:
Different k-substrings occur independently
of each other in a random string



Independent Words Model

• Resulting approximation:

• Notation:
– Probability of the string w occurring in a random string

– Probability that at least one string of length k occurs as a
common substring to all the random strings



Independent Words Model

0.00990.01005698
0.01000.010077410

0.00980.00993466
0.00960.01001314
0.00880.0107112
0.04950.050195810
0.04930.05007278
0.04900.04994676
0.04770.04971974
0.03860.0490182

Monte-Carlo Est.Indep. Words Approx.nr

Table 1: Approximations to CSRS for k = 6, in r random strings of
length n generated by a Bernoulli process.



Independent Words Model

• Time complexity: O(σk)
• Where σ is the size of the input alphabet

• Observation: We can reduce the time
complexity by grouping together strings that
have the same probability of occurrence in
random strings



Double Independence Model

• Assumption 1: Different k-substrings occur
independently of each other in  random
strings

• Assumption 2: The self-overlap structure of
a k-substring can be ignored when
calculating the probability that it occurs in a
random string



Double Independence Model

• Approach:
1. Define the composition for strings of length k

such that strings that share the same
composition have the same probability of
occurring in a random string

2. Enumerate every composition for strings of
length k.



Double Independence Model

• Resulting approximation:

• Notation:
– Set of all compositions for strings of length k

– Probability of occurrence for strings with composition γ

– Number of strings with the composition γ



Double Independence Model:
Bernoulli Process

• The Bernoulli composition of a string w is
the multiset γ of characters in w.
– Example: The composition of the string

ACCATA is γ = {A, A, A, C, C, T}



Double Independence Model:
Bernoulli Process

• The probability Pγ can be computed easily
• Enumeration of the compositions in     can be

accomplished with a simple recursive algorithm
• Number of strings with the composition γ given by

multinomial equation.



Double Independence Model:
Bernoulli Process

0.0104
0.0103
0.0101
0.0101
0.0107
0.0519
0.0514
0.0508
0.0500
0.0491

DIM Approx.

0.00990.01005698
0.01000.010077410

0.00980.00993466
0.00960.01001314
0.00880.0107112
0.04950.050195810
0.04930.05007278
0.04900.04994676
0.04770.04971974
0.03860.0490182

Monte-CarloIWM Approx.nr

Table 1: Approximations to CSRS for k = 6, in r random strings of
length n generated by a Bernoulli process.



Double Independence Model:
Bernoulli Process

• Time Complexity: O(kσ-1)

+  Running time polynomial in k
–  Less accurate than the Independent Words

Model



Double Independence Model:
Markov Process

• The 1st-order Markov composition of a
string w is the multiset γ of Markov
transitions between adjacent characters in w
and between the start state Λ and the first
character in w
– Example: The 1st-order Markov composition of

the string AACAT is γ = {(Λ→A), (A→A),
(A→C), (A→ T), (C→A)}



Double Independence Model:
Markov Process

• The 1st-order Markov composition of a
string can also be represented as a directed
multigraph.

– Example: The 1st-order Markov composition
graph of the string AACAT.



Double Independence Model:
Markov Process

• Pγ is easy to compute
• Challenge 1: Counting the number of

strings that share the Markov composition γ
• Challenge 2: Enumerating all the

compositions in



Double Independence Model:
Markov Process

• To count the number of strings with the
composition γ, we will count the number of
Eulerian trails on the Markov composition graph
for γ.

• Counting the number of Eulerian trails on a
directed multigraph is done with the BEST
theorem [van Aardenne-Ehrenfest and de Bruijn,
1951].



Double Independence Model:
Markov Process

• But: some distinct Eulerian trails
correspond to the same string,



Double Independence Model:
Markov Process

• Result: The number of strings with the composition
γ is defined by

• Notation:
– The number of Eulerian trails on the Markov composition graph γ

– The number of edges going from u to v in the Markov composition
graph



Double Independence Model:
Markov Process

0.0148
0.0128
0.0113
0.0105
0.0088
0.0674
0.0607
0.0549
0.0522
0.0497
DIM

0.00990.00994948
0.00990.009866610

0.00990.00993046
0.00980.01011174
0.00730.0088102
0.04930.049482810
0.04930.04946338
0.04860.04934106
0.04740.04931754
0.03880.0495172

Monte-CarloDIM w. Correctionnr

Table 1: Approximations to CSRS for k = 6, in r random strings of
length n generated by a 1st-order Markov process.



Generalizations

• The Models can also be modified to handle
modifications to the original CSRS problem,
including:
– Searching for common substrings in a subset of

the random strings
– Allowing mismatches in the substring

occurrences within the random strings



Future Work

• Providing theoretical bounds on the error
introduced by the approximations

• Improving the quality of the approximation
when the number of strings is low

• Developing new models with weaker
assumptions
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