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At CPM 2005…

Our paper: simple PTAS for motif finding
requires very slow runtimes to guarantee
good approximation ratio

As much as                           runtime, when
n = # of sequences, m = sequence length,
l = motif length, for worst-case motifs we
presented.

Ming Li asked Ian Harrower, “What about
average case motifs?”



CPM 06: good motifs are easy to find.

Strong motifs (for many definitions of strong)
can be approximated efficiently.

Can also be found exactly in reasonably
efficient runtimes.

Instead of requiring                          runtime to
guarantee 1+ε approximation ratios, we only
need runtime with a logarithm in exponent.

All interesting motifs are strong.
Motif-finding is easier than thought.



The real problem:
Given a collection of genes, all “controlled” by

same protein, find out how that control works.
Simplest form: in DNA “before” each gene, a

common element present.  Find that element.

Motif finding:
abstraction of real problem



An abstraction

Consensus-Pattern:
 Given n sequences, si, each of length m, over

finite alphabet ∑, and a parameter l.
 Find: Sequence x of length l (motif centre),

and subsequence xi of length l from each
sequence si with minimum Hamming distance
from x.

 Minimize sum of Hamming distances
between all xi and x, the motif centre.



Example of Consensus-Pattern

Sequences:
AGATTACATAGCATATGGGACATAGGATT

ACATAGGTATAGAGAAAAAGCCCCAGATA

GTATTTTACAACGGGAGAATTTTCAAGAT

TTAGTATATTTTTAACAACGTTAGTATTA

GTATTACCTAGTAGGGACACCCCATATTA

ATATTAGGATTCATATGGATACCATATGA

Motif centre: ACATAG



A family of heuristics

 Suggest a set X of motif centre choices
 Look for best match in each sequence to

each member of X.
 Return member of X with best total score.
Look-up phase takes O(nml) time.
If X is polynomial in size, heuristic is poly-time.
(Note: the reason this problem isn’t trivial is that

the motif centre may be a subsequence of
none of the input sequences!)



A provably good set X.

A PTAS for this problem:
 Look at all sets of r subsequences of length l

from the input set.
 X = {consensus sequences of r-element

sets}.  [Break ties arbitrarily]
For constant r, a poly-time algorithm:

O((nm)(r+1)l), because |X| = O((nm)r)
Theorem [Li, Ma, Wang]:

An O(                   )-approximation algorithm



Is this a useful theorem?

In some sense, yes:
 Sampling-based algorithms work well for

Consensus-Pattern.  Maybe this is why?
In a very real sense, no.
 To obtain 1+ε-approximation algorithm, need

sample size r =              , which gives an
algorithm with runtime.

 That’s pretty terrible.



Things get worse…

We showed [Brejova, B, Harrower, Lopez-Ortiz,
Vinar 05]:

For any value of r, there exists an instance of
the problem for which the approximation ratio
of a very close relative of the sampling PTAS
is Ω(                ).

But people actually use sampling-based
algorithms, even simpler than the PTAS!
Huh?



A first definition for strong motifs

For simplicity, assume binary alphabet.
Motif instances: best matches to consensus.
Columns of the motif: the ith position of each of

the m motif instances.
Consistently strong motif: every column of the

motif is at least .5+ε fraction 0’s, for some
nonnegative constant ε.

Our bad instances had strength .5+1/



A simplification and some probability

Can restrict attention to seeing what happens
when the input are only the l-length motifs.

(The problem is trivial then, but the PTAS may
not pick the right motif centre.)

First moment principle:
if we analyze the performance of a random
sample, some sample does at least that well.

We’re enumerating all samples.



Sampling with replacement

Consider a 1-column strong motif, with pn
zeros and (1-p)n ones.  (p well above 0.5)

Random sampling with replacement:
like flipping a biased coin with heads
probability p r times.
Does it come up heads more than tails?



Weak motifs and strong ones

In our CPM 05 paper, we showed that for weak
motifs (where p =                      ), the
probability of more tails than heads is at least
a constant.

With strong motifs, probability of more tails
than heads at most (4p(1-p))r/2 = αr

Converges to zero exponentially fast as a
function of r.



How to show that?

This uses the Hoeffding bound
 Like a Chernoff bound, but overall probability

of the bad event is based on the probability of
each individual bad event occurring.

What does this give us?
 The column has probability at most αr of

being guessed wrong.
Is that enough to get us a good theorem?



An ok theorem, but not great.

Suppose m columns, all with exactly pn zeros.
Cost of getting column right: (1-p)n (# of ones)
Cost of getting it wrong: pn (# of zeros).
Expected cost: at most αrpn  +(1- αr)(1-p)n.
Expected approximation ratio: at most

1+αr(p/(1-p)).
Converges to 1 exponentially in r (for weak

motifs, it converges like                   )



What’s not great about that?

Consistently strong: at least p fraction of zeros
in each column.

What if more than p?
Lower probability of getting the column wrong,

but approximation ratio gets very bad.
Must trade off two probabilities.  Is that ok?
Yes: for every p, there exists an r such that

1+αr(p/(1-p)) is decreasing once the sample
size is r.



Full statement of theorem

 For consistently strong motifs of minimum
strength p, there exists an r such that as
sample size grows past r, approximation ratio
converges to 1 exponentially fast.

Another fun theorem: if the expected number of
mistaken columns is less than 1, then the
PTAS will find the optimum.

Details in the paper.



What about random motifs?

Random motif of fixed content: a p fraction of
the entries in the motif are zeros and a 1-p
fraction are ones.

Score of the optimum is not (1-p)nl, though!
Some columns may have more ones than

zeros!
Also, we might get a bad instance of the

problem, with lots of columns very close to
50% zeros and 50% ones.



A slight modification to the PTAS

Allow only one sample from each sequence.
Hoeffding bound still applies here. Shown using

machinery by Panconesi and Srinivasan on
applying Chernoff-style bounds to non-
independent samples.

(Their paper should also be more well known.)



Put this together

Bad instances: at least αr/2 columns with more
ones than zeros.

They are exponentially rare.
Good instances: fewer bad columns.
On good instances, expected approximation

ratio converges to 1 exponentially fast.
On bad instances, ratio at most 2.
Put together: expected approximation ratio

converges to 1 exponentially fast as r grows.



One last kind of strength

Random motifs of expected strength p.  Every
entry in motif instances comes from
independent coin flip with probability p of
getting a zero bounded above .5

Can think of this in two steps:
1. Pick the number of zeros in the instance
2. Distribute them arbitrarily across all nl

places for them.
Bad instances result from both steps.



Bad instances for this

Not enough zeros: If there are fewer than
(.5+p)/2 zeros, it’s a bad instance.

Bad distribution of zeros: If there are too many
columns with more ones than zeros, it’s a
bad instance.

Then, same sort of probabilistic machinery as
before.



Overall, our results

For a variety of definitions of strong, the simple
PTAS described by Li, Ma and Wang gives
performance much better (either in
expectation or in guarantee) than is provable
for general motifs.

Approximation guarantee converges to 1
exponentially fast as a function of the sample
size r in all cases.

(One bad definition of “strong” is in the paper.)



Some last comments

 We computer scientists should be learning
more probability than is in standard
randomized algorithms textbooks.
Both the Hoeffding bound and the Panconesi
and Srinivasan paper are profoundly useful.

 Probably this can be extended to other
models of motif finding.  In general, motif
finding is a much easier problem in practice
than in theory.
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