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Global Pointers = Evil

Introduced mainly for trees [Jacobson, 1989].
Applied to Strings:

binary [Jacobson, 1989], and [Clark and Munro, 1996].
larger alphabet [Grossi et al., 2003; Golynski et al., 2006].

Applied to Trees:
cardinal [Benoit et al., 1999].
ordinal [Munro and Raman, 2001].
partitioned [Geary et al., 2004].
labeled [Ferragina et al., 2005].
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Example: Strings

String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) =

string_select(1, 2) =
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string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) = 1
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Example: Strings

String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) = 1

string_select(1, 2) = 8
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(Unlabeled) Trees

Tree Succinct Encodings support

navigation operators: child(x , r),
depth(x), leveled_ancestor(x , i);

ranking operators: tree_rank(x),
tree_select(r);

other useful ones: isanc(x , y),
childrank(x), degree(x),
nbdesc(x).

1

2

3

4

5

6

Notation: n nodes.
2n + o(n) bits, constant time.
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Labeled Trees

Labeled Tree Succinct Encodings support

labeltree_anc(α, x):
first α-ancestor of x ;

labeltree_desc(α, x):
first α-descendant of x ;

labeltree_child(α, x):
first α-child of x .

{a}

{b}

{e}

{c}

{d}

{e}

Notation: n nodes, σ labels.
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Space issues

Geary et al.’s encodings uses

n
(
lg σ + O(σ lg lg lg n/ lg lg n)

)
bits, for constant time.

Ferragina et al.’s encoding uses

2n lg σ + O(n) bits, for partial constant time.

Information theory suggests a lower bound of

n
(
2 + lg σ

)
bits.

Our encoding, in this particular case, uses:

n
(
lg σ + o(lg σ)

)
bits, for time O(lg lg σ).
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Binary Relations
(Multi-)Labeled Trees

Outline
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(Multi-)Labeled Trees
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Conjunctive Queries
Path Query Algorithm
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Binary Relations
(Multi-)Labeled Trees

What is a Binary Relation?

Consider a binary relation defined by:

n objects (the references to web-pages),

σ labels (the keywords),

t pairs from [n] × [σ] (the index).

σ







1 0 . . . 0 1
1 0
... (t ones)

...
0 1
0 1 . . . 1 0

︸ ︷︷ ︸

n
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Binary Relations
(Multi-)Labeled Trees

String Representation

We encode it as

one string ROWS on alphabet [σ] of length t ;

one binary string NEWCOLUMN of length n + t .

For instance:

ROWS = 1 3 2 3 1 2 3 1 3
NEWCOLUMN = 0 0 1 0 0 1 0 0 0 1 0 0 1

represents the binary relation R =
1 0 1 1
0 1 1 0
1 1 1 1

This uses
(
t lg σ + n+t

)
bits.
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Binary Relations
(Multi-)Labeled Trees

String Operations

rank, select and access on ROWS and NEWCOLUMN
rank, select and access on the rows of R.

For instance:

ROWS = 1 3 2 3 1 2 3 1 3
NEWCOLUMN = 0 0 1 0 0 1 0 0 0 1 0 0 1

R =
1 0 1 1
0 1 1 0
1 1 1 1

rank and select on columns are more complicated.
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Binary Relations
(Multi-)Labeled Trees

Operators on Binary Relations:

We propose two distinct encodings using
(
t × o(lg σ)

)

additional bits, which support

Access O(lg lg σ) O(lg lg σ);
rank on rows O(lg lg σ) O(lg lg σ lg lg lg σ);
select on rows O(1) O(lg lg σ);
rank on columns O

(
(lg lg σ)2

)
O(lg lg σ);

select on columns O(lg lg σ) O(1).

This is much better than O(lg n), using sorted arrays!
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Binary Relations
(Multi-)Labeled Trees

What’s a Multi-Labeled Tree?

A Multi-Labeled Tree is defined by:

n nodes,

σ labels,

t pairs from [n] × [σ].

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

It’s like a labeled tree, except that several labels
can be associated to each node.
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Binary Relations
(Multi-)Labeled Trees

Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.
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Binary Relations
(Multi-)Labeled Trees

Operators on Multi-Labeled Trees:

We propose an encoding using
(
t × o(lg σ)

)
additional bits,

which support

Operator select on preorder list and navigation operators
in constant time;

Operators rank and access on preorder list, and
labeltree_desc and labeltree_anc,
in time O(lg lg σ).

For simple labeled trees, space is
much better than [Geary] and [Ferragina].
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Conjunctive Queries
Path Query Algorithm

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9 10 11 12 13
1 2 3 4 9 11 13

R = {

Intersection of k sets computed in O(δk) searches,
where δ is the non-deterministic complexity.
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Conjunctive Queries
Path Query Algorithm

Time issues

Using Binary Search, the algorithms performs

O(δk lg n) comparisons

Using Doubling Search, the algorithms performs

O(δk lg(n/δk)) comparisons

We propose another search operator.

O(δk lg lg σ) comparisons

(Where n is the sum of the sizes of the arrays,
δ the non-deterministic complexity.)
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Conjunctive Queries
Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}

{b, c}

{e}

{c, e}

{b, d}

{b, c, d}

⇒ File System Search.

Jérémy Barbay , A. Golynski, J. I. Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Structures



Introduction
Our Results
Applications
Conclusion

Conjunctive Queries
Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}1

{b, c}2

{e}3

{c, e}4

{b, d}5

{b, c, d}6

⇒ File System Search.

Jérémy Barbay , A. Golynski, J. I. Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Structures



Introduction
Our Results
Applications
Conclusion

Conjunctive Queries
Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}1

{b, c}2

{e}3

{c, e}4

{b, d}5

{b, c, d}6

⇒ File System Search.

Jérémy Barbay , A. Golynski, J. I. Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Structures



Introduction
Our Results
Applications
Conclusion

Conjunctive Queries
Path Query Algorithm

Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {

This algorithm solves Path queries
in time O(δk lg lg σ).
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Summary

Succinct encodings improve space and time.

Labeled Trees use optimal space.

Adaptive “almost” as good as Non-Deterministic!

Future Work
Support for all labeled-based operators
at once on (multi-)labeled trees.
Other type of queries on trees (LCA).
Applications to algorithms on graphs.
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Encoding for Efficient Child Queries.

We still encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

but in a different order.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, the previous tree corresponds to:
LABELS = a, b, c, c, e, b, c, e, e, b, d
NODES = 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.
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From a File System to a Multi-Labeled Tree

“Music”

“Classical”

· · ·

“Pop Jazz”

· · ·

“Pop Rock”

· · ·

1 Music
2 Classical
3 Pop
4 Jazz
5 Rock

{1}

{2}

· · ·

{3,4}

· · ·

{3,5}

· · ·
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From a Multi-Labeled Tree to its Succinct Encoding

1 Music
2 Classical
3 Pop
4 Jazz
5 Rock

{1}

{2}

· · ·

{3,4}

· · ·

{3,5}

· · ·

· · · · · · · · ·

1 2 · · · 3 4 · · · 3 5 · · ·
0 1 0 1 · · · 0 0 1 · · · 0 0 1 · · ·

Jérémy Barbay , A. Golynski, J. I. Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Structures



Appendix

Main References
Efficient Child Queries
Technical Details
Entropy and Compression
Information Retrieval

Entropy and Compression

By replacing strings by label numbers, we reduce the
space usage.

By taking advantage of the frequencies of labels,
we can attain the entropy lower bound on a string.

But what is the entropy of an array, of a tree?
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Information Retrieval

Possible Extension:

In real applications, labels are strings.
For sub-string match, each query label corresponds to

a subtree in the suffix tree S of all lables;
i.e. an interval in the pre-order traversal of S.

Can we extend rank and select to intervals of labels?
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