Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents

Jérémy Barbay¹ A. Golynski¹ J. I. Munro¹ S. S. Rao²

¹David R. Cheriton School of Computer Science, University of Waterloo, Canada.

²Dept. of Theoretical Computer Science IT University of Copenhagen, Denmark.

July 2, 2006

Global Pointers = Evil

- Introduced mainly for trees [Jacobson, 1989].
- Applied to Strings:
 - binary [Jacobson, 1989], and [Clark and Munro, 1996].
 - larger alphabet [Grossi et al., 2003; Golynski et al., 2006].
- Applied to Trees:
 - cardinal [Benoit et al., 1999].
 - ordinal [Munro and Raman, 2001].
 - partitioned [Geary et al., 2004].
 - labeled [Ferragina et al., 2005].

Example: Strings

String Succinct Encodings support

- string_rank(α , x): nb. of α -occurrences before pos. x;
- string_select(α , r): position of r-th α -occurrence.

Example:

0	0	0	1	0	0	0	1	0	0

- string_rank(1,6) =
- string_select(1,2) =

Example: Strings

String Succinct Encodings support

- string_rank(α , x): nb. of α -occurrences before pos. x;
- string_select(α , r): position of r-th α -occurrence.

Example:

0	0	0	1	0	0	0	1	0	0

- string_rank(1,6) = 1
- string_select(1,2) =

Example: Strings

String Succinct Encodings support

- string_rank(α , x): nb. of α -occurrences before pos. x;
- string_select(α , r): position of r-th α -occurrence.

Example:

0	0	0	1	0	0	0	1	0	0

- string_rank(1,6) = 1
- string_select(1,2) = 8

(Unlabeled) Trees

Tree Succinct Encodings support

- navigation operators: child(x, r), depth(x), leveled_ancestor(x, i);
- ranking operators: tree_rank(x), tree_select(r);
- other useful ones: isanc(x, y), childrank(x), degree(x), nbdesc(x).

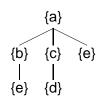
Notation: n nodes. 2n + o(n) bits, constant time.

Labeled Trees

Labeled Tree Succinct Encodings support

- labeltree_anc(α , x): first α -ancestor of x:
- labeltree_desc(α, x): first α-descendant of x;
- labeltree_child(α, x):
 first α-child of x.

Notation: n nodes, σ labels.



Space issues

- Geary et al.'s encodings uses
 - $n(\lg \sigma + \mathcal{O}(\sigma \lg \lg \lg n / \lg \lg n))$ bits, for constant time.
- Ferragina et al.'s encoding uses

$$2n \lg \sigma + \mathcal{O}(n)$$
 bits, for partial constant time.

- Information theory suggests a lower bound of $n(2 + \lg \sigma)$ bits.
- Our encoding, in this particular case, uses:

$$n(\lg \sigma + o(\lg \sigma))$$
 bits, for time $O(\lg \lg \sigma)$.

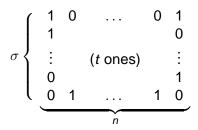
Outline

- Introduction
- Our Results
 - Binary Relations
 - (Multi-)Labeled Trees
- 3 Applications
 - Conjunctive Queries
 - Path Query Algorithm
- 4 Conclusion

What is a Binary Relation?

Consider a binary relation defined by:

- *n* objects (the references to web-pages),
- σ labels (the keywords),
- t pairs from $[n] \times [\sigma]$ (the index).



We encode it as

- one string *ROWS* on alphabet $[\sigma]$ of length t;
- one binary string *NEWCOLUMN* of length n + t.

For instance:

$$ROWS = 1 3 2 3 1 2 3 1 3$$

 $NEWCOLUMN = 0 0 1 0 0 1 0 0 1 0 0 1$

represents the binary relation
$$R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

We encode it as

- one string *ROWS* on alphabet $[\sigma]$ of length t;
- one binary string *NEWCOLUMN* of length n + t.

For instance:

$$ROWS = 1 3 2 3 1 2 3 1 3$$

 $NEWCOLUMN = 0 0 1 0 0 1 0 0 1 0 0 1$

represents the binary relation
$$R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

We encode it as

- one string ROWS on alphabet [σ] of length t;
- one binary string *NEWCOLUMN* of length n + t.

For instance:

$$ROWS = 1 3 2 3 1 2 3 1 3$$

 $NEWCOLUMN = 0 0 1 0 0 1 0 0 0 1 0 0 1$

represents the binary relation
$$R = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

We encode it as

- one string ROWS on alphabet [σ] of length t;
- one binary string *NEWCOLUMN* of length n + t.

For instance:

We encode it as

- one string ROWS on alphabet [σ] of length t;
- one binary string *NEWCOLUMN* of length n + t.

For instance:

String Operations

rank, select and access on ROWS and NEWCOLUMN rank, select and access on the rows of R.

For instance:

 ${\tt rank} \ {\tt and} \ {\tt select} \ {\tt on} \ {\tt columns} \ {\tt are} \ {\tt more} \ {\tt complicated}.$

4日 > 4周 > 4目 > 4目 > 目目 り9つ

String Operations

rank, select and access on ROWS and NEWCOLUMN rank, select and access on the rows of R.

For instance:

 ${\tt rank} \ {\tt and} \ {\tt select} \ {\tt on} \ {\tt columns} \ {\tt are} \ {\tt more} \ {\tt complicated}.$

4日 > 4周 > 4目 > 4目 > 目目 り9つ

Operators on Binary Relations:

We propose two distinct encodings using $(t \times o(\lg \sigma))$ additional bits, which support

```
\begin{array}{lll} \text{Access} & O(\lg\lg\sigma) & O(\lg\lg\sigma); \\ \text{rank on rows} & O(\lg\lg\sigma) & O(\lg\lg\sigma); \\ \text{select on rows} & O(1) & O(\lg\lg\sigma); \\ \text{rank on columns} & O((\lg\lg\sigma)^2) & O(\lg\lg\sigma); \\ \text{select on columns} & O(\lg\lg\sigma) & O(1). \end{array}
```

This is much better than $O(\lg n)$, using sorted arrays!

Outline

- Introduction
- Our Results
 - Binary Relations
 - (Multi-)Labeled Trees
- 3 Applications
 - Conjunctive Queries
 - Path Query Algorithm
- Conclusion

What's a Multi-Labeled Tree?

A Multi-Labeled Tree is defined by:

- n nodes.
- \bullet σ labels,
- t pairs from $[n] \times [\sigma]$.

{a} {b,c} {c,e} {b,c,e} | | | {e} {b,d} /eral labels

It's like a labeled tree, except that several labels can be associated to each node.

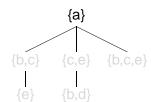
We encode it as

- one string LABELS on alphabet $[\sigma]$;
- one binary string **NODES** of length *t*;
- the tree structure in 2*n* bits.

For instance, our tree corresponds to:

LABELS =
$$a, b, c, e, c, e, b, d, b, c, e$$

NODES = $1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1$



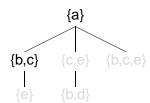
We encode it as

- one string LABELS on alphabet $[\sigma]$;
- one binary string **NODES** of length *t*;
- the tree structure in 2n bits.

For instance, our tree corresponds to:

LABELS =
$$a, b, c, e, c, e, b, d, b, c, e$$

NODES = $1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1$



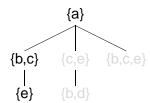
We encode it as

- one string LABELS on alphabet $[\sigma]$;
- one binary string **NODES** of length *t*;
- the tree structure in 2n bits.

For instance, our tree corresponds to:

LABELS =
$$a, b, c, e, c, e, b, d, b, c, e$$

NODES = $1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1$



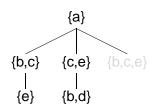
We encode it as

- one string LABELS on alphabet $[\sigma]$;
- one binary string **NODES** of length *t*;
- the tree structure in 2*n* bits.

For instance, our tree corresponds to:

LABELS =
$$a, b, c, e, c, e, b, d, b, c, e$$

NODES = $1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1$



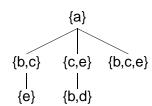
We encode it as

- one string LABELS on alphabet $[\sigma]$;
- one binary string **NODES** of length *t*;
- the tree structure in 2n bits.

For instance, our tree corresponds to:

LABELS =
$$a, b, c, e, c, e, b, d, b, c, e$$

NODES = $1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1$



Operators on Multi-Labeled Trees:

We propose an encoding using $(t \times o(\lg \sigma))$ additional bits, which support

- Operator select on preorder list and navigation operators in constant time;
- Operators rank and access on preorder list, and labeltree_desc and labeltree_anc, in time $O(\lg \lg \sigma)$.

For simple labeled trees, space is much better than [Geary] and [Ferragina].

Outline

- Introduction
- Our Results
 - Binary Relations
 - (Multi-)Labeled Trees
- 3 Applications
 - Conjunctive Queries
 - Path Query Algorithm
- 4 Conclusion

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α , go to 2; Else pick next α -object, go to 1.

 $R = \{$

Intersection of k sets computed in $O(\delta k)$ searches, where δ is the non-deterministic complexity.

3 4 9 10 11

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

R = {

3 4 9 10 11

The algorithm from [Barbay and Kenyon, 2002]:

- If $x = \infty$, exit;
- If k labels match, output x, pick next α -object, go to 1; **Else** pick next set α ;
- **Else** pick next α -object, go to 1.

Intersection of k sets computed in $O(\delta k)$ searches, where δ is the non-deterministic complexity.

1	2	3	5	6	1	8
	4	9	10	11	12	13
1	2	3	4	9	11	13

 $R = \{$

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

$$R = \{$$

Intersection of k sets computed in $O(\delta k)$ searches, where δ is the non-deterministic complexity.

13

3 4 9 10 11

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

		0	O	О	1	0
3	4	9	10	11	12	13
1	2	3	4	9	11	13

$$R = \{3$$

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α , go to 2; Else pick next α -object, go to 1.

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

1 2 3 5 6 7 8 3 4 9 10 11 12 13 1 2 3 4 9 11 13

 $R = \{3\}$

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

- If k labels match, output x, pick next α-object, go to 1; Else pick next set α;
- If x matches α, go to 2;
 Else pick next α-object, go to 1.

3 4 9 10 11 12 13 1 2 3 4 9 11 13

 $R = \{3\}$

Intersection of k sets computed in $O(\delta k)$ searches, where δ is the non-deterministic complexity.

Time issues

Using Binary Search, the algorithms performs

 $O(\delta k \lg n)$ comparisons

Using Doubling Search, the algorithms performs

 $O(\delta k \lg(n/\delta k))$ comparisons

We propose another search operator.

 $O(\delta k \lg \lg \sigma)$ comparisons

(Where n is the sum of the sizes of the arrays, δ the non-deterministic complexity.)

Time issues

Using Binary Search, the algorithms performs

 $O(\delta k \lg n)$ comparisons

Using Doubling Search, the algorithms performs

 $O(\delta k \lg(n/\delta k))$ comparisons

We propose another search operator.

 $O(\delta k \lg \lg \sigma)$ comparisons

(Where n is the sum of the sizes of the arrays, δ the non-deterministic complexity.)

Time issues

Using Binary Search, the algorithms performs

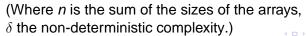
 $O(\delta k \lg n)$ comparisons

Using Doubling Search, the algorithms performs

 $O(\delta k \lg(n/\delta k))$ comparisons

We propose another search operator.

 $O(\delta k \lg \lg \sigma)$ comparisons



Outline

- Introduction
- Our Results
 - Binary Relations
 - (Multi-)Labeled Trees
- 3 Applications
 - Conjunctive Queries
 - Path Query Algorithm
- 4 Conclusion

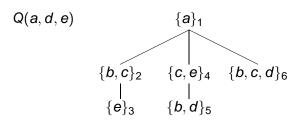
What is a Path Query?

Given a non-recursive multi-labeled tree and k labels, find nodes x s.t. rooted path matches k labels.

⇒ File System Search.

What is a Path Query?

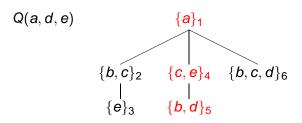
Given a non-recursive multi-labeled tree and k labels, find nodes x s.t. rooted path matches k labels.



⇒ File System Search.

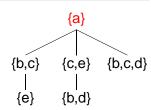
What is a Path Query?

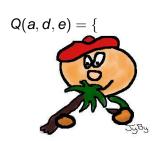
Given a non-recursive multi-labeled tree and k labels, find nodes x s.t. rooted path matches k labels.



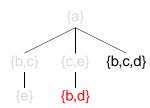
⇒ File System Search.

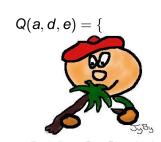
- 1 If $x = \infty$, exit;
- If all labels match, output x, pick next α-node, go to 1;
 Else pick next label α;
- **If** x matches α or has a α -ancestor, go to 2;
- If x has a α-descendant, pick the first one, go to 2;
 Else pick next α-node, go to 1.



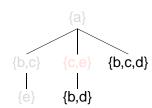


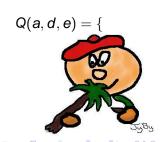
- 1 If $x = \infty$, exit;
- If all labels match, output x, pick next α-node, go to 1;
 Else pick next label α;
- If x matches α or has a α-ancestor, go to 2;
- If x has a α -descendant, pick the first one, go to 2; Else pick next α -node, go to 1.



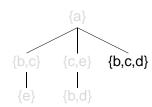


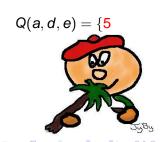
- 1 If $x = \infty$, exit;
- If all labels match, output x, pick next α-node, go to 1;
 Else pick next label α;
- **If** x matches α or has a α -ancestor, go to 2;
- If x has a α-descendant, pick the first one, go to 2;
 Else pick next α-node, go to 1.



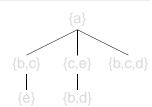


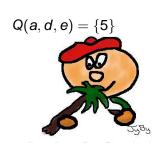
- If all labels match, output x, pick next α-node, go to 1;
 Else pick next label α;
- If x matches α or has a α-ancestor, go to 2;
- If x has a α-descendant, pick the first one, go to 2;
 Else pick next α-node, go to 1.





- 1 If $x = \infty$, exit;
- If all labels match, output x, pick next α-node, go to 1;
 Else pick next label α;
- If x matches α or has a α-ancestor, go to 2;
- If x has a α-descendant, pick the first one, go to 2;
 Else pick next α-node, go to 1.





Outline

- Introduction
- Our Results
 - Binary Relations
 - (Multi-)Labeled Trees
- 3 Applications
 - Conjunctive Queries
 - Path Query Algorithm
- 4 Conclusion

Summary

- Succinct encodings improve space and time.
- Labeled Trees use optimal space.
- Adaptive "almost" as good as Non-Deterministic!
- Future Work
 - Support for all labeled-based operators at once on (multi-)labeled trees.
 - Other type of queries on trees (LCA).
 - Applications to algorithms on graphs.

Main References Efficient Child Queries Technical Details Entropy and Compression Information Retrieval

Appendix

Appendix

- Main References
- Efficient Child Queries
- Technical Details
- Entropy and Compression
- Information Retrieval

Main References

- Barbay, J. and Kenyon, C. (SODA'02). Adaptive intersection and t-threshold problems.
- Geary, R. F., Raman, R., and Raman, V. (SODA '04). Succinct ordinal trees with level-ancestor gueries.
- Golynski, A., Munro, J. I., and Rao, S. S. (SODA'06) Rank/select operations on large alphabets: a tool for text indexing.

We still encode it as

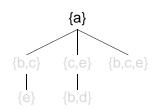
- one string LABELS on alphabet [σ];
- one binary string NODES of length t;
- the tree structure in 2n bits.

but in a different order.

For instance, the previous tree corresponds to:

LABELS =
$$a, b, c, c, e, b, c, e, e, b, d$$

NODES = $1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1$



We still encode it as

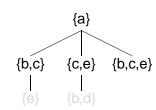
- one string LABELS on alphabet $[\sigma]$;
- one binary string NODES of length t;
- the tree structure in 2n bits.

but in a different order.

For instance, the previous tree corresponds to:

LABELS =
$$a, b, c, c, e, b, c, e, e, b, d$$

NODES = $1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1$



We still encode it as

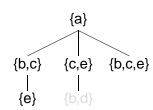
- one string LABELS on alphabet $[\sigma]$;
- one binary string NODES of length t;
- the tree structure in 2n bits.

but in a different order.

For instance, the previous tree corresponds to:

LABELS =
$$a, b, c, c, e, b, c, e, e, b, d$$

NODES = $1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1$



We still encode it as

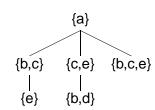
- one string LABELS on alphabet [σ];
- one binary string NODES of length t;
- the tree structure in 2n bits.

but in a different order.

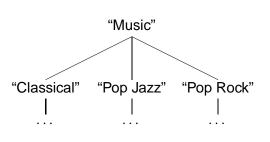
For instance, the previous tree corresponds to:

LABELS =
$$a, b, c, c, e, b, c, e, e, b, d$$

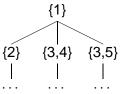
NODES = $1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1$



From a File System to a Multi-Labeled Tree

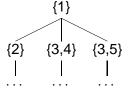


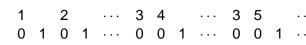
- 1 Music
- 2 Classical
- 3 Pop
- 4 Jazz
- 5 Rock



From a Multi-Labeled Tree to its Succinct Encoding

- 1 Music
- 2 Classical
- 3 Pop
- 4 Jazz
- 5 Rock





Entropy and Compression

- By replacing strings by label numbers, we reduce the space usage.
- By taking advantage of the frequencies of labels, we can attain the entropy lower bound on a string.

But what is the entropy of an array, of a tree?

Information Retrieval

Possible Extension:

- In real applications, labels are strings.
- For sub-string match, each query label corresponds to
 - a subtree in the suffix tree S of all lables;
 - i.e. an interval in the pre-order traversal of S.

Can we extend rank and select to intervals of labels?

