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Introduction

Global Pointers = Euvil

@ Introduced mainly for trees [Jacobson, 1989].
@ Applied to Strings:

@ binary [Jacobson, 1989], and [Clark and Munro, 1996].

@ larger alphabet [Grossi et al., 2003; Golynski et al., 2006].
@ Applied to Trees:
cardinal [Benoit et al., 1999].
ordinal [Munro and Raman, 2001].

partitioned [Geary et al., 2004].
labeled [Ferragina et al., 2005].
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Introduction

Example: Strings

String Succinct Encodings support
@ string_rank(a,X): nb. of a-occurrences before pos. x;
@ string_sel ect(a,r): position of r-th a-occurrence.
Example:

(0]ofof1]0f0f0[1[0]0]

@ string_rank(1,6) =
@ string_ select(1,2) =

Jérémy Barbay , A. Golynski, J. I. Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Structures



Introduction

Example: Strings

String Succinct Encodings support
@ string_rank(a,X): nb. of a-occurrences before pos. x;
@ string_sel ect(a,r): position of r-th a-occurrence.
Example:

(0]ofo[1]of0[0]1[0]0]

@ string_rank(1,6)=1
@ string_ select(1,2) =
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Introduction

Example: Strings

String Succinct Encodings support
@ string_rank(a,X): nb. of a-occurrences before pos. x;
@ string_sel ect(a,r): position of r-th a-occurrence.
Example:

(0]ofof1]of0f0]1[0]0]

@ string_rank(1,6)=1
@ string_select(1,2)=38

Jérémy Barbay , A. Golynski, J. I. Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Structures



Introduction

(Unlabeled) Trees

Tree Succinct Encodings support

@ navigation operators: chi I d(x,r), 1
dept h(x), | evel ed_ancest or (x,i); 2/4'1\6

@ ranking operators: t r ee_r ank(x), |
tree_sel ect(r); 3 5

@ other useful ones: i sanc(x,y),
chi I drank(x), degr ee(x),
nbdesc(x).

Notation: n nodes.
2n + o(n) bits, constant time.
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Introduction

Labeled Trees

Labeled Tree Succinct Encodings support {a
@ | abel tree_anc(a,X):
first a-ancestor of x; o} {c} {e}
@ | abel tree_desc(a,x): | |
first a-descendant of x; {e} {d}

@ | abel tree_chil d(«,x):
first a-child of x.

Notation: n nodes, o labels.
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Introduction

Space issues

@ Geary et al.’s encodings uses
n(lgo + O(clglglgn/Iglgn)) bits, for constant time.

@ Ferragina et al.’s encoding uses

2nlg o + O(n) bits, for partial constant time.

@ Information theory suggests a lower bound of
n(2+Igo) bits.

@ Our encoding, in this particular case, uses:

n(lgo + o(lg o)) bits, for time O(lglg o).
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Our Results Binary Relations
(Multi-)Labeled Tree

Outline

9 Our Results
@ Binary Relations

Jérémy Barbay Golynski, J s ive Searching in cinctly Encoded Structures



Our Results Binary Relations
(Multi-)Labeled Trees

What is a Binary Relation?

Consider a binary relation defined by:
@ n objects (the references to web-pages),
@ o labels (the keywords),
@ t pairs from [n] x [o] (the index).

10 01
1 0
o : (t ones)
0 1
0 1 10
n
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Our Results Binary Relations
(Multi-)Labeled Trees

String Representation

We encode it as
@ one string ROWS on alphabet [¢] of length t;
@ one binary string NEWCOLUMN of length n + t.

For instance:

ROWS =
NEWCOLUMN = 0

AN

represents the binary relation R =

This uses (tlgo + n+t) bits.
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String Representation

We encode it as
@ one string ROWS on alphabet [¢] of length t;
@ one binary string NEWCOLUMN of length n + t.

For instance:

ROWS =
NEWCOLUMN =

o
o w

represents the binary relation R =

R o R

This uses (tlgo + n+t) bits.
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Our Results Binary Relations
(Multi-)Labeled Trees

String Representation

We encode it as

@ one string ROWS on alphabet [¢] of length t;
@ one binary string NEWCOLUMN of length n + t.

For instance:

ROWS

=1 3 2 3
NEWCOLUMN = 0 0 1 0 O
10
represents the binary relationR = 0 1
11

This uses (tlgo + n+t) bits.
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(Multi-)Labeled Trees

String Representation

We encode it as

@ one string ROWS on alphabet [¢] of length t;
@ one binary string NEWCOLUMN of length n + t.

For instance:

ROWS

=1 3 2 3 1
NEWCOLUMN = 0 0 1 0 0 1 O
101

represents the binary relationR = 0 1 1
111

This uses (tlgo + n+t) bits.
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String Representation

We encode it as

@ one string ROWS on alphabet [¢] of length t;
@ one binary string NEWCOLUMN of length n + t.

For instance:

ROWS

=1 3 2 3 1
NEWCOLUMN = 0 0 1 0 0 1 O
101

represents the binary relationR = 0 1 1
111

This uses (tlgo + n+t) bits.
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Our Results Binary Relations
(Multi-)Labeled Trees

String Operations

r ank, sel ect and access on ROWS and NEWCOLUMN
r ank, sel ect and access on the rows of R.

For instance:

ROWS =13 2 3 1 2 3 1 3
NEWCOLUMN = 0 0 1 0 0 1 0 0 01 0 01
1 011
R=011020
1111

rank and sel ect on columns are more complicated.
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Our Results Binary Relations
(Multi-)Labeled Trees

Operators on Binary Relations:

We propose two distinct encodings using (t x o(lg o))
additional bits, which support

Access O(lglgo) O(lglgo);

rank on rows O(lglgo) O(lglgolglglgo);
sel ect onrows 0(1) O(lglgo);

r ank on columns O((lglgo)?) O(lglgo);

sel ect oncolumns  O(lglgo) O(1). i

This is much better than O(Ig n), using sorted arrays!
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Our Results Binary Relations
(Multi-)Labeled Trees

Outline

9 Our Results

@ (Multi-)Labeled Trees
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Our Results Binary Relations
(Multi-)Labeled Trees

What's a Multi-Labeled Tree?

A Multi-Labeled Tree is defined by:

{a}
@ n nodes,
@ o labels, {o.c} {ce} {bce}
@ t pairs from [n] x [o]. | |
{e}  {bd}

It's like a labeled tree, except that several labels
can be associated to each node.
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Our Results Binary Relations
(Multi-)Labeled Trees

Separate Labels and Structure.

We encode it as {a}

@ one string LABELS on alphabet [o]; /’\

@ one binary string NODES of length t;
@ the tree structure in 2n bits. | |

For instance, our tree corresponds to:
LABELS = a
NODES = 1

This uses (tlgo +1t + 2n) bits.
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Our Results Binary Relations
(Multi-)Labeled Trees

Separate Labels and Structure.

We encode it as {a}
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t; {b,c}
@ the tree structure in 2n bits.

For instance, our tree corresponds to:
LABELS = a,b,c
NODES = 1,0,1

This uses (tlgo +1t + 2n) bits.
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Our Results Binary Relations
(Multi-)Labeled Trees

Separate Labels and Structure.

We encode it as {a}
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t; {b,c}
@ the tree structure in 2n bits. e}

For instance, our tree corresponds to:
LABELS = a,b,c,e
NODES = 1,0,1,1

This uses (tlgo +1t + 2n) bits.
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Our Results Binary Relations
(Multi-)Labeled Trees

Separate Labels and Structure.

We encode it as {a}
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t; {b.c} {c.e}

|
{e} {bd}

@ the tree structure in 2n bits.

For instance, our tree corresponds to:
LABELS = a,b,c,e,c,e,b,d
NODES = 1,0,1,1,0,1,0,1

This uses (tlgo +1t + 2n) bits.
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Our Results Binary Relations
(Multi-)Labeled Trees

Separate Labels and Structure.

We encode it as
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t;
@ the tree structure in 2n bits.

For instance, our tree corresponds to:
LABELS = a,b,c,e,c,e,b,d,b,c,e
NODES = 1,0,1,1,0,1,0,1,0,0,1

This uses (tlgo +t + 2n) bits.

{b,c}

{e}

{a}

{c,.e} {b,c,e}

|
{b,d}
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Our Results Binary Relations
(Multi-)Labeled Trees

Operators on Multi-Labeled Trees:

We propose an encoding using (t x 0o(lg a)) additional bits,
which support

@ Operator sel ect on preorder list and navigation operators
in constant time;

@ Operators r ank and access on preorder list, and
| abel tree_desc and | abel tree_anc,
in time O(lglg o).

For simple labeled trees, space is
much better than [Geary] and [Ferragina].
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Applications Path Query Algorithm

Outline

a Applications
@ Conjunctive Queries
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Conjunctive Queries
Applications Path Query Algorithm

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If x = oo, exit; :1,, - S 50 ° 72 83
4 10 11 12 1
@ If k labels match, output x, 1 2 3 4 9 11 13

pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Applications Path Query Algorithm

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit; 3 5 6 7 8

@ If k labels match, output x, s 4 2 140 191 ﬁ 12
pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If x = o0, exit; S 50 ° 72 83
4 10 11 12 1
@ If k labels match, output x, 3 4 9 11 13

pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Conjunctive Queries
Applications Path Query Algorithm

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit; 3 5 6 7 8

@ If k labels match, output x, 49 140 191 ﬁ 12
pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Conjunctive Queries
Applications Path Query Algorithm

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit; 5 6 7 8

@ If k labels match, output X, 9 10 191 ﬁ 12
pick next «-object, go to 1;
Else pick next set «;

© If x matches «, goto 2; R={3
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit;

@ If k labels match, output x,
pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={3
Else pick next a-object, go to 1.

9 10 11 12 13
9 11 13

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit;

@ If k labels match, output x,
pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={3
Else pick next a-object, go to 1.

10 11 12 13
9 11 13

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit;

@ If k labels match, output x,
pick next a-object, go to 1;
Else pick next set «;

@ If x matches a, go to 2; R={3
Else pick next a-object, go to 1.

10 11 12 13
11 13

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If x = oo, exit;

@ If k labels match, output x,
pick next a-object, go to 1;
Else pick next set «;

© If x matches «, goto 2; R = {3}
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

Q If X = oo, exit;

@ If k labels match, output x,
pick next a-object, go to 1;
Else pick next set «;

© If x matches «, goto 2; R = {3}
Else pick next a-object, go to 1.

Intersection of k sets computed in O(dk) searches,
where § is the non-deterministic complexity.
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Conjunctive Queries
Applications Path Query Algorithm

Time issues

@ Using Binary Search, the algorithms performs
O(dk Ig n) comparisons
@ Using Doubling Search, the algorithms performs

O(oklg(n/dk)) comparisons

(Where n is the sum of the sizes of the arrays,
0 the non-deterministic complexity.)
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Time issues

@ Using Binary Search, the algorithms performs
O(dk Ig n) comparisons
@ Using Doubling Search, the algorithms performs

O(dk lg(n/dk)) comparisons

(Where n is the sum of the sizes of the arrays,
0 the non-deterministic complexity.)
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Conjunctive Queries
Applications Path Query Algorithm

Time issues

@ Using Binary Search, the algorithms performs
O(dk Ig n) comparisons
@ Using Doubling Search, the algorithms performs
O(oklg(n/dk)) comparisons
@ We propose another search operator.

O(dk lglg o) comparisons

(Where n is the sum of the sizes of the arrays,
0 the non-deterministic complexity.)
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Conjunctive Queries
Applications Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(ad,e) {a}

{b,c} {c,e} {b,c,d}
| |
{e}  {b,d}

= File System Search.
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What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(ad.e) {ah

{b,|c}2 {c,|e}4 {b,c,d}e
{e}s  {b,d}s

= File System Search.
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Conjunctive Queries
Applications Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a>d’e) {a}l

{b,|c}2 {c,|e}4 {b,c,d}e
{e}s  {b,d}s

= File System Search.
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Conjunctive Queries
Applications Path Query Algorithm

Our Algorithm:
{a}
Q If x = oo, exit;
@ If all labels match, output X, {b,c} {ce} {bc,d}
pick next a-node, go to 1, |
Else pick next label «; {e} {b,d}

© If x matches « or has a a-ancestor,
goto 2; Q(a,d,e) = {
© If x has a a-descendant,
pick the first one, go to 2;
Else pick next a-node, go to 1.

This algorithm solves Path queries
in time O(dk Iglg o).
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Conjunctive Queries
Applications Path Query Algorithm

Our Algorithm:

© If x = oo, exit;

@ If all labels match, output x, {b,c,d}
pick next a-node, go to 1; | |
Else pick next label «; {b,d}

© If x matches « or has a a-ancestor,
goto 2; Q(a,d,e) = {

Q If x has a a-descendant,
pick the first one, go to 2;
Else pick next a-node, go to 1.

This algorithm solves Path queries
in time O(dk Iglg o).
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© If x = oo, exit;

@ If all labels match, output x, {b,c,d}
pick next a-node, go to 1; | |
Else pick next label «; {b,d}

© If x matches « or has a a-ancestor,
goto 2; Q(a,d,e) = {

© If x has a a-descendant,
pick the first one, go to 2;
Else pick next a-node, go to 1.

This algorithm solves Path queries
in time O(dk Iglg o).
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Q If x = oo, exit;
@ If all labels match, output X, {b,c,d}

pick next a-node, go to 1; | |
Else pick next label «;

© If x matches « or has a a-ancestor,
goto 2;

© If x has a a-descendant,
pick the first one, go to 2;
Else pick next a-node, go to 1.

This algorithm solves Path queries
in time O(dk Iglg o).
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Applications Path Query Algorithm

Our Algorithm:

Q If x = <, exit; /’\

@ If all labels match, output X,
pick next a-node, go to 1; | |
Else pick next label «;

© If x matches « or has a a-ancestor,
goto 2;

© If x has a a-descendant,
pick the first one, go to 2;
Else pick next a-node, go to 1.

This algorithm solves Path queries
in time O(dk Iglg o).
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Conclusion

Summary

@ Succinct encodings improve space and time.
@ Labeled Trees use optimal space.
@ Adaptive “almost” as good as Non-Deterministic!

@ Future Work

@ Support for all labeled-based operators
at once on (multi-)labeled trees.

@ Other type of queries on trees (LCA).

@ Applications to algorithms on graphs.
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Encoding for Efficient Child Queries.

We still encode it as {a}
@ one string LABELS on alphabet [o]; /’\
@ one binary string NODES of length t;
@ the tree structure in 2n bits. | |

but in a different order.

For instance, the previous tree corresponds to:
LABELS = a
NODES = 1

This uses (tlgo +1t + 2n) bits.
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Encoding for Efficient Child Queries.

We still encode it as {a}
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t; bc} f{ce} {bce)

@ the tree structure in 2n bits.

but in a different order.
For instance, the previous tree corresponds to:

LABELS = a,b,c,c,e,b,c,e
NODES = 1,0,1,0,1,0,0,1

This uses (tlgo +1t + 2n) bits.
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Encoding for Efficient Child Queries.

We still encode it as {a}
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t; bc f{cel {bce)
@ the tree structure in 2n bits. |

but in a different order. {e}

For instance, the previous tree corresponds to:
LABELS = a,b,c,c,e,b,c,e,e
NODES = 1,0,1,0,1,0,0,1,1

This uses (tlgo +1t + 2n) bits.
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Encoding for Efficient Child Queries.

We still encode it as {a}
@ one string LABELS on alphabet [o];
@ one binary string NODES of length t; bc} fcel {bce)
@ the tree structure in 2n bits. |

but in a different order. {e}  {bd}

For instance, the previous tree corresponds to:
LABELS = a,b,c,c,e,b,c,e,e,b,d
NODES = 1,0,1,0,1,0,0,1,1,0,1

This uses (tlgo +t + 2n) bits.
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From a File System to a Multi-Labeled Tree

Music
Classical
Pop
Jazz

“Classical” “Pop Jazz” “Pop Rock” Rock

| | | 5

“Music”

a b wnN Pk

{T} {314} {3,5}
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From a Multi-Labeled Tree to its Succinct Encoding

1 Music /y\

2 Classical

3 Pop

4 Jazz

5 Rock 1 2 3 4
{1} 01 0 1 0 0 1

{T} {314} {3,5}
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Entropy and Compression

@ By replacing strings by label numbers, we reduce the
space usage.

@ By taking advantage of the frequencies of labels,
we can attain the entropy lower bound on a string.

But what is the entropy of an array, of a tree?

Adaptive Searching in Succinctly Encoded Structures
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Possible Extension:

@ In real applications, labels are strings.
@ For sub-string match, each query label corresponds to

@ a subtree in the suffix tree S of all lables;
@ i.e. an interval in the pre-order traversal of S.

Can we extend rank and select to intervals of labels?
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