
Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Text Indexing with Errors

Moritz G. Maaß and Johannes Nowak

{maass,nowakj}@in.tum.de
Institut für Informatik

Technische Universität München

June 20, 2005

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Introduction
Overview

Worst-Case Optimal Search-Time
Basic Idea
Range Queries
Analysis

Bounded Preprocessing Space
Weak Tries and Error Trees
Analysis

Conclusion
Conclusion and Open Problems

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Overview

collection of documents that facilitates efficient queries for the

occurrences of a pattern. Text indexing is becoming increasingly

important. The amount of textual data available, e.g., in the Internet

or in biological databases, is tremendous and growing. The sheer size

of the textual data makes the use of indexes for efficient online

queries vital. On the other hand, the nature of the data frequently

calls for fault−tolerant methods (called approximate pattern

matching): data on the Internet is often less carefully revised and

contains more typos than text published in classical media with

professional editorial staff; biological data is often erroneous due

to mistakes in its experimental generation. Moreover, in biological

e.g., for similarity searches. For online searches, where no

preprocessing of the document corpus is done, there are a variety of

algorithms available for many different error models (see, e.g., the

survey \cite{Nav01}). Recently, some progress has been made towards

A text index is a data structure prepared for a document or a

context, fault−tolerant matching is useful even for immaculate data,

\cite{AmKesLanLewLewRod00,BucGoodWes00,ColGotLew04} but in general the

When indexing a document (collection C of documents) of total size n and

assume a uniform cost model throughout this work.} for exact matching

the construction of fault−tolerant text indexes

problem remains open. In particular, currently no method with optimal

attempt to fill this gap.

lookup time linear in the pattern length is known. We present an

performing a query for a pattern of length m allowing k errors, the

relevant parameters are the index size, the index construction time, the

lookup time, and the error model. Usually, the least important of

algorithms is allowed to depend on an additional

natural lower bound, linear \moof{N} size (preprocessing time) and

linear $\moof{m+ \occ{}}$ lookup time, can be reached\footnote{We

these parameters is the preprocessing time. Depending on the

application, either size or query time dominate. We consider

output−sensitive algorithms here, i.e., the complexity of the

parameter $\occ{}$ counting the number of occurrences of a pattern. The

Preprocess

Query

(e.g., \cite{Wein73,Mc76,Uk95}). For edit or Hamming distance, no

index with lookup time $\moof{m + \occ{}}$ and size $\moof{n\log^l n}$ for

reasonable−size indexes the lookup time depends on n.

$l=\moof{1}$ even for a small number of errors is known. In all

S
T
O
R
E

"edit"

"even"

"event"

"date"

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Overview

collection of documents that facilitates efficient queries for the

occurrences of a pattern. Text indexing is becoming increasingly

important. The amount of textual data available, e.g., in the Internet

or in biological databases, is tremendous and growing. The sheer size

of the textual data makes the use of indexes for efficient online

queries vital. On the other hand, the nature of the data frequently

calls for fault−tolerant methods (called approximate pattern

matching): data on the Internet is often less carefully revised and

contains more typos than text published in classical media with

professional editorial staff; biological data is often erroneous due

to mistakes in its experimental generation. Moreover, in biological

e.g., for similarity searches. For online searches, where no

preprocessing of the document corpus is done, there are a variety of

algorithms available for many different error models (see, e.g., the

survey \cite{Nav01}). Recently, some progress has been made towards

A text index is a data structure prepared for a document or a

context, fault−tolerant matching is useful even for immaculate data,

\cite{AmKesLanLewLewRod00,BucGoodWes00,ColGotLew04} but in general the

When indexing a document (collection C of documents) of total size n and

assume a uniform cost model throughout this work.} for exact matching

the construction of fault−tolerant text indexes

problem remains open. In particular, currently no method with optimal

attempt to fill this gap.

lookup time linear in the pattern length is known. We present an

performing a query for a pattern of length m allowing k errors, the

relevant parameters are the index size, the index construction time, the

lookup time, and the error model. Usually, the least important of

algorithms is allowed to depend on an additional

natural lower bound, linear \moof{N} size (preprocessing time) and

linear $\moof{m+ \occ{}}$ lookup time, can be reached\footnote{We

these parameters is the preprocessing time. Depending on the

application, either size or query time dominate. We consider

output−sensitive algorithms here, i.e., the complexity of the

parameter $\occ{}$ counting the number of occurrences of a pattern. The

Query

(e.g., \cite{Wein73,Mc76,Uk95}). For edit or Hamming distance, no

index with lookup time $\moof{m + \occ{}}$ and size $\moof{n\log^l n}$ for

reasonable−size indexes the lookup time depends on n.

$l=\moof{1}$ even for a small number of errors is known. In all

S
T
O
R
E

"edit"

"even"

"event"

"date"

Preprocess

Time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Overview

collection of documents that facilitates efficient queries for the

occurrences of a pattern. Text indexing is becoming increasingly

important. The amount of textual data available, e.g., in the Internet

or in biological databases, is tremendous and growing. The sheer size

of the textual data makes the use of indexes for efficient online

queries vital. On the other hand, the nature of the data frequently

calls for fault−tolerant methods (called approximate pattern

matching): data on the Internet is often less carefully revised and

contains more typos than text published in classical media with

professional editorial staff; biological data is often erroneous due

to mistakes in its experimental generation. Moreover, in biological

e.g., for similarity searches. For online searches, where no

preprocessing of the document corpus is done, there are a variety of

algorithms available for many different error models (see, e.g., the

survey \cite{Nav01}). Recently, some progress has been made towards

A text index is a data structure prepared for a document or a

context, fault−tolerant matching is useful even for immaculate data,

\cite{AmKesLanLewLewRod00,BucGoodWes00,ColGotLew04} but in general the

When indexing a document (collection C of documents) of total size n and

assume a uniform cost model throughout this work.} for exact matching

the construction of fault−tolerant text indexes

problem remains open. In particular, currently no method with optimal

attempt to fill this gap.

lookup time linear in the pattern length is known. We present an

performing a query for a pattern of length m allowing k errors, the

relevant parameters are the index size, the index construction time, the

lookup time, and the error model. Usually, the least important of

algorithms is allowed to depend on an additional

natural lower bound, linear \moof{N} size (preprocessing time) and

linear $\moof{m+ \occ{}}$ lookup time, can be reached\footnote{We

these parameters is the preprocessing time. Depending on the

application, either size or query time dominate. We consider

output−sensitive algorithms here, i.e., the complexity of the

parameter $\occ{}$ counting the number of occurrences of a pattern. The

Preprocess

Query

(e.g., \cite{Wein73,Mc76,Uk95}). For edit or Hamming distance, no

index with lookup time $\moof{m + \occ{}}$ and size $\moof{n\log^l n}$ for

reasonable−size indexes the lookup time depends on n.

$l=\moof{1}$ even for a small number of errors is known. In all

O
T
S

R
E

"edit"

"even"

"event"

"date"

Size?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Overview

collection of documents that facilitates efficient queries for the

occurrences of a pattern. Text indexing is becoming increasingly

important. The amount of textual data available, e.g., in the Internet

or in biological databases, is tremendous and growing. The sheer size

of the textual data makes the use of indexes for efficient online

queries vital. On the other hand, the nature of the data frequently

calls for fault−tolerant methods (called approximate pattern

matching): data on the Internet is often less carefully revised and

contains more typos than text published in classical media with

professional editorial staff; biological data is often erroneous due

to mistakes in its experimental generation. Moreover, in biological

e.g., for similarity searches. For online searches, where no

preprocessing of the document corpus is done, there are a variety of

algorithms available for many different error models (see, e.g., the

survey \cite{Nav01}). Recently, some progress has been made towards

A text index is a data structure prepared for a document or a

context, fault−tolerant matching is useful even for immaculate data,

\cite{AmKesLanLewLewRod00,BucGoodWes00,ColGotLew04} but in general the

When indexing a document (collection C of documents) of total size n and

assume a uniform cost model throughout this work.} for exact matching

the construction of fault−tolerant text indexes

problem remains open. In particular, currently no method with optimal

attempt to fill this gap.

lookup time linear in the pattern length is known. We present an

performing a query for a pattern of length m allowing k errors, the

relevant parameters are the index size, the index construction time, the

lookup time, and the error model. Usually, the least important of

algorithms is allowed to depend on an additional

natural lower bound, linear \moof{N} size (preprocessing time) and

linear $\moof{m+ \occ{}}$ lookup time, can be reached\footnote{We

these parameters is the preprocessing time. Depending on the

application, either size or query time dominate. We consider

output−sensitive algorithms here, i.e., the complexity of the

parameter $\occ{}$ counting the number of occurrences of a pattern. The

Preprocess

Query

(e.g., \cite{Wein73,Mc76,Uk95}). For edit or Hamming distance, no

index with lookup time $\moof{m + \occ{}}$ and size $\moof{n\log^l n}$ for

reasonable−size indexes the lookup time depends on n.

$l=\moof{1}$ even for a small number of errors is known. In all

S
T
O
R
E

"edit"

"even"

"event"

"date"

Time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Overview

Indexing Problems

One pattern is queried against

a single document – Text Indexing

a collection of words – Dictionary Indexing

a collection documents – Document Collection Indexing

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Previous Work
Indexing a text of size1 n and querying a pattern of size m resulting in
occ occurrences.

Errors Model Query Time Index Size Prep. Time Literature

k=0 exact O(m + occ) O(n) O(n) Weiner 1973

k=1 edit O(m log n log log n + occ) O(n log2 n) O(n log2 n) Amir et. al 2000

k=1 edit O(m log log n + occ) O(n log n) O(n log n) Buchsbaum et. al 2000

k=1 Ham. O(m + occ) O(n log n) (avg) O(n log n) (avg) N 2004

k=O(1) edit O(m + logk n + occ) O(n logk n) O(n logk n) Cole et. al 2004

k=O(1) edit O(m log2 n+m2+occ) (avg) O(n log n) (avg) O(n log2 n) (avg) Chávez et al. 2002

k=O(1) edit O(m min{n, mk+1}+occ) O(min{n, mk+1}+n)O(min{n, mk+1}+n)Cobbs 1995 (Ukkonen
1993)

k=O(1) edit O(m + occ) O(n logk n),
(avg,whp)

O(n logk+1 n),
(avg,whp)

MN 2005

k=O(1) edit O(m + occ), (avg,whp) O(n logk n) O(n logk+1 n)

k=O(1) Ham. O(logk+1 n), (avg) O(n) O(n) M 2004

k=α log n Ham. O(nλ), λ < 1, (avg) O(n) O(n)

k=αm edit O(nλ log n), λ < 1 O(n) O(n) Navarro et. al 2000

k mismatches in
a window of
length r

O(m + occ) (avg) O(n logl n) (avg) O(n logl n) (avg) Gabriele et. al 2003

1
Uniform Cost Model

Previous Work
Indexing a text of size1 n and querying a pattern of size m resulting in
occ occurrences.

Errors Model Query Time Index Size Prep. Time Literature

k=0 exact O(m + occ) O(n) O(n) Weiner 1973

k=1 edit O(m log n log log n + occ) O(n log2 n) O(n log2 n) Amir et. al 2000

k=1 edit O(m log log n + occ) O(n log n) O(n log n) Buchsbaum et. al 2000

k=1 Ham. O(m + occ) O(n log n) (avg) O(n log n) (avg) N 2004

k=O(1) edit O(m + logk n + occ) O(n logk n) O(n logk n) Cole et. al 2004

k=O(1) edit O(m log2 n+m2+occ) (avg) O(n log n) (avg) O(n log2 n) (avg) Chávez et al. 2002

k=O(1) edit O(m min{n, mk+1}+occ) O(min{n, mk+1}+n)O(min{n, mk+1}+n)Cobbs 1995 (Ukkonen
1993)

k=O(1) edit O(m + occ) O(n logk n),
(avg,whp)

O(n logk+1 n),
(avg,whp)

MN 2005

k=O(1) edit O(m + occ), (avg,whp) O(n logk n) O(n logk+1 n)

k=O(1) Ham. O(logk+1 n), (avg) O(n) O(n) M 2004

k=α log n Ham. O(nλ), λ < 1, (avg) O(n) O(n)

k=αm edit O(nλ log n), λ < 1 O(n) O(n) Navarro et. al 2000

k mismatches in
a window of
length r

O(m + occ) (avg) O(n logl n) (avg) O(n logl n) (avg) Gabriele et. al 2003

1
Uniform Cost Model

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Worst-Case Optimal Search-Time

We focus on

indexing a text t of size n,

querying a pattern p of size m,

allowing a constant number of k errors (Edit distance),

achieving worst-case optimal query-time O(m + occ) and size
O(n logk n) on average and w.h.p.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Worst-Case Optimal Search-Time

We focus on

indexing a text t of size n,

querying a pattern p of size m,

allowing a constant number of k errors (Edit distance),

achieving worst-case optimal query-time O(m + occ) and size
O(n logk n) on average and w.h.p.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Worst-Case Optimal Search-Time

We focus on

indexing a text t of size n,

querying a pattern p of size m,

allowing a constant number of k errors (Edit distance),

achieving worst-case optimal query-time O(m + occ) and size
O(n logk n) on average and w.h.p.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Worst-Case Optimal Search-Time

We focus on

indexing a text t of size n,

querying a pattern p of size m,

allowing a constant number of k errors (Edit distance),

achieving worst-case optimal query-time O(m + occ) and size
O(n logk n) on average and w.h.p.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Worst-Case Optimal Search-Time

We focus on

indexing a text t of size n,

querying a pattern p of size m,

allowing a constant number of k errors (Edit distance),

achieving worst-case optimal query-time O(m + occ) and size
O(n logk n) on average and w.h.p.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

String Distance

Hamming Distance

Edit Distance

To handle ambiguities:

Definition (k-Minimal Prefix Length)

For two strings u, v ∈ Σ∗ with d(u, v) = k we define

minprefk,u(v)

= min

{
l

∣∣∣∣ d(prefl(u), prefl+|v|−|u|(v)) = k and
suff l+1(u) = suff l+|v|−|u|+1(v)

}
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

String Distance

Hamming Distance

Edit Distance

To handle ambiguities:

Definition (k-Minimal Prefix Length)

For two strings u, v ∈ Σ∗ with d(u, v) = k we define

minprefk,u(v)

= min

{
l

∣∣∣∣ d(prefl(u), prefl+|v|−|u|(v)) = k and
suff l+1(u) = suff l+|v|−|u|+1(v)

}
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

String Distance

Hamming Distance

Edit Distance

To handle ambiguities:

Definition (k-Minimal Prefix Length)

For two strings u, v ∈ Σ∗ with d(u, v) = k we define

minprefk,u(v)

= min

{
l

∣∣∣∣ d(prefl(u), prefl+|v|−|u|(v)) = k and
suff l+1(u) = suff l+|v|−|u|+1(v)

}
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

String Distance

Hamming Distance

Edit Distance

To handle ambiguities:

Definition (k-Minimal Prefix Length)

For two strings u, v ∈ Σ∗ with d(u, v) = k we define

minprefk,u(v)

= min

{
l

∣∣∣∣ d(prefl(u), prefl+|v|−|u|(v)) = k and
suff l+1(u) = suff l+|v|−|u|+1(v)

}
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Simple Methods for Indexing

p

w is a subtring of t

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Simple Methods for Indexing

p

w is a subtring of t

O(km)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Simple Methods for Indexing

p

w is a subtring of t

O(km)

Trie for all strings w within distance k of t

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Simple Methods for Indexing

p

w is a subtring of t

O(km)

Trie for all strings w within distance k of t

O(nk)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Searching with One Error

t

p

Searching with One Error

t

p

w

Searching with One Error

t

p

w
x

y

Searching with One Error

t

p

w
x

y

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1:minpref1,w(p) ≥ height(T) + 1

w

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1

w

Case 2:minpref1,w(p) < height(T)

w

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1

w

Case 2:minpref1,w(p) < height(T)

w

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1

w

Case 2:minpref1,w(p) < height(T)

w

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1

w

Case 2

w

w′

w′′

w′′′
w′′′′ w′′′′′

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1

w

Case 2

w

w′

w′′

w′′′
w′′′′ w′′′′′

Searching with One Error

t

p

w
x

y

minpref1,w(p)

Case 1

w

Case 2

w

w′

w′′

w′′′
w′′′′ w′′′′′

Searching with More Errors

t

p

Searching with More Errors

t

p

w

Searching with More Errors

t

p

w
x

y

Searching with More Errors

t

p

w
x

y

x′

y′

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

height

w

minpref1,w(p)

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

height

w

minpref1,w(p)

w′
y x′ x′′

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

minpref2,w(p)

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

height

w′

minpref1,w′(p)

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

height

w′

minpref1,w′(p)

w′′
y y′ x′′

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

w′′
y y′ x′′

w′′

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

w′′
y y′ x′′

w′′

minpref3,w(p)

Searching with More Errors

t

p

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

w′′
y y′ x′′

height

w′′

minpref1,w′′(p)

Searching with More Errors

t

pw′′′ =

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

w′′
y y′ x′′

height

w′′

minpref1,w′′(p)

Searching with More Errors

t

pw′′′ =

w
x

y

x′

y′

x′′

y′′

w

w′
y x′ x′′

w′

w′′
y y′ x′′

w′′

w′′′

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge

, or

2 reach the end of the pattern

and search the complete subtree.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge

, or

2 reach the end of the pattern

and search the complete subtree.

Case 1

w

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge, or

2 reach the end of the pattern

and search the complete subtree.

Case 1

w

Case 2

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge, or

2 reach the end of the pattern and search the complete subtree.

Case 1

w

Case 2

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge, or

2 reach the end of the pattern and search the complete subtree.

Case 1

w

Case 2

w

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge, or

2 reach the end of the pattern and search the complete subtree.

Case 1

w

Case 2

w

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Leaves of error trees corresponding to matches

When matching the pattern in the i-th error tree we may

1 reach a leaf-edge, or

2 reach the end of the pattern and search the complete subtree.

Case 1

w

Case 2

w

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S) et2(S) et3(S) et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S) et2(S) et3(S) et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S) et3(S) et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S) et3(S) et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S)

O(m + km)

et3(S) et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S)

O(m + km)

et3(S) et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S)

O(m + km)

et3(S)

Range queries!

et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S)

O(m + km)

et3(S)

Range queries!

O(m + occ)

et4(S)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S)

O(m + km)

et3(S)

Range queries!

O(m + occ)

et4(S)

O(m + occ)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Basic Idea

Search Time

et1(S)

O(m)

et2(S)

O(m + km)

et3(S)

Range queries!

O(m + occ)

et4(S)

O(m + occ)

⇒ O(m + occ)

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Range Queries

Input: Array A of size n containing integer
values.

< Query, Preproc. >

RMQ: (Range Minimum Query) For (i, j) find
index l with A[l] = min

i≤k≤j
{A[k]}.

< O(1), O(n) >

BVRQ: (Bounded Value Range Query) For
(i, j, k) find all indexes

L = {l | i ≤ l ≤ j and A[l] ≤ k}.

< O(|L|), O(n) >

CRQ: (Colored Range Query) For (i, j) find the
distinct set of numbers

C = {A[l] | i ≤ l ≤ j}.

< O(|C|), O(n) >

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Range Queries

Input: Array A of size n containing integer
values.

< Query, Preproc. >

RMQ: (Range Minimum Query) For (i, j) find
index l with A[l] = min

i≤k≤j
{A[k]}.

< O(1), O(n) >

BVRQ: (Bounded Value Range Query) For
(i, j, k) find all indexes

L = {l | i ≤ l ≤ j and A[l] ≤ k}.

< O(|L|), O(n) >

CRQ: (Colored Range Query) For (i, j) find the
distinct set of numbers

C = {A[l] | i ≤ l ≤ j}.

< O(|C|), O(n) >

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Range Queries

Input: Array A of size n containing integer
values.

< Query, Preproc. >

RMQ: (Range Minimum Query) For (i, j) find
index l with A[l] = min

i≤k≤j
{A[k]}.

< O(1), O(n) >

BVRQ: (Bounded Value Range Query) For
(i, j, k) find all indexes

L = {l | i ≤ l ≤ j and A[l] ≤ k}.

< O(|L|), O(n) >

CRQ: (Colored Range Query) For (i, j) find the
distinct set of numbers

C = {A[l] | i ≤ l ≤ j}.

< O(|C|), O(n) >

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Range Queries

Input: Array A of size n containing integer
values.

< Query, Preproc. >

RMQ: (Range Minimum Query) For (i, j) find
index l with A[l] = min

i≤k≤j
{A[k]}.

< O(1), O(n) >

BVRQ: (Bounded Value Range Query) For
(i, j, k) find all indexes

L = {l | i ≤ l ≤ j and A[l] ≤ k}.

< O(|L|), O(n) >

CRQ: (Colored Range Query) For (i, j) find the
distinct set of numbers

C = {A[l] | i ≤ l ≤ j}.

< O(|C|), O(n) >

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Range Minimum Queries

10 7 2 9 8 5 634

10 2 3 4 5 6 7 8 9
RMQ
=
Cartesian Tree
(in O(n))
+
constant time
LCA
(in O(n))

⇒Query time
is O(1)

Range Minimum Queries

10 7 2 9 8 5 634

10 2 3 4 5 6 7 8 9

0

1

2

3

4

6

5

7

8

9

RMQ
=
Cartesian Tree
(in O(n))
+
constant time
LCA
(in O(n))

⇒Query time
is O(1)

Range Minimum Queries

10 7 2 9 8 5 634

10 2 3 4 5 6 7 8 9

0

1

2

3

4

6

5

7

8

9

RMQ
=
Cartesian Tree
(in O(n))
+
constant time
LCA
(in O(n))

⇒Query time
is O(1)

Range Minimum Queries

10 7 2 9 8 5 634

10 2 3 4 5 6 7 8 9

0

1

2

3

4

6

5

7

8

9

RMQ
=
Cartesian Tree
(in O(n))
+
constant time
LCA
(in O(n))

⇒Query time
is O(1)

BVRG

Bounded value range queries are solved through successive RMQs,
e.g., querying (2, 7, 6):

10 2 3 4 5 6 7 8 9

10 7 2 9 8 5 634

2

The querytree is binary and has |L| inner nodes, hence we need
O(|L|) RMQs in total.

BVRG

Bounded value range queries are solved through successive RMQs,
e.g., querying (2, 7, 6):

10 2 3 4 5 6 7 8 9

10 7 2 9 8 5 634

2

The querytree is binary and has |L| inner nodes, hence we need
O(|L|) RMQs in total.

BVRG

Bounded value range queries are solved through successive RMQs,
e.g., querying (2, 7, 6):

10 2 3 4 5 6 7 8 9

10 7 2 9 8 5 634

2

4 5

The querytree is binary and has |L| inner nodes, hence we need
O(|L|) RMQs in total.

BVRG

Bounded value range queries are solved through successive RMQs,
e.g., querying (2, 7, 6):

10 2 3 4 5 6 7 8 9

10 7 2 9 8 5 634

2

4 5

The querytree is binary and has |L| inner nodes, hence we need
O(|L|) RMQs in total.

BVRG

Bounded value range queries are solved through successive RMQs,
e.g., querying (2, 7, 6):

10 2 3 4 5 6 7 8 9

10 7 2 9 8 5 634

2

4 5

The querytree is binary and has |L| inner nodes, hence we need
O(|L|) RMQs in total.

CRQ

Colored range queries are reduced by using another array which
stores the last index of each value. A CRQ (i, j) then transforms
into a BVRQ (i, j, i− 1) on the new array:

10 2 3 4 5 6 7 8 9

11 2 1 1 2 1 3 2 3

−1 0 −1 1 3 2 4 −1 5 7

CRQ

Colored range queries are reduced by using another array which
stores the last index of each value. A CRQ (i, j) then transforms
into a BVRQ (i, j, i− 1) on the new array:

10 2 3 4 5 6 7 8 9

11 2 1 1 2 1 3 2 3

−1 0 −1 1 3 2 4 −1 5 7

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Sets

Definition (Error Sets)

Defined inductively by W0 = S and

Wi = Γhi−1(Wi−1) ∩ Si ,

where

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}},
Si = {r | there exists s ∈ S such that d(s, r) = i},
and hi are arbitrary integer parameters.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Sets

Definition (Error Sets)

Defined inductively by W0 = S and

Wi = Γhi−1(Wi−1) ∩ Si ,

where

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}},
Si = {r | there exists s ∈ S such that d(s, r) = i},
and hi are arbitrary integer parameters.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Sets

Definition (Error Sets)

Defined inductively by W0 = S and

Wi = Γhi−1(Wi−1) ∩ Si ,

where

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}},
Si = {r | there exists s ∈ S such that d(s, r) = i},
and hi are arbitrary integer parameters.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Sets

Definition (Error Sets)

Defined inductively by W0 = S and

Wi = Γhi−1(Wi−1) ∩ Si ,

where

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}},
Si = {r | there exists s ∈ S such that d(s, r) = i},
and hi are arbitrary integer parameters.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Sets

Definition (Error Sets)

Defined inductively by W0 = S and

Wi = Γhi−1(Wi−1) ∩ Si ,

where

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}},
Si = {r | there exists s ∈ S such that d(s, r) = i},
and hi are arbitrary integer parameters.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Tree

Defined as trie for Wi.

Label leaf x by suffix number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Tree

Defined as trie for Wi.

Label leaf x by suffix number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Error Tree

Defined as trie for Wi.

Label leaf x by suffix number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Result Selection using Range Queries

Array of leaves A, additional array B.

Subtree ranges at nodes.

B contains minimal prefix l ⇒ occurrences

B contains starting positions ⇒ positions

B contains string identifiers ⇒ documents

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Result Selection using Range Queries

Array of leaves A, additional array B.

Subtree ranges at nodes.

B contains minimal prefix l ⇒ occurrences

B contains starting positions ⇒ positions

B contains string identifiers ⇒ documents

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Result Selection using Range Queries

Array of leaves A, additional array B.

Subtree ranges at nodes.

B contains minimal prefix l ⇒ occurrences

B contains starting positions ⇒ positions

B contains string identifiers ⇒ documents

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Result Selection using Range Queries

Array of leaves A, additional array B.

Subtree ranges at nodes.

B contains minimal prefix l ⇒ occurrences

B contains starting positions ⇒ positions

B contains string identifiers ⇒ documents

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Range Queries

Result Selection using Range Queries

Array of leaves A, additional array B.

Subtree ranges at nodes.

B contains minimal prefix l ⇒ occurrences

B contains starting positions ⇒ positions

B contains string identifiers ⇒ documents

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Set hi = maxpref(Wi) (the height of eti(S))

The error sets have size |Wi| = O(h0h1· · ·hi−1|S|)
Construction time for eti(S) is O(h0h1· · ·hi|S|)
hi = O(log n) in expectation and with high probability

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Set hi = maxpref(Wi) (the height of eti(S))

The error sets have size |Wi| = O(h0h1· · ·hi−1|S|)
Construction time for eti(S) is O(h0h1· · ·hi|S|)
hi = O(log n) in expectation and with high probability

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Set hi = maxpref(Wi) (the height of eti(S))

The error sets have size |Wi| = O(h0h1· · ·hi−1|S|)
Construction time for eti(S) is O(h0h1· · ·hi|S|)
hi = O(log n) in expectation and with high probability

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Set hi = maxpref(Wi) (the height of eti(S))

The error sets have size |Wi| = O(h0h1· · ·hi−1|S|)
Construction time for eti(S) is O(h0h1· · ·hi|S|)
hi = O(log n) in expectation and with high probability

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Random Model

Stationary ergodic source

mixing condition

c1Pr {A}Pr {B} ≤ Pr {A ∩ B} ≤ c2Pr {A}Pr {B}.

Probability of common substring:

r2 = lim
n→∞

− ln
(∑

w∈Σn (Pr {w})2
)

2n
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Random Model

Stationary ergodic source

mixing condition

c1Pr {A}Pr {B} ≤ Pr {A ∩ B} ≤ c2Pr {A}Pr {B}.

Probability of common substring:

r2 = lim
n→∞

− ln
(∑

w∈Σn (Pr {w})2
)

2n
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Random Model

Stationary ergodic source

mixing condition

c1Pr {A}Pr {B} ≤ Pr {A ∩ B} ≤ c2Pr {A}Pr {B}.

Probability of common substring:

r2 = lim
n→∞

− ln
(∑

w∈Σn (Pr {w})2
)

2n
.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Height of Error Trees

Let l be the expected length of a common substring.

Each step adds one error to the strings.

Possibly more matching characters afterwards, expected
increment is at most l.

⇒ hi ≤ (2i + 1)l.

Thus,

Pr
{
lmax > (2k + 1)(c′′h + 1)

}
≤ c′k2h2e−2(1+ε)h

as h →∞.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Height of Error Trees

Let l be the expected length of a common substring.

Each step adds one error to the strings.

Possibly more matching characters afterwards, expected
increment is at most l.

⇒ hi ≤ (2i + 1)l.

Thus,

Pr
{
lmax > (2k + 1)(c′′h + 1)

}
≤ c′k2h2e−2(1+ε)h

as h →∞.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Height of Error Trees

Let l be the expected length of a common substring.

Each step adds one error to the strings.

Possibly more matching characters afterwards, expected
increment is at most l.

⇒ hi ≤ (2i + 1)l.

Thus,

Pr
{
lmax > (2k + 1)(c′′h + 1)

}
≤ c′k2h2e−2(1+ε)h

as h →∞.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Height of Error Trees

Let l be the expected length of a common substring.

Each step adds one error to the strings.

Possibly more matching characters afterwards, expected
increment is at most l.

⇒ hi ≤ (2i + 1)l.

Thus,

Pr
{
lmax > (2k + 1)(c′′h + 1)

}
≤ c′k2h2e−2(1+ε)h

as h →∞.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Height of Error Trees

Let l be the expected length of a common substring.

Each step adds one error to the strings.

Possibly more matching characters afterwards, expected
increment is at most l.

⇒ hi ≤ (2i + 1)l.

Thus,

Pr
{
lmax > (2k + 1)(c′′h + 1)

}
≤ c′k2h2e−2(1+ε)h

as h →∞.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Size and Preprocessing

the expected height of the first tree is l = O(log n).

Conditioning on l ≤ c log n yields the expected size

E[n · hk] ≤ n(ck lnn)k+
∞∑

i=ck ln n

nikPr{lmax > i}

< n(ck lnn)k+ O(1)

= O(n logk n).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Size and Preprocessing

the expected height of the first tree is l = O(log n).

Conditioning on l ≤ c log n yields the expected size

E[n · hk] ≤ n(ck lnn)k+
∞∑

i=ck ln n

nikPr{lmax > i}

< n(ck lnn)k+ O(1)

= O(n logk n).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Size and Preprocessing

the expected height of the first tree is l = O(log n).

Conditioning on l ≤ c log n yields the expected size

E[n · hk] ≤ n(ck lnn)k+
∞∑

i=ck ln n

nikPr{lmax > i}

< n(ck lnn)k+ O(1)

= O(n logk n).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Size and Preprocessing

the expected height of the first tree is l = O(log n).

Conditioning on l ≤ c log n yields the expected size

E[n · hk] ≤ n(ck lnn)k+
∞∑

i=ck ln n

nikPr{lmax > i}

< n(ck lnn)k+ O(1)

= O(n logk n).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Size and Preprocessing

the expected height of the first tree is l = O(log n).

Conditioning on l ≤ c log n yields the expected size

E[n · hk] ≤ n(ck lnn)k+
∞∑

i=ck ln n

nikPr{lmax > i}

< n(ck lnn)k+ O(1)

= O(n logk n).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Weak Tries and Error Trees

Weak Tries

Definition (Weak Trie)

For l > 0, the l-weak trie for a set of strings S ⊂ Σ∗ is a rooted
tree with edges labeled by characters from Σ. For any node with a
depth less than l, all outgoing edges are labeled by different
characters, and there are no branching nodes with a depth of more
than l. Each path from the root to a leaf can be read as a string
from S.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Tries and Weak Tries

r

a

l

l
e

di

l

l

y

ub

ll

e

k

c

p
o

t

s

0

1

2

3 4

5 6

7 8

9

10 11

12

13

14 15 16

17 18

19 20

21

Tries and Weak Tries

r

a

l

l
e

di

l

l

y

ub

ll

e

k

c

p
o

t

s

0

1

2

3 4

5 6

7 8

9

10 11

12

13

14 15 16

17 18

19 20

21

ar

ll

e

id

ll

y

ub
ell

ock

op

t

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

Tries and Weak Tries

r

a

l

l
e

di

l

l

y

ub

ll

e

k

c

p
o

t

s

0

1

2

3 4

5 6

7 8

9

10 11

12

13

14 15 16

17 18

19 20

21

ar

ll

e

id

ll

y

ub
ell

ock

op

t

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

id

b

ell

s

ell

ea
r

ull

uy

tock

top

0

1

4

6

8

11

12

13

16

20

21

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Weak Tries and Error Trees

Error Tree

Define the error trie as hi-weak trie:

eti (S) = Whi
(Wi)

Leaf labels are the same as before: leaf x is labeled by suffix
number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Order of leaves is not important for range queries.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Weak Tries and Error Trees

Error Tree

Define the error trie as hi-weak trie:

eti (S) = Whi
(Wi)

Leaf labels are the same as before: leaf x is labeled by suffix
number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Order of leaves is not important for range queries.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Weak Tries and Error Trees

Error Tree

Define the error trie as hi-weak trie:

eti (S) = Whi
(Wi)

Leaf labels are the same as before: leaf x is labeled by suffix
number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Order of leaves is not important for range queries.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Weak Tries and Error Trees

Error Tree

Define the error trie as hi-weak trie:

eti (S) = Whi
(Wi)

Leaf labels are the same as before: leaf x is labeled by suffix
number and l = minprefk,s(path(x)).

Leaf is a hit if pattern length greater than l.

Order of leaves is not important for range queries.

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Analysis

Basic Bounds

Data structure:

Set hi = ck log n + i.

The size is O(n logk n).

The preprocessing takes O(n logk+1 n) (weak tries!).

Searching:

For m ≤ ck log n: as before in O(m + occ) time.

For m > ck log n: use a generalized suffix tree (as a filter).

Expected search time: O(1).

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Conclusion

Worst-case optimal search-time O(m + occ) for a constant
number of errors.

Average-case index size O(n logk n) for k errors.

Matches average search time O(m logk n) with index size
O(n) (M 2004).

Achieved through

recursive case-distinction upon the location of the error.
range queries to select leaves from subtrees

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Conclusion

Worst-case optimal search-time O(m + occ) for a constant
number of errors.

Average-case index size O(n logk n) for k errors.

Matches average search time O(m logk n) with index size
O(n) (M 2004).

Achieved through

recursive case-distinction upon the location of the error.
range queries to select leaves from subtrees

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Conclusion

Worst-case optimal search-time O(m + occ) for a constant
number of errors.

Average-case index size O(n logk n) for k errors.

Matches average search time O(m logk n) with index size
O(n) (M 2004).

Achieved through

recursive case-distinction upon the location of the error.
range queries to select leaves from subtrees

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Conclusion

Worst-case optimal search-time O(m + occ) for a constant
number of errors.

Average-case index size O(n logk n) for k errors.

Matches average search time O(m logk n) with index size
O(n) (M 2004).

Achieved through

recursive case-distinction upon the location of the error.
range queries to select leaves from subtrees

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Conclusion

Worst-case optimal search-time O(m + occ) for a constant
number of errors.

Average-case index size O(n logk n) for k errors.

Matches average search time O(m logk n) with index size
O(n) (M 2004).

Achieved through

recursive case-distinction upon the location of the error.
range queries to select leaves from subtrees

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Conclusion

Worst-case optimal search-time O(m + occ) for a constant
number of errors.

Average-case index size O(n logk n) for k errors.

Matches average search time O(m logk n) with index size
O(n) (M 2004).

Achieved through

recursive case-distinction upon the location of the error.
range queries to select leaves from subtrees

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Conclusion and Open Problems

Open Problems

Can we close the gap?
Our new indexing structure works best for “small” patterns of
length O(log n).
On average, “small” patterns are the hardest to find.
The case of “large” patterns of length Ω(logk n) can be
handled with the data structure of Cole et. al 2004.
No lower bounds on the index size for O(m + occ)-time
lookup are known.

Can we use it?
Constant factors are large!
Implementation by (suffix) arrays seems possible and could be
more space efficient.
Is compression applicable?
Construction time?

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Thank you!

Questions?

Text Indexing with Errors

Moritz G. Maaß and Johannes Nowak

{maass,nowakj}@in.tum.de
Institut für Informatik

Technische Universität München

June 20, 2005

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Outline Introduction Worst-Case Optimal Search-Time Bounded Preprocessing Space Conclusion

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Further Examples

Indexing Problems

Example

GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC
CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC
TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT
CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

Pattern : ACAAC

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Further Examples

Indexing Problems

Example - Occurrences

GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC : (6,9)

CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC
TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT : (20,23),(20,24),(22,25),(35,38)

CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG : (11,14),(22,25)

Pattern : ACAAC

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Further Examples

Indexing Problems

Example - Positions

GACTCA|AAACGGGTTGTTACCGGGTATGGCTAGAATCATC : 6

CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC
TTGAGGGCGGCGAGCGACCT|AC|AAACATGTTCGGG|AAACT : 20,22,35

CTGTCCAAAAT|AAACCTGAGAC|CAACCGTTTAGCAAGAAG : 11,22

Pattern : ACAAC

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Further Examples

Indexing Problems

Example - Documents

GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC
CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC
TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT
CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

Pattern : ACAAC

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

Tries and PATRICIA Trees

String set:

bear
bell
bid
bull
buy
sell
stock
stop

r

a

l

l

e

di

l

l

y

ub

ll

e

k

c

p
o

t

s

0

1

2

3 4

5 6

7 8

9

10 11

12

13

14 15 16

17 18

19 20

21

ar

ll

e

id

ll

y

ub

el
l

ck

p

to

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

Example

G

T
C

G

T

CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

A

G

A

T

TG

A

C

G

T

A

G

T

C

G

G

T

TC
C

C

T

G

C

A

T

G

T

G

C

G

A

C

G

T

G

T

T

AACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

AGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

ATGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

ATGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

CACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

CAGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

CATACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

CCGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

CCTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

CGGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

CTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

CTTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

GCCTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

GGCTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

GGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

GTCTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

GTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

GTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

TACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC

TAGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

TCGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

TGGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT

TGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC

TTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

Further Examples

String Distances

Edit Distance

Dynamic programming version:

Di,j = min{Di−1,j + 1, Di−1,j−1 + δ(i, j), Di,j−1 + 1},

for all 1 ≤ i ≤ |u|, 1 ≤ j ≤ |v|.

δ(i, j) =

{
1 if u[i] 6= v[j]

0 if u[i] = v[j]

As operator op : Σ∗ → Σ∗, i.e.,

opdel,2(ACAAC) = AAAC

opsub,2,A(ACAAC) = ACAAA

Moritz G. Maaß and Johannes Nowak:

Text Indexing with Errors

	Outline
	Introduction
	Overview

	Worst-Case Optimal Search-Time
	Basic Idea
	Range Queries
	Analysis

	Bounded Preprocessing Space
	Weak Tries and Error Trees
	Analysis

	Conclusion
	Conclusion and Open Problems

	
	Further Examples
	Indexing Problems
	Tries
	String Distances

