Outline	Introduction
0	000

Bounded Preprocessing Space

< □ > < @ > < E > < E > E = のへの [2]

Conclusion 00

Text Indexing with Errors

Moritz G. Maaß and Johannes Nowak

{maass,nowakj}@in.tum.de Institut für Informatik Technische Universität München

June 20, 2005

Introduction Overview

Worst-Case Optimal Search-Time

Basic Idea Range Queries Analysis

Bounded Preprocessing Space

Weak Tries and Error Trees Analysis

Conclusion

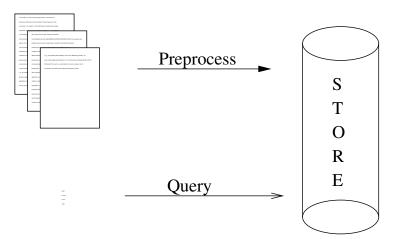
Conclusion and Open Problems

Outline	Introduction
0	•00

Bounded Preprocessing Space

Conclusion

Overview

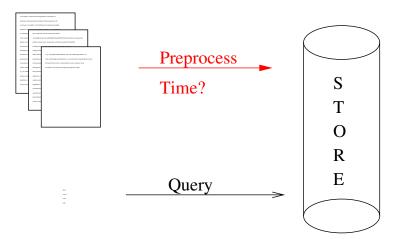


Outline	Introduction
0	•00

Bounded Preprocessing Space

Conclusion

Overview

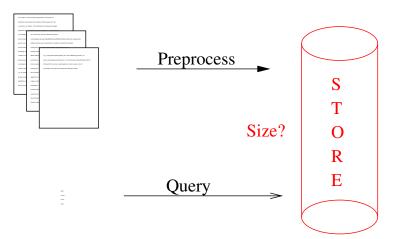


Outline	Introduction
0	•00

Bounded Preprocessing Space

Conclusion 00

Overview

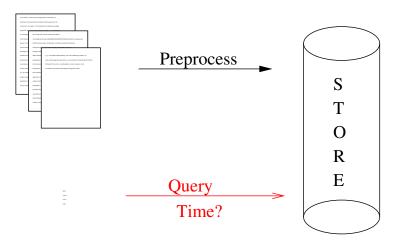


Outline	Introduction
0	•00

Bounded Preprocessing Space

Conclusion 00

Overview



Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
0				

One pattern is queried against

- a single document -
- a collection of words
- a collection documents

Text Indexing

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
0				

One pattern is queried against

- a single document -
- a collection of words
- a collection documents

Text Indexing

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
0				

Overview

Indexing Problems

One pattern is queried against

- a single document -
- a collection of words -
- a collection documents

Text Indexing

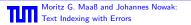
Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 0	00
O				

One pattern is queried against

- a single document -
- a collection of words -
- a collection documents

Text Indexing Dictionary Indexing

Document Collection Indexing



Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
Ourselinu				

One pattern is queried against

- a single document -
- a collection of words -
- a collection documents

Text Indexing Dictionary Indexing

Document Collection Indexing

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
Ourseling				

One pattern is queried against

- a single document -
- a collection of words -
- a collection documents -

Text Indexing Dictionary Indexing ocument Collection Indexing

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
0				

One pattern is queried against

- a single document -
- a collection of words -
- a collection documents -

Text Indexing Dictionary Indexing Document Collection Indexing

Previous Work

Indexing a text of size n and querying a pattern of size m resulting in occ occurrences.

Errors	Model	Query Time	Index Size	Prep. Time	Literature
k = 0	exact	O(m + occ)	O(n)	O(n)	Weiner 1973
k = 1	edit	$O(m\log n\log\log n + occ)$	$O(n \log^2 n)$	$O(n \log^2 n)$	Amir et. al 2000
k = 1	edit	$O(m\log\log n + occ)$	$O(n \log n)$	$O(n \log n)$	Buchsbaum et. al 2000
k = 1	Ham.	O(m + occ)	$O(n \log n)$ (avg)	$O(n \log n)$ (avg)	N 2004
k = O(1)	edit	$O(m + \log^k n + occ)$	$O(n \log^k n)$	$O(n \log^k n)$	Cole et. al 2004
k = O(1)	edit	$O(m\log^2 n\!+\!m^2\!+\!occ)$ (avg)	$O(n \log n)$ (avg)	$O(n \log^2 n)$ (avg)	Chávez et al. 2002
k = O(1)	edit	$O(m\min\{n,m^{k\!+\!1}\}\!+\!occ)$	$O(\min\{n, m^{k+1}\} + n)$	$n\mathcal{D}(\min\{n,m^{k+1}\}+n)$	1) Cobbs 1995 (Ukkonen 1993)
k = O(1)	edit	O(m + occ)	$O(n \log^k n),$ (avg,whp)	$O(n \log^{k+1} n),$ (avg,whp)	MN 2005
k = O(1)	edit	$O(m+{\sf occ})$, (avg,whp)	$O(n \log^k n)$	$O(n\log^{k+1}n)$	
k = O(1)	Ham.	$O(\log^{k+1}n)$, (avg)	O(n)	O(n)	M 2004
$k{=}\alpha\logn$	Ham.	$O(n^{\lambda})$, $\lambda < 1$, (avg)	O(n)	O(n)	
$k = \alpha m$	edit	$O(n^{\lambda} \log n), \lambda < 1$	O(n)	O(n)	Navarro et. al 2000
k mismato a window o length r		$O(m+{\sf occ})$ (avg)	$O(n \log^l n)$ (avg)	$O(n \log^l n)$ (avg)	Gabriele et. al 2003

 1 Uniform Cost Model

Previous Work

Indexing a text of size n and querying a pattern of size m resulting in occ occurrences.

Errors	Model	Query Time	Index Size	Prep. Time	Literature
k = 0	exact	$O(\mathbf{m} + occ)$	O(n)	O(n)	Weiner 1973
k = 1	edit	$O(m\log \frac{\mathbf{n}}{\log \log \mathbf{n}} + \operatorname{occ})$	$O(n \log^2 n)$	$O(n \log^2 n)$	Amir et. al 2000
k = 1	edit	$O(m \log \log \frac{\mathbf{n}}{\mathbf{n}} + \operatorname{occ})$	$O(n \log n)$	$O(n \log n)$	Buchsbaum et. al 2000
k = 1	Ham.	$O(\mathbf{m} + occ)$	$O(n \log n)$ (avg)	$O(n \log n)$ (avg)	N 2004
k = O(1)	edit	$O(m + \log^k \mathbf{n} + occ)$	$O(n \log^k n)$	$O(n \log^k n)$	Cole et. al 2004
k = O(1)	edit	$O(m \log^2 \mathbf{n} + m^2 + occ)$ (avg)	$O(n \log n)$ (avg)	$O(n \log^2 n)$ (avg)	Chávez et al. 2002
k = O(1)	edit	$O(m\min\{\mathbf{n}, m^{\mathbf{k}+1}\}+occ)$	$O(\min\{\mathbf{n}, m^{k+1}\} + n)$	$n\mathcal{D}(\min\{n,m^{k+1}\}+n)$	1) Cobbs 1995 (Ukkonen 1993)
k = O(1)	edit	$O(\mathbf{m} + occ)$	$O(n \log^k n),$ (avg,whp)	$O(n \log^{k+1} n),$ (avg,whp)	MN 2005
k = O(1)	edit	$O(\mathbf{m} + occ), (avg,whp)$	$O(n \log^k n)$	$O(n\log^{k+1}n)$	
k = O(1)	Ham.	$O(\log^{k+1}{\mathbf{n}})$, (avg)	O(n)	O(n)	M 2004
$k{=}\alpha\logn$	Ham.	$O(\mathbf{n}^{\lambda})$, $\lambda < 1$, (avg)	O(n)	O(n)	
$k = \alpha m$	edit	$O(\mathbf{n}^{\lambda} \log \mathbf{n}), \lambda < 1$	O(n)	O(n)	Navarro et. al 2000
k mismatches in a window of length r		$O(\mathbf{m} + occ)$ (avg)	$O(n \log^l n)$ (avg)	$O(n \log^l n)$ (avg)	Gabriele et. al 2003

 1 Uniform Cost Model

Outline	Introductio
0	000

Bounded Preprocessing Space

Conclusion 00

Basic Idea

Worst-Case Optimal Search-Time

- indexing a text t of size n,
- querying a pattern p of size m,
- allowing a constant number of k errors (Edit distance),
- achieving worst-case optimal query-time O(m + occ) and size O(n log^k n) on average and w.h.p.

Outline	Introductio
0	000

Bounded Preprocessing Space

Conclusion

Basic Idea

Worst-Case Optimal Search-Time

- indexing a text t of size n,
- querying a pattern p of size m,
- allowing a constant number of k errors (Edit distance),
- achieving worst-case optimal query-time O(m + occ) and size $O(n \log^k n)$ on average and w.h.p.

Outline	Introduction
0	000

Bounded Preprocessing Space

Conclusion 00

Basic Idea

Worst-Case Optimal Search-Time

- indexing a text t of size n,
- querying a pattern p of size m,
- allowing a constant number of k errors (Edit distance),
- achieving worst-case optimal query-time O(m + occ) and size $O(n \log^k n)$ on average and w.h.p.

Outline	Introduction
0	000

Bounded Preprocessing Space

Conclusion 00

Basic Idea

Worst-Case Optimal Search-Time

- indexing a text t of size n,
- querying a pattern p of size m,
- allowing a constant number of k errors (Edit distance),
- achieving worst-case optimal query-time O(m + occ) and size $O(n \log^k n)$ on average and w.h.p.

Outline	Introduction
0	000

Bounded Preprocessing Space

Conclusion

Basic Idea

Worst-Case Optimal Search-Time

- indexing a text t of size n,
- querying a pattern p of size m,
- allowing a constant number of k errors (Edit distance),
- achieving worst-case optimal query-time O(m + occ) and size $O(n \log^k n)$ on average and w.h.p.

Outline O	Introduction 000	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion 00
Basic Idea				

• Hamming Distance

- Edit Distance
- To handle ambiguities:

(definition (/e-Minimal/Prefix Length)

For two strings $u,v\in\Sigma^*$ with $\mathrm{d}(u,v)=k$ we define

$(v)_{a,b} \stackrel{\text{long}(n)}{=} (v)_{a,b} \stackrel{\text{long}$

Outline O	Introduction 000	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion 00
Basic Idea				

- Hamming Distance
- Edit Distance
- To handle ambiguities:

Definition (k-Minimal Prefix Length)

For two strings $u,v\in\Sigma^*$ with $\mathsf{d}(u,v)=k$ we define

$$\begin{split} \mathsf{minpref}_{k,u}(v) \\ &= \mathsf{min} \left\{ l \mid \begin{array}{c} \mathsf{d}(\mathsf{pref}_l(u),\mathsf{pref}_{l+|v|-|u|}(v)) = k \quad \text{and} \\ \mathsf{suff}_{l+1}(u) = \mathsf{suff}_{l+|v|-|u|+1}(v) \end{array} \right\} \end{split}$$

< ロ > < @ > < E > < E > E = のQで

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○●○○○○○ ○○○○○○ ○○○○	Bounded Preprocessing Space	Conclusion 00
Basic Idea				

- Hamming Distance
- Edit Distance
- To handle ambiguities:

Definition (k-Minimal Prefix Length)

For two strings $u, v \in \Sigma^*$ with d(u, v) = k we define

$$\min \operatorname{pref}_{k,u}(v)$$

$$= \min \left\{ l \mid \operatorname{d}(\operatorname{pref}_{l}(u), \operatorname{pref}_{l+|v|-|u|}(v)) = k \text{ and } \right\}$$

$$\sup f_{l+1}(u) = \operatorname{suff}_{l+|v|-|u|+1}(v) \quad \}$$

Outline O	Introduction 000	Worst-Case Optimal Search-Time ●●○○○○○ ○○○○○○ ○○○○	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

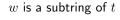
- Hamming Distance
- Edit Distance
- To handle ambiguities:

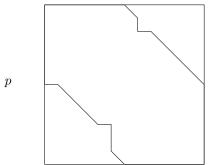
Definition (k-Minimal Prefix Length)

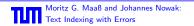
For two strings $u, v \in \Sigma^*$ with d(u, v) = k we define

$$\begin{split} \mathsf{minpref}_{k,u}(v) \\ &= \min \left\{ l \left| \begin{array}{c} \mathsf{d}(\mathsf{pref}_{l}(u), \mathsf{pref}_{l+|v|-|u|}(v)) = k & \text{and} \\ & \mathsf{suff}_{l+1}(u) = \mathsf{suff}_{l+|v|-|u|+1}(v) \end{array} \right\} \end{split}$$

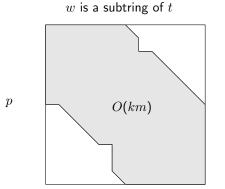
Outline O	Introduction 000	Worst-Case Optimal Search-Time	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

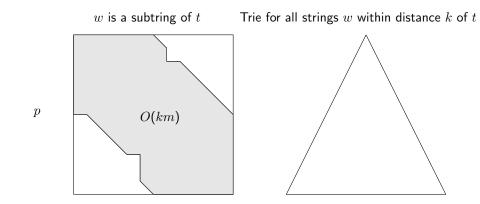


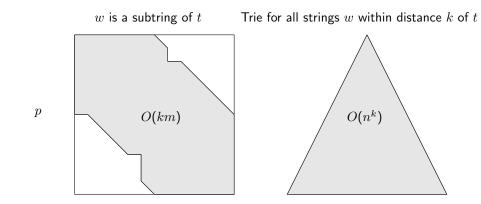


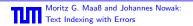


Outline O	Introduction 000	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion 00
Basic Idea				

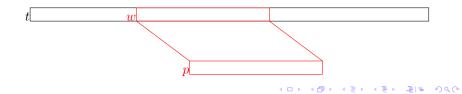


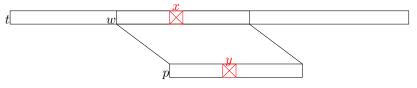


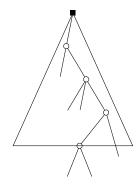


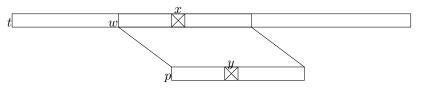


p

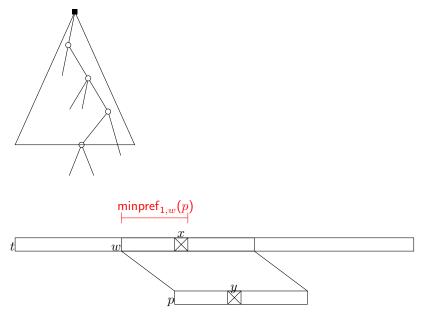


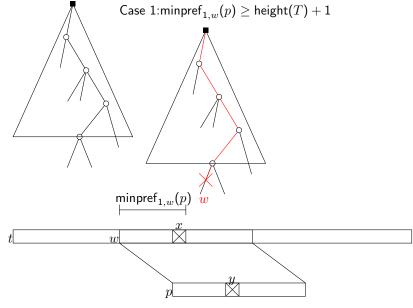




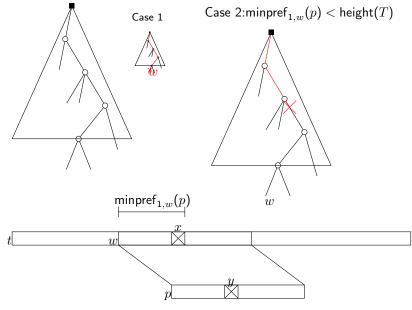


<□> <0>< <0>< <0>< <0>< <0>< <0<</p>

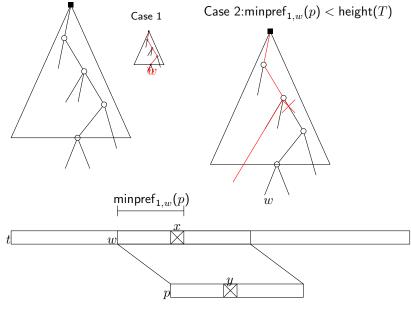




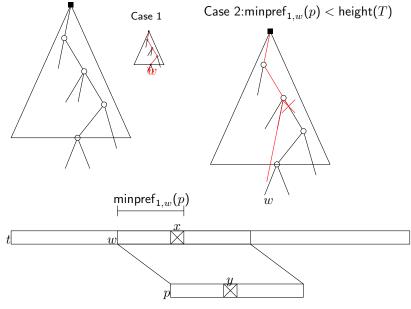
< □> < □> < □> < □> < □> < □> < □>



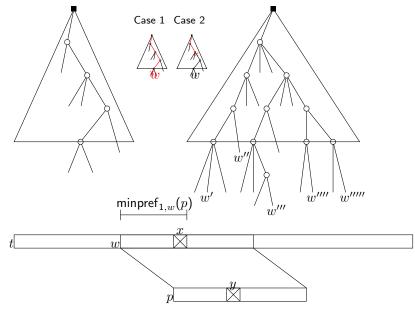
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

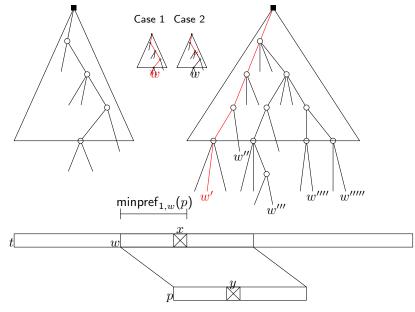


< □> < □> < □> < □> < □> < □> < □>

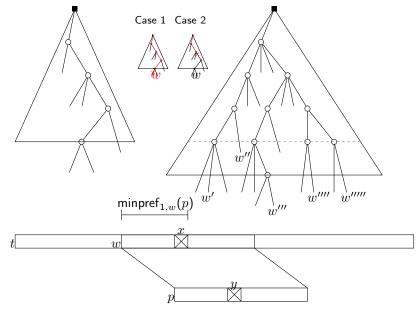


< □> < □> < □> < □> < □> < □> < □>

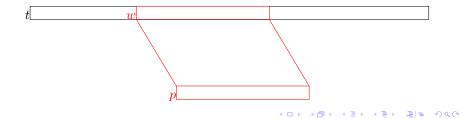


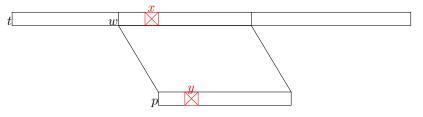


<□> <0>< = < => < => < => < => < => <</p>

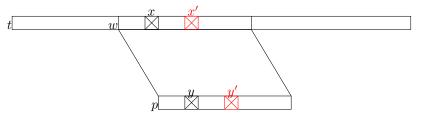


p

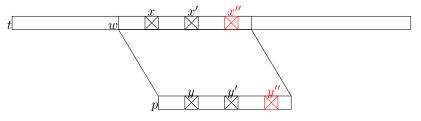




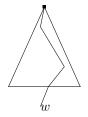
<□> <0>< = < => < => < => < => < => <</p>

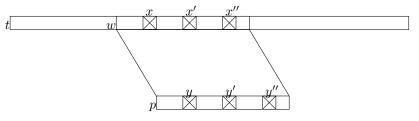


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

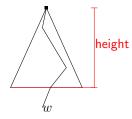


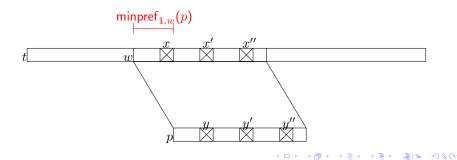
< □> < □> < □> < □> < □> < □> < □>

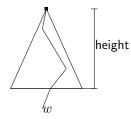


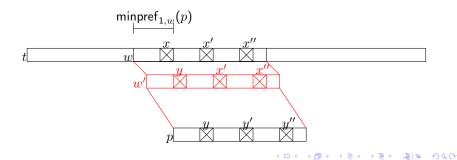


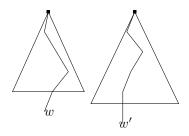
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

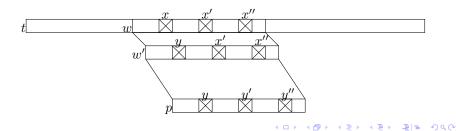


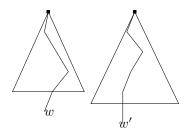


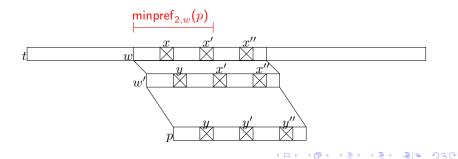


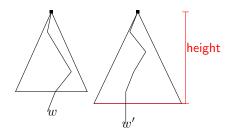


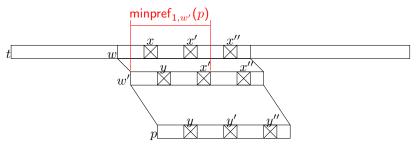




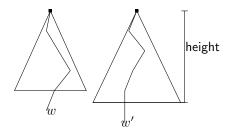


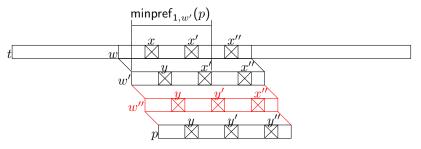


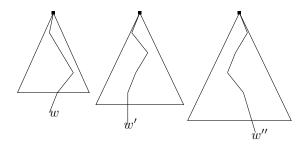


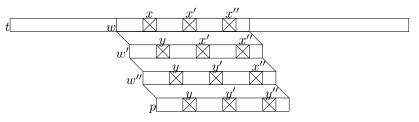


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

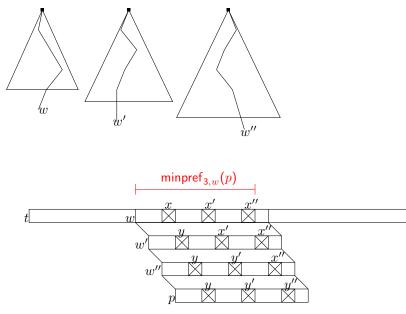


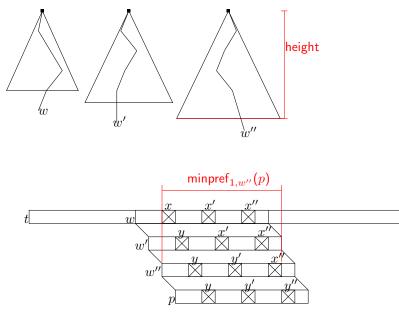


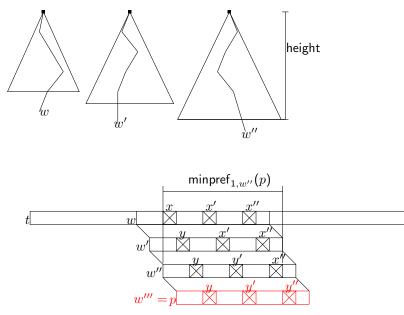


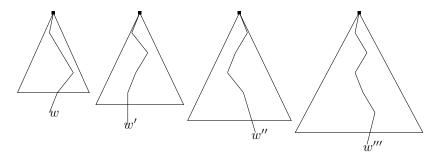


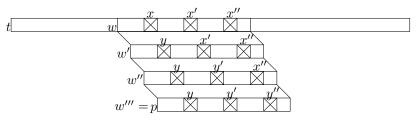
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □











Outline	Introduction
0	000

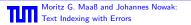
Bounded Preprocessing Space

Conclusion

Basic Idea

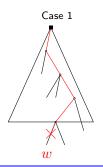
Leaves of error trees corresponding to matches

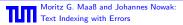
- reach a leaf-edge
- Preach the end of the pattern



Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○●○ ○○○○○○ ○○○○	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

- reach a leaf-edge
- 2 reach the end of the pattern



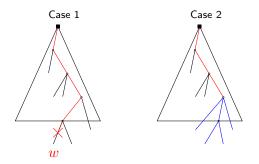


Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusio
0	000	000000 000000 0000	000	00

Basic Idea

Leaves of error trees corresponding to matches

- reach a leaf-edge, or
- Preach the end of the pattern



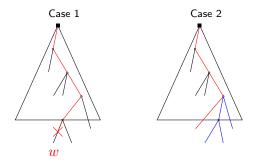


Outline O	Introduction 000	Worst-Case Optimal Search-Time 00000€0 0000000 00000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

When matching the pattern in the i-th error tree we may

- reach a leaf-edge, or
- **2** reach the end of the pattern and search the complete subtree.

(ロ) (個) (E) (E) (E) (E) (0)

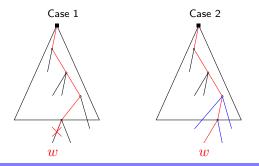


Outline O	Introduction 000	Worst-Case Optimal Search-Time 00000€0 0000000 00000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

When matching the pattern in the i-th error tree we may

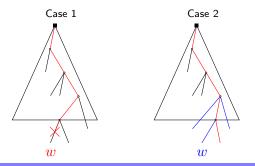
- reach a leaf-edge, or
- **2** reach the end of the pattern and search the complete subtree.

・・



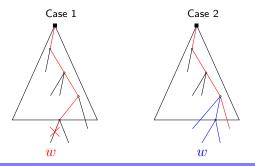
Outline O	Introduction 000	Worst-Case Optimal Search-Time 00000€0 0000000 00000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

- reach a leaf-edge, or
- **2** reach the end of the pattern and search the complete subtree.

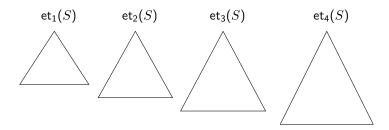


Outline O	Introduction 000	Worst-Case Optimal Search-Time 00000€0 0000000 00000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

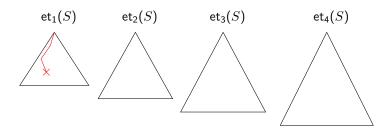
- reach a leaf-edge, or
- **2** reach the end of the pattern and search the complete subtree.



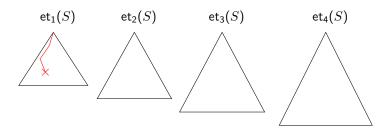
Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○○○○	Bounded Preprocessing Space	Conclusion 00
Basic Idea				



Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○○○○	Bounded Preprocessing Space	Conclusion 00
Basic Idea				

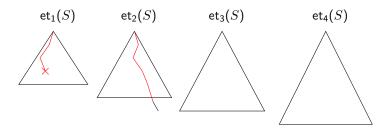


Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○○○○	Bounded Preprocessing Space	Conclusion 00
Basic Idea				



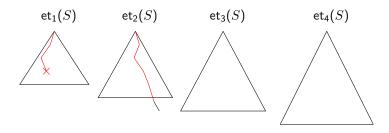
O(*m*)

Outline O	Introduction 000	Worst-Case Optimal Search-Time 000000 000000 00000 0000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				



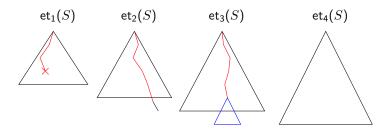
O(*m*)

Outline O	Introduction 000	Worst-Case Optimal Search-Time 000000● 0000000 00000	Bounded Preprocessing Space	Conclusion 00
Basic Idea				



O(m) = O(m + km)

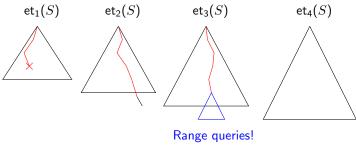
Outline O	Introduction 000	Worst-Case Optimal Search-Time 000000 000000 00000 0000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				



ADV =IE 4EV 4EV 4EV 4EV

O(m) = O(m + km)

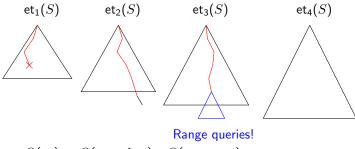
Outline O	Introduction 000	Worst-Case Optimal Search-Time 000000● 000000 0000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				



O(m) = O(m + km)

Outline O	Introduction 000	Worst-Case Optimal Search-Time 000000 000000 00000 0000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

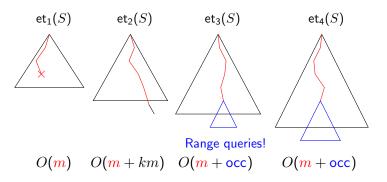
Search Time



 $O(m) \quad O(m + km) \quad O(m + occ)$

Outline O	Introduction 000	Worst-Case Optimal Search-Time 000000 000000 00000 0000	Bounded Preprocessing Space 000 0	Conclusion 00
Basic Idea				

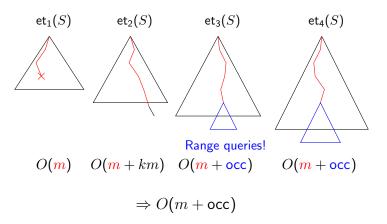
Search Time



<ロ> <週> <夏> <ミ> <ミ> <ミ> <見= のへで

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 0000	000	00
Basic Idea				

Search Time





Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space
0	000	000000 000000 0000	000 0

Range Queries

Input: Array A of size n containing integer < Query, Preproc. > values.

Conclusion

- RMQ: (Range Minimum Query) For (i, j) find $\langle o(1), o(n) \rangle$ index l with $A[l] = \min_{i \le k \le i} \{A[k]\}.$
- BVRQ: (Bounded Value Range Query) For $\langle O(|L|), O(n) \rangle$ (*i*, *j*, *k*) find all indexes

 $L = \{l \mid i \le l \le j \text{ and } A[l] \le k\}.$

CRQ: (Colored Range Query) For (i, j) find the $\langle o(|C|), o(n) \rangle$ distinct set of numbers

・ロト ・ @ ト ・ ミト ・ ミト - シュ の 🖓 💾

 $C = \{A[l] \mid i \le l \le j\}.$

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 0000	000 0	00

Range Queries

- Input: Array A of size n containing integer < Query, Preproc. > values.
- $\begin{array}{ll} \mathsf{RMQ:} & (\mathsf{Range Minimum Query}) \; \mathsf{For} \; (i,j) \; \mathsf{find} & < {\scriptscriptstyle O(1), \; O(n) >} \\ & \mathsf{index} \; l \; \mathsf{with} & & \\ & & A[l] = \min_{i \le k \le j} \{A[k]\}. \end{array}$
- BVRQ: (Bounded Value Range Query) For $\langle O(|L|), O(n) \rangle$ (*i*, *j*, *k*) find all indexes $L = \{l \mid i \leq l \leq i \text{ and } A[l] \leq k\}.$
 - CRQ: (Colored Range Query) For (i, j) find the < O(|C|), O(n) > distinct set of numbers

・ロト ・ @ ト ・ ミト ・ ミト - シュ の 🖓 💾

 $C = \{A[l] \mid i \le l \le j\}.$

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 0000	000	00

Range Queries

- Input: Array A of size n containing integer < Query, Preproc. > values.
- $\begin{array}{ll} \mathsf{RMQ:} & (\mathsf{Range Minimum Query}) \; \mathsf{For} \; (i,j) \; \mathsf{find} & < {\scriptscriptstyle O(1), \; O(n) >} \\ & \mathsf{index} \; l \; \mathsf{with} & & \\ & & A[l] = \min_{i < k < j} \{A[k]\}. \end{array}$
- BVRQ : (Bounded Value Range Query) For
(i, j, k) find all indexes
 $L = \{l \mid i \leq l \leq j \text{ and } A[l] \leq k\}.$ < O(|L|), O(n) >
 - CRQ: (Colored Range Query) For (i, j) find the $\langle O(|C|), O(n) \rangle$ distinct set of numbers

◆ □ ▶ ◆ @ ▶ ◆ ミ ▶ ◆ ミ ▶ ○ ミ ● の Q @ 📘

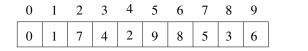
 $C = \{A[l] \mid i \le l \le j\}.$

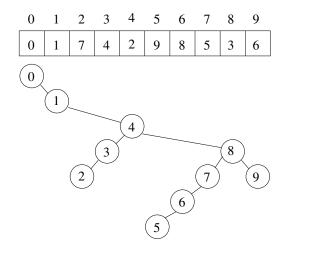
Outline Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0 000	000000 000000 0000	000 0	00

Range Queries

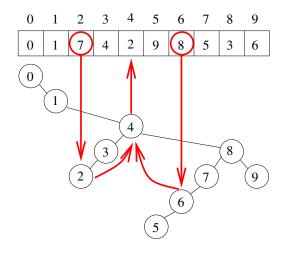
- Input: Array A of size n containing integer < Query, Preproc. > values.
- $\begin{array}{ll} \mathsf{RMQ:} & (\mathsf{Range Minimum Query}) \; \mathsf{For} \; (i,j) \; \mathsf{find} & < {\scriptscriptstyle O(1), \; O(n) >} \\ & \mathsf{index} \; l \; \mathsf{with} & & \\ & & A[l] = \min_{i < k < j} \{A[k]\}. \end{array}$
- BVRQ: (Bounded Value Range Query) For $\langle O(|L|), O(n) \rangle$ (i, j, k) find all indexes $L = \{l \mid i \leq l \leq j \text{ and } A[l] \leq k\}.$
 - CRQ: (Colored Range Query) For (i, j) find the $\langle O(|C|), O(n) \rangle$ distinct set of numbers

$$C = \{A[l] \mid i \le l \le j\}.$$

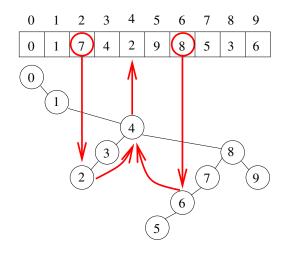




RMQ = Cartesian Tree (in O(n))



RMQ = Cartesian Tree(in <math>O(n)) + constant time LCA (in O(n))



RMQ = Cartesian Tree(in <math>O(n)) + constant time LCA (in O(n))

 \Rightarrow Query time is O(1)

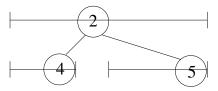
Bounded value range queries are solved through successive RMQs, e.g., querying (2,7,6):

The querytree is binary and has |L| inner nodes, hence we need O(|L|) RMQs in total.

Bounded value range queries are solved through successive RMQs, e.g., querying (2,7,6):

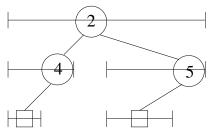
The querytree is binary and has |L| inner nodes, hence we need O(|L|) RMQs in total.

Bounded value range queries are solved through successive RMQs, e.g., querying (2,7,6):



The querytree is binary and has |L| inner nodes, hence we need O(|L|) RMQs in total.

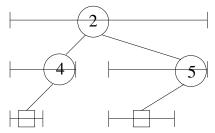
Bounded value range queries are solved through successive RMQs, e.g., querying (2,7,6):



The querytree is binary and has |L| inner nodes, hence we need O(|L|) RMQs in total.

(ロ) (四) (三) (三) (三) (三) (○)

Bounded value range queries are solved through successive RMQs, e.g., querying (2,7,6):



The querytree is binary and has |L| inner nodes, hence we need O(|L|) RMQs in total.

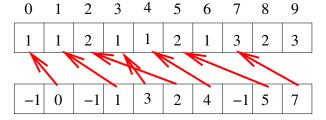
CRQ

Colored range queries are reduced by using another array which stores the last index of each value. A CRQ (i, j) then transforms into a BVRQ (i, j, i - 1) on the new array:

(ロ) (部) (E) (E) (E) (の)

CRQ

Colored range queries are reduced by using another array which stores the last index of each value. A CRQ (i, j) then transforms into a BVRQ (i, j, i - 1) on the new array:



Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
Range Quer	ies			

Definition (Error Sets)

Defined inductively by $W_0 = S$ and

$$W_i = \mathsf{\Gamma}_{h_{i-1}}(W_{i-1}) \cap S_i \ ,$$

where

- $\Gamma_l = \{op(u)v \mid uv \in A, |op(u)| \le l+1, op \in \{del, ins, sub\}\},$ • $S_i = \{r \mid \text{there exists } s \in S \text{ such that } d(s, r) = i\},$
- and h_i are arbitrary integer parameters.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
Range Quer	ies			

Definition (Error Sets)

Defined inductively by $W_0 = S$ and

$$W_i = \mathsf{\Gamma}_{h_{i-1}}(W_{i-1}) \cap S_i \ ,$$

where

• $\Gamma_l = \{op(u)v \mid uv \in A, |op(u)| \le l+1, op \in \{\mathsf{del}, \mathsf{ins}, \mathsf{sub}\}\},\$

・ロト・日本・モート モー ショー ショー

- $S_i = \{r \mid \text{there exists } s \in S \text{ such that } d(s, r) = i\},$
- and h_i are arbitrary integer parameters.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
Range Quer	ies			

Definition (Error Sets)

Defined inductively by $W_0 = S$ and

$$W_i = \mathsf{\Gamma}_{h_{i-1}}(W_{i-1}) \cap S_i \ ,$$

where

• $\Gamma_l = \{op(u)v \mid uv \in A, |op(u)| \le l+1, op \in \{\mathsf{del}, \mathsf{ins}, \mathsf{sub}\}\},\$

- $S_i = \{r \mid \text{there exists } s \in S \text{ such that } \mathsf{d}(s, r) = i\},\$
- and h_i are arbitrary integer parameters.

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○ ○○○○ ○○○○	Bounded Preprocessing Space	Conclusion 00
Range Quer	ies			

Definition (Error Sets)

Defined inductively by $W_0 = S$ and

$$W_i = \mathsf{\Gamma}_{h_{i-1}}(W_{i-1}) \cap S_i \ ,$$

where

Γ_l = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}},
S_i = {r | there exists s ∈ S such that d(s, r) = i},

▲□▶ ▲@▶ ▲ 글▶ ▲ 글▶ 글|= 約٩00

• and h_i are arbitrary integer parameters.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000	00
Range Quer	ies			

Definition (Error Sets)

Defined inductively by $W_0 = S$ and

$$W_i = \mathsf{\Gamma}_{h_{i-1}}(W_{i-1}) \cap S_i \ ,$$

where

• $\Gamma_l = \{op(u)v \mid uv \in A, |op(u)| \le l+1, op \in \{\mathsf{del}, \mathsf{ins}, \mathsf{sub}\}\},\$

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○

- $S_i = \{r \mid \text{there exists } s \in S \text{ such that } \mathsf{d}(s, r) = i\},$
- and h_i are arbitrary integer parameters.

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○ ○○○○○ ○○○○	Bounded Preprocessing Space 000 0	Conclusion 00
Range Quer	ries			

• Defined as trie for W_i .

- Label leaf x by suffix number and $l = \text{minpref}_{k,s}(\text{path}(x))$.
- Leaf is a hit if pattern length greater than l.



Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○ ○○○○○ ○○○○	Bounded Preprocessing Space 000 0	Conclusion 00
Range Quer	ies			

- Defined as trie for W_i .
- Label leaf x by suffix number and $l = \text{minpref}_{k,s}(\text{path}(x))$.
- Leaf is a hit if pattern length greater than *l*.



Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 0000	000 0	00
Range Quer	ies			

- Defined as trie for W_i .
- Label leaf x by suffix number and $l = \text{minpref}_{k,s}(\text{path}(x))$.

< □ > < @ > < ≥ > < ≥ > ≤ ≥ ≤ ≤ ≤ の < ⊂ └

• Leaf is a hit if pattern length greater than *l*.



utline	Introduc
	000

roduction

Worst-Case Optimal Search-Time

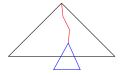
Bounded Preprocessing Space

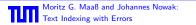
Conclusion

Range Queries

Result Selection using Range Queries

- Array of leaves A, additional array B.
- Subtree ranges at nodes.
- B contains minimal prefix l
- B contains starting positions
- B contains string identifiers





utline	Introduct
	000

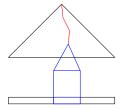
Bounded Preprocessing Space

Conclusion

Range Queries

Result Selection using Range Queries

- Array of leaves A, additional array B.
- Subtree ranges at nodes.
- B contains minimal prefix l



Dutline	Introductio
C	000

Bounded Preprocessing Space

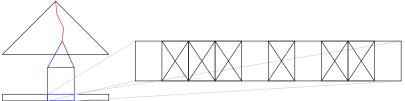
Conclusion

Range Queries

Result Selection using Range Queries

- Array of leaves A, additional array B.
- Subtree ranges at nodes.
- B contains minimal prefix l

(日) (同) (日) (日) (日) (日) (0) (0)



Outline	Introductio
0	000

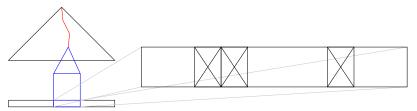
Bounded Preprocessing Space

Conclusion

Range Queries

Result Selection using Range Queries

- Array of leaves A, additional array B.
- Subtree ranges at nodes.
- B contains minimal prefix l
- B contains starting positions
- B contains string identifiers



Outline	Introductio
0	000

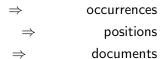
Bounded Preprocessing Space

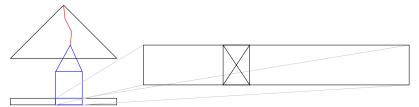
Conclusion

Range Queries

Result Selection using Range Queries

- Array of leaves A, additional array B.
- Subtree ranges at nodes.
- B contains minimal prefix l
- B contains starting positions
- B contains string identifiers





Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 00000	000	00
Analysis				

- Set $h_i = maxpref(W_i)$ (the height of $et_i(S)$)
- The error sets have size $|W_i| = O(h_0 h_1 \cdots h_{i-1} |S|)$
- Construction time for $et_i(S)$ is $O(h_0h_1\cdots h_i|S|)$
- $h_i = O(\log n)$ in expectation and with high probability



Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 00000	000	00
Analysis				

- Set $h_i = maxpref(W_i)$ (the height of $et_i(S)$)
- The error sets have size $|W_i| = O(h_0 h_1 \cdots h_{i-1} |S|)$
- Construction time for $et_i(S)$ is $O(h_0h_1\cdots h_i|S|)$
- $h_i = O(\log n)$ in expectation and with high probability

・ロト・日本・モート モー ショー ショー

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 00000	000	00
Analysis				

- Set $h_i = maxpref(W_i)$ (the height of $et_i(S)$)
- The error sets have size $|W_i| = O(h_0 h_1 \cdots h_{i-1} |S|)$
- Construction time for $et_i(S)$ is $O(h_0h_1\cdots h_i|S|)$
- $h_i = O(\log n)$ in expectation and with high probability

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 00000	000	00
Analysis				

- Set $h_i = maxpref(W_i)$ (the height of $et_i(S)$)
- The error sets have size $|W_i| = O(h_0 h_1 \cdots h_{i-1} |S|)$
- Construction time for $et_i(S)$ is $O(h_0h_1\cdots h_i|S|)$
- $h_i = O(\log n)$ in expectation and with high probability

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 00000	000	00
Analysis				

Random Model

- Stationary ergodic source
- mixing condition

 $c_1 \Pr{\mathcal{A}}\Pr{\mathcal{B}} \leq \Pr{\mathcal{A} \cap \mathcal{B}} \leq c_2 \Pr{\mathcal{A}}\Pr{\mathcal{B}}.$

Probability of common substring:

$$r_{2} = \lim_{n \to \infty} \frac{-\ln\left(\sum_{w \in \Sigma^{n}} \left(\Pr\left\{w\right\}\right)^{2}\right)}{2n}$$

< ロ > < @ > < E > < E > E = のQで 🧖

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○●○○	Bounded Preprocessing Space 000 0	Conclusion 00
Analysis				

Random Model

- Stationary ergodic source
- mixing condition

 $c_1 \Pr \left\{ \mathcal{A} \right\} \Pr \left\{ \mathcal{B} \right\} \le \Pr \left\{ \mathcal{A} \cap \mathcal{B} \right\} \le c_2 \Pr \left\{ \mathcal{A} \right\} \Pr \left\{ \mathcal{B} \right\}.$

• Probability of common substring:

$$r_{2} = \lim_{n \to \infty} \frac{-\ln\left(\sum_{w \in \Sigma^{n}} \left(\Pr\left\{w\right\}\right)^{2}\right)}{2n}$$

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 00000	000	00
Analysis				

Random Model

- Stationary ergodic source
- *mixing* condition

 $c_1 \Pr \left\{ \mathcal{A} \right\} \Pr \left\{ \mathcal{B} \right\} \le \Pr \left\{ \mathcal{A} \cap \mathcal{B} \right\} \le c_2 \Pr \left\{ \mathcal{A} \right\} \Pr \left\{ \mathcal{B} \right\}.$

• Probability of common substring:

$$r_{2} = \lim_{n \to \infty} \frac{-\ln\left(\sum_{w \in \Sigma^{n}} (\Pr\{w\})^{2}\right)}{2n}$$

.

< ロ > < 母 > < 三 > < 三 > 三日 = の < で 🧖

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○●○	Bounded Preprocessing Space	Conclusion 00
Analysis				

- Let *l* be the expected length of a common substring.
- Each step adds one error to the strings.
- Possibly more matching characters afterwards, expected increment is at most *l*.
- $\Rightarrow h_i \leq (2i+1)l.$
- Thus,

$\Pr\left\{l_{max} > (2k+1)(c''h+1)\right\} \le c'k^2h^2e^{-2(1+\epsilon)h}$

・ロト ・@ ト ・ヨト ・ヨヨー のへで 🕒

as $h \to \infty$.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 00000	000	00
Analysis				

- Let *l* be the expected length of a common substring.
- Each step adds one error to the strings.
- Possibly more matching characters afterwards, expected increment is at most *l*.
- $\Rightarrow h_i \leq (2i+1)l.$
- Thus,

$\Pr\left\{l_{max} > (2k+1)(c''h+1)\right\} \le c'k^2h^2e^{-2(1+\epsilon)h}$

র্বা স্থায় 🖅 🕹 🖅 🕹 🖉

as $h \to \infty$.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 00000	000	00
Analysis				

- Let *l* be the expected length of a common substring.
- Each step adds one error to the strings.
- Possibly more matching characters afterwards, expected increment is at most *l*.
- $\Rightarrow h_i \leq (2i+1)l.$
- Thus,

$$\Pr\left\{l_{max} > (2k+1)(c''h+1)\right\} \le c'k^2h^2e^{-2(1+\epsilon)h}$$

・ロト ・昼 ト ・ ヨト ・ ヨト ・ のへで 💾

as $h \to \infty$.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 00000	000	00
Analysis				

- Let *l* be the expected length of a common substring.
- Each step adds one error to the strings.
- Possibly more matching characters afterwards, expected increment is at most *l*.

•
$$\Rightarrow h_i \leq (2i+1)l.$$

• Thus,

$$\Pr\left\{l_{max} > (2k+1)(c''h+1)\right\} \le c'k^2h^2e^{-2(1+\epsilon)h}$$

as $h \to \infty$.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 00000	000	00
Analysis				

- Let *l* be the expected length of a common substring.
- Each step adds one error to the strings.
- Possibly more matching characters afterwards, expected increment is at most *l*.
- $\Rightarrow h_i \leq (2i+1)l.$
- Thus,

$$\Pr\left\{l_{max} > (2k+1)(c''h+1)\right\} \le c'k^2h^2e^{-2(1+\epsilon)h}$$

 $\text{ as }h\rightarrow\infty.$

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	000000 000000 0000	000	00
Analysis				

- the expected height of the first tree is $l = O(\log n)$.
- \bullet Conditioning on $l \leq c \log n$ yields the expected size

$$\mathbf{E}[n \cdot h^k] \le n(ck \ln n)^k + \sum_{i=ck \ln n}^{\infty} ni^k \Pr\{l_{max} > i\}$$

$$< n(ck \ln n)^k + O(1)$$

$$= O(n \log^k n).$$

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○○○○	Bounded Preprocessing Space 000 0	Conclusion 00
Analysis				

- the expected height of the first tree is $l = O(\log n)$.
- \bullet Conditioning on $l \leq c \log n$ yields the expected size

$$\mathbf{E}[\mathbf{n} \cdot \mathbf{h}^{\mathbf{k}}] \leq n(ck \ln n)^{k} + \sum_{i=ck \ln n}^{\infty} ni^{k} \Pr\{l_{max} > i\}$$
$$< n(ck \ln n)^{k} + O(1)$$
$$= O(n \log^{k} n).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○●	Bounded Preprocessing Space 000 0	Conclusion 00
Analysis				

- the expected height of the first tree is $l = O(\log n)$.
- \bullet Conditioning on $l \leq c \log n$ yields the expected size

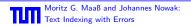
$$\mathbf{E}[n \cdot h^k] \le n(ck \ln n)^k + \sum_{i=ck \ln n}^{\infty} ni^k \mathsf{Pr}\{l_{max} > i\}$$
$$< n(ck \ln n)^k + O(1)$$
$$= O(n \log^k n).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○○●	Bounded Preprocessing Space 000 0	Conclusion 00
Analysis				

- the expected height of the first tree is $l = O(\log n)$.
- \bullet Conditioning on $l \leq c \log n$ yields the expected size

$$\begin{split} \mathbf{E}[n \cdot h^k] &\leq n(ck \ln n)^k + \sum_{i=ck \ln n}^{\infty} ni^k \mathsf{Pr}\{l_{max} > i\} \\ &< n(ck \ln n)^k + O(1) \\ &= O(n \log^k n). \end{split}$$



Outline O	Introduction 000	Worst-Case Optimal Search-Time ○○○○○○○ ○○○○●	Bounded Preprocessing Space 000 0	Conclusion 00
Analysis				

- the expected height of the first tree is $l = O(\log n)$.
- \bullet Conditioning on $l \leq c \log n$ yields the expected size

$$\begin{split} \mathbf{E}[n \cdot h^k] &\leq n(ck \ln n)^k + \sum_{i=ck \ln n}^{\infty} ni^k \mathsf{Pr}\{l_{max} > i\} \\ &< n(ck \ln n)^k + O(1) \\ &= O(n \log^k n). \end{split}$$

4日 + 4 部 + 4 目 + 4 目 + 9 4 で

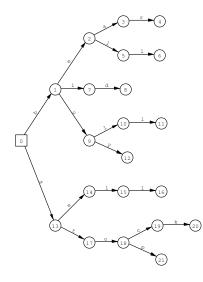
Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space ●○○ ○	Conclusion 00
Weak Tries	and Error Trees			

Weak Tries

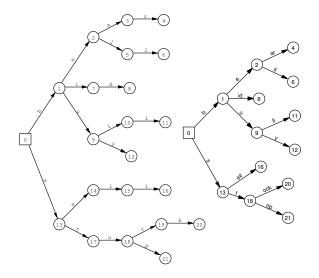
Definition (Weak Trie)

For l > 0, the *l*-weak trie for a set of strings $S \subset \Sigma^*$ is a rooted tree with edges labeled by characters from Σ . For any node with a depth less than l, all outgoing edges are labeled by different characters, and there are no branching nodes with a depth of more than l. Each path from the root to a leaf can be read as a string from S.

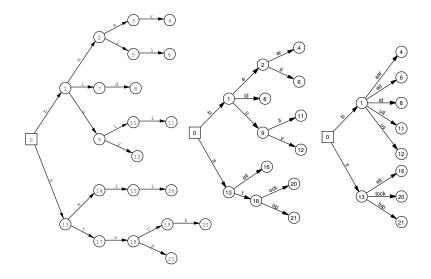
Tries and Weak Tries



Tries and Weak Tries



Tries and Weak Tries



Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space	Conclusion 00
Weak Tries	and Error Trees			

• Define the error trie as h_i -weak trie:

$$\mathsf{et}_{i}\left(S\right) = \mathcal{W}_{h_{i}}\left(W_{i}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Leaf labels are the same as before: leaf x is labeled by suffix number and l = minpref_{k,s}(path(x)).
- Leaf is a hit if pattern length greater than *l*.
- Order of leaves is not important for range queries.



Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space ○○● ○	Conclusion 00
Weak Tries	and Error Trees			

• Define the error trie as h_i -weak trie:

$$\mathsf{et}_{i}\left(S\right) = \mathcal{W}_{h_{i}}\left(W_{i}\right)$$

- Leaf labels are the same as before: leaf x is labeled by suffix number and l = minpref_{k,s}(path(x)).
- Leaf is a hit if pattern length greater than *l*.
- Order of leaves is not important for range queries.

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space ○○● ○	Conclusion 00
Weak Tries	and Error Trees			

• Define the error trie as h_i -weak trie:

$$\mathsf{et}_{i}\left(S\right) = \mathcal{W}_{h_{i}}\left(W_{i}\right)$$

- Leaf labels are the same as before: leaf x is labeled by suffix number and l = minpref_{k,s}(path(x)).
- Leaf is a hit if pattern length greater than *l*.
- Order of leaves is not important for range queries.

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space $\circ \circ \bullet$	Conclusion 00
Weak Tries	and Error Trees			

• Define the error trie as h_i -weak trie:

$$\mathsf{et}_{i}\left(S\right) = \mathcal{W}_{h_{i}}\left(W_{i}\right)$$

- Leaf labels are the same as before: leaf x is labeled by suffix number and l = minpref_{k,s}(path(x)).
- Leaf is a hit if pattern length greater than *l*.
- Order of leaves is not important for range queries.

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00
Analysis				

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \leq ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).

র্বা জিলা বিদ্যালয় 🖅 🖉 🖉

• Expected search time: O(1).

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00
Analysis				

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \leq ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).
- Expected search time: O(1).

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00
Analysis				

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \leq ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).
- Expected search time: O(1)



Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00
Analysis				

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \leq ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Expected search time: O(1)

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00

Analysis

Basic Bounds

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \leq ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).

• Expected search time: O(1)

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00

Analysis

Basic Bounds

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \leq ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).

• Expected search time: O(1).

Outline	Introduction	Worst-Case Optimal Search-Time	Bounded Preprocessing Space	Conclusion
0	000	0000000 0000000 0000	000 •	00

Analysis

Basic Bounds

Data structure:

- Set $h_i = ck \log n + i$.
- The size is $O(n \log^k n)$.
- The preprocessing takes $O(n \log^{k+1} n)$ (weak tries!).

Searching:

- For $m \le ck \log n$: as before in $O(m + \operatorname{occ})$ time.
- For $m > ck \log n$: use a generalized suffix tree (as a filter).

• Expected search time: O(1).

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space	Conclusion ●○	
Conclusion and Open Problems					

- Worst-case optimal search-time O(m + occ) for a *constant* number of errors.
- Average-case index size $O(n \log^k n)$ for k errors.
- Matches average search time O(m log^k n) with index size O(n) (M 2004).
- Achieved through

Outline O	Introduction	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ●○	
Conclusion and Open Problems					

- Worst-case optimal search-time O(m + occ) for a *constant* number of errors.
- Average-case index size $O(n \log^k n)$ for k errors.
- Matches average search time $O(m \log^k n)$ with index size O(n) (M 2004).
- Achieved through
 - recursive case-distinction upon the location of the error.
 - arange queries to select leaves from subtrees

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ●○	
Conclusion and Open Problems					

- Worst-case optimal search-time O(m + occ) for a *constant* number of errors.
- Average-case index size $O(n \log^k n)$ for k errors.
- Matches average search time $O(m \log^k n)$ with index size O(n) (M 2004).
- Achieved through
 - recursive case-distinction upon the location of the error.

range queries to select leaves from subtrees

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ●○	
Conclusion and Open Problems					

- Worst-case optimal search-time O(m + occ) for a *constant* number of errors.
- Average-case index size $O(n \log^k n)$ for k errors.
- Matches average search time $O(m \log^k n)$ with index size O(n) (M 2004).
- Achieved through
 - recursive case-distinction upon the location of the error.

range queries to select leaves from subtrees

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space	Conclusion ●○	
Conclusion and Open Problems					

- Worst-case optimal search-time O(m + occ) for a *constant* number of errors.
- Average-case index size $O(n \log^k n)$ for k errors.
- Matches average search time O(m log^k n) with index size O(n) (M 2004).
- Achieved through
 - recursive case-distinction upon the location of the error.

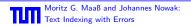
• range queries to select leaves from subtrees



Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ●○	
Conclusion and Open Problems					

- Worst-case optimal search-time O(m + occ) for a *constant* number of errors.
- Average-case index size $O(n \log^k n)$ for k errors.
- Matches average search time O(m log^k n) with index size O(n) (M 2004).
- Achieved through
 - recursive case-distinction upon the location of the error.

• range queries to select leaves from subtrees



Outline	Introduction
0	000

Bounded Preprocessing Space

・ロト ・母 ト・ヨト・ヨト 三日日 のへで 🧾

Conclusion

Conclusion and Open Problems

Open Problems

• Can we close the gap?

- Our new indexing structure works best for "small" patterns of length $O(\log n)$.
- On average, "small" patterns are the hardest to find.
- The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
- No lower bounds on the index size for O(m + occ)-time lookup are known.

• Can we use it?



Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space	Conclusion ○●
Conclusion	and Open Problems			

Open Problems

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.

• Can we use it?

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion O
Conclusion a	and Open Problems			

Open Problems

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length Ω(log^k n) can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.

• Can we use it?

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ○●
Conclusion	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are largel
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

Is compression applicable?

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ⊙●
Conclusion a	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are large!
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

Is compression applicable?

Outline O	Introduction	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ○●
Conclusion a	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are large!
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

- Is compression applicable?
- Construction time?

Outline O	Introduction	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ○●
Conclusion a	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are large!
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

- Is compression applicable?
- Construction time?

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space	Conclusion ○●
Conclusion :	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are large!
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

- Is compression applicable?
- Construction time?

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space	Conclusion ○●
Conclusion :	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are large!
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

- Is compression applicable?
- Construction time?

Outline O	Introduction 000	Worst-Case Optimal Search-Time 0000000 0000000 0000	Bounded Preprocessing Space 000 0	Conclusion ○●
Conclusion	and Open Problems			

- Can we close the gap?
 - Our new indexing structure works best for "small" patterns of length $O(\log n)$.
 - On average, "small" patterns are the hardest to find.
 - The case of "large" patterns of length $\Omega(\log^k n)$ can be handled with the data structure of Cole et. al 2004.
 - No lower bounds on the index size for O(m + occ)-time lookup are known.
- Can we use it?
 - Constant factors are large!
 - Implementation by (suffix) arrays seems possible and could be more space efficient.

- Is compression applicable?
- Construction time?

Outline	Introductio
0	000

Worst-Case Optimal Search-Time

Bounded Preprocessing Space

Conclusion

Thank you!

Questions?

Text Indexing with Errors

Moritz G. Maaß and Johannes Nowak

{maass,nowakj}@in.tum.de Institut für Informatik Technische Universität München

June 20, 2005



Outline Introduction Worst-0		
0 000 00000 00000 0000	000	00

Example

GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG



Example - Occurrences

$\label{eq:GacticalAAAC} GGGTTGTTACCGGGTATGGCTAGAATCATC: (6.9) \\ CGTACTGCGTGACCGACGGATGACGAATGAAGGAGTTAAC \\ TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT: (20,23), (20,24), (22,25), (35,38) \\ CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG: (11,14), (22,25) \\ \end{array}$



Example - Positions

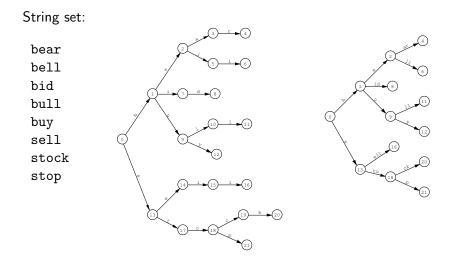
GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC: 6 CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT: 20,22,35 CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG: 11,22



Example - Documents

GACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC CGTACTGCGTGACCGACGGATGACGAATAAAGGAGTTAAC TTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT CTGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG

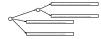
Tries and PATRICIA Trees

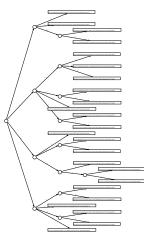


Example

GAC TCAAAACGGG TTGTTACCGGG TATGGC TAGAA TCA TC CGTAC TGCGTGACGACGACGACGACGACGA TAAAGAG TTAAC TTGAGGGCGGCGACGACCTACAAACA TGTTCGGAAACT CTGTCCAAAA TAAACCTGAGACCAACG TTTAGCAAGAAG

AAC TCAAAACGGG TTGTTACCGGG TATGGC TAGAA TCA TC CACTCAAAACGGGTTGTTACCGGGTATGGCTAGAATCATC TAC TCAAAACGGG TTGTTACCGGG TATGGC TAGAA TCA TC GCC TC AA AAC GGG TTGT TAC C GGG TA TGGC TA GAA TC A TC GGC TCAAAACGGG TTGTTACCGGG TATGGC TAGAA TCA TC G TC TC AA AAC GGG TTGTTAC C GGG TATGGC TAGAA TC A TC AGTAC TOCOTO ACCO ACCO A TO ACCO A TAA AGGAG TTA AC GGTAC TGCGTGACCGACGGA TGACGAA TAAAGGAG TTAAC TGTAC TGCGTGACCGACGGA TGACGAA TAAAGGAG TTAAC CATAC TGCGTGACCGACGGA TGACGAA TAAAGGAG TTAAC CCTAC TGCGTGACCGACGGA TGACGAA TAAAGGAG TTAAC C TTAC TGCGTGACCGACGGA TGACGAA TAAAGGAG TTAAC ATGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT CTGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT G TG AGGGCGGCGAGCGACCTAC AAACA TG TTC GGG AAACT TAGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT TCGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT TGGAGGGCGGCGAGCGACCTACAAACATGTTCGGGAAACT ATGTCCAAAA TAAACCTGAGACCAACCGTTTAGCAAGAAG G TG TC CAAAA TAAACCTG AG ACCAACCG TT TAGCAAGAAG TWITCCARAR TARACCTGAGACCAACCGTTTAGCAAGAAG CAGTCCAAAATAAACCTGAGACCAACCGTTTAGCAAGAAG CCGTCCAAAA TAAACCTGAGACCAACCG TTTAGCAAGAAG CGG TCCAAAA TAAACCTGAGACCAACCG TTTAGCAAGAAG





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Edit Distance

• Dynamic programming version:

$$\begin{split} D_{i,j} &= \min\{D_{i-1,j} + 1, D_{i-1,j-1} + \delta(i,j), D_{i,j-1} + 1\},\\ \text{for all } 1 \leq i \leq |u|, \ 1 \leq j \leq |v|.\\ \delta(i,j) &= \begin{cases} 1 & \text{if } u[i] \neq v[j] \\ 0 & \text{if } u[i] = v[j] \end{cases} \end{split}$$
• As operator $op : \Sigma^* \to \Sigma^*$, i.e.,

$$op_{del,2}(ACAAC) = AAAC$$

 $op_{sub.2,A}(ACAAC) = ACAAA$