

New results for the 2-interval pattern problem

Guillaume Blin¹, Guillaume Fertin¹ and Stéphane Vialette²

¹LINA, FRE CNRS 2729 Université de Nantes, 2 rue de la houssinière BP 92208 44322 Nantes Cedex 3 FRANCE {blin,fertin}@lina.univ-nantes

> LABORATOIRE D'INFORMATIQUE DE NANTES ATLANTIQUE

²LRI, UMR CNRS 8623 Université Paris-Sud Faculté des Sciences d'Orsay, Bât 490, 91405 Orsay Cedex FRANCE vialette@lri.fr

Outline

- Preliminaries
 - Notations
 - The 2-interval pattern problem
- Two polynomial time algorithms
- Np-completeness proof

Outline

- Preliminaries
 - Notations
 - The 2-interval pattern problem
- Two polynomial time algorithms
- Np-completeness proof

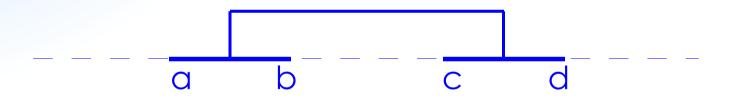
- 1-interval
 - An interval (1-interval) is defined by its endpoints as follows:
 - M = [a:b], N = [c:d]
 - 1-intervals in precedence
 - M < N iff b < c
 - M and N are disjoint (M \cap N = \varnothing) iff M < N or N < M

<u>a b</u>

С

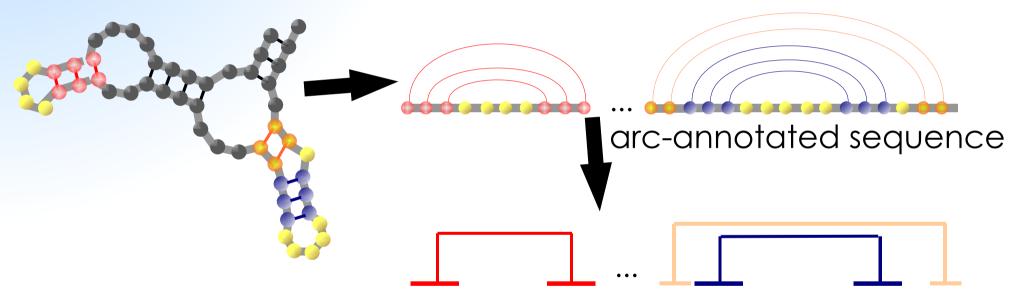
d

- 2-interval
 - the disjoint union of two 1-intervals on a line.
 - -D = (M,N) where M = [a:b] < N = [c:d]



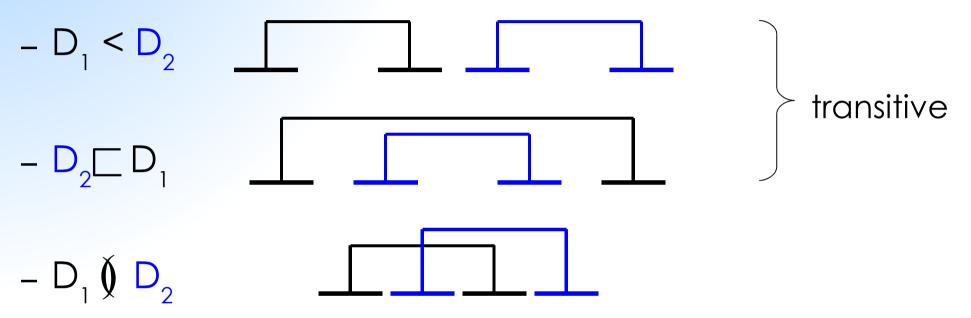
- Two 2-intervals D₁=(M₁,N₁) and D₂=(M₂,N₂) are comparable iff:
 - $-(M_1 \cap M_2) \cup (M_1 \cap N_2) \cup (N_1 \cap M_2) \cup (N_1 \cap N_2) = \emptyset$

 2-intervals are macroscopic describers of RNA secondary structure



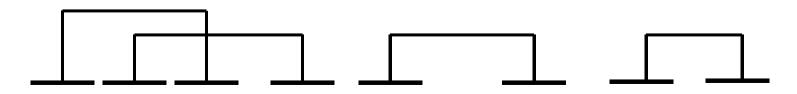
- 1-interval \equiv sequence of bases
- 2-interval ≡ a sequence of consecutive pair of bases, i.e. a stem

• Relationship between 2-intervals:

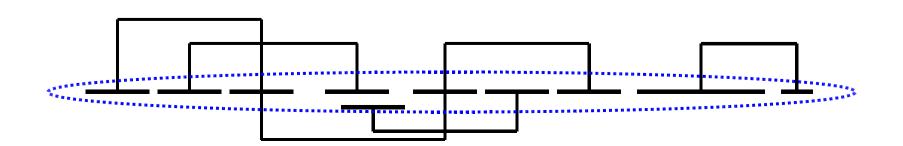


- If D_1 and D_2 are comparable by <, \Box or \oint then they are disjoint !

- R-comparability:
 - Two 2-intervals D_1 and D_2 are α -comparable for some $\alpha \in \{<, \Box, \emptyset\}$ if $D_1 \alpha D_2$ or $D_2 \alpha D_1$.
 - Example: $D_1 and D_2$ are <-comparable if $D_1 < D_2$ or $D_2 < D_1$
 - Extension to a set of 2-intervals
 - Example: A set of {<, ∮}-comparable 2-intervals

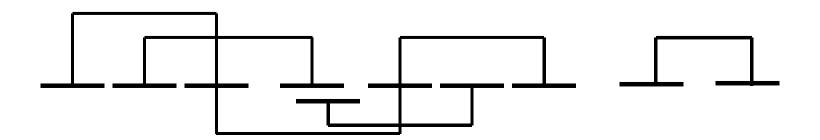


- Support:
 - Given a set *D* of 2-intervals, the support of *D* is the set of all 1-intervals involved in *D*.
 - Unlimited support : no restrictions

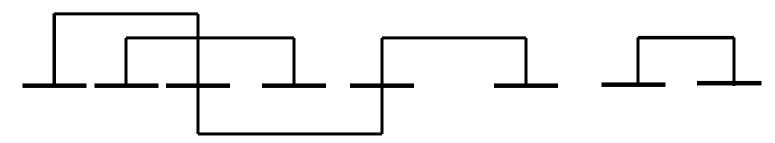


- Support:
 - Given a set D of 2-intervals, the support of D is the set of all 1-intervals involved in D.
 - Unlimited support

Unitary support : all 1-intervals in D are of the same size



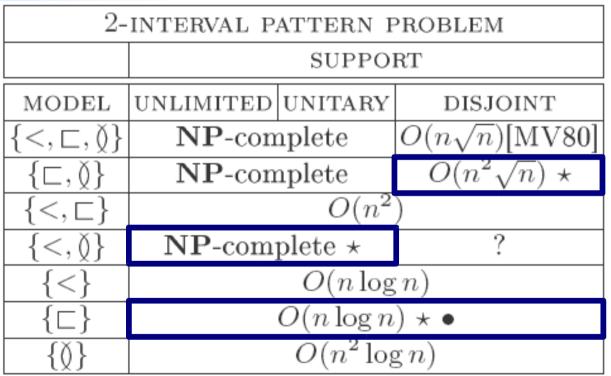
- Support:
 - Given a set *D* of 2-intervals, the support of *D* is the set of all 1-intervals involved in *D*.
 - Unlimited support
 - **Disjoint support** : all 1-intervals in *D* are of the same size and disjoint



- 2-interval Pattern Problem:
 - Instance :
 - A set of 2-intervals *D* over a support, a model
 R ⊆ {<, □, ≬} and a positive integer k
 - Question :
 - Is it possible to find a subset $D' \subseteq D$ such that D' is R-comparable and $|D'| \ge k$?

Results

 Seven models for R and three restrictions on the support



with n = |D|

Outline

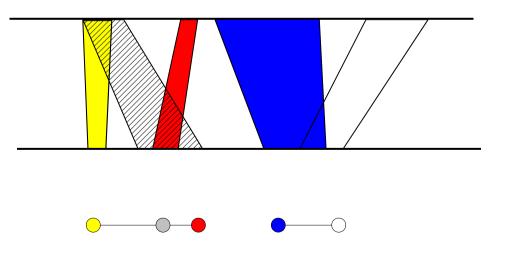
- Preliminaries
- Two polynomial time algorithms
 - 2-IP-UNL-{⊏}
 - 2-IP-UNI-{⊂,≬}
- Np-completeness proof

Improving the complexity of 2-IP-UNL-{□}

- In [Via04], this problem is solvable in a O(n²) time algorithm
- We propose a **O(n log n)** time algorithm using *trapezoid graph*.

Improving the complexity of 2-IP-UNL-{_}

 A trapezoid graph is the intersection graph of a set of trapezoids between two lines.



Improving the complexity of 2-IP-UNL-{□}

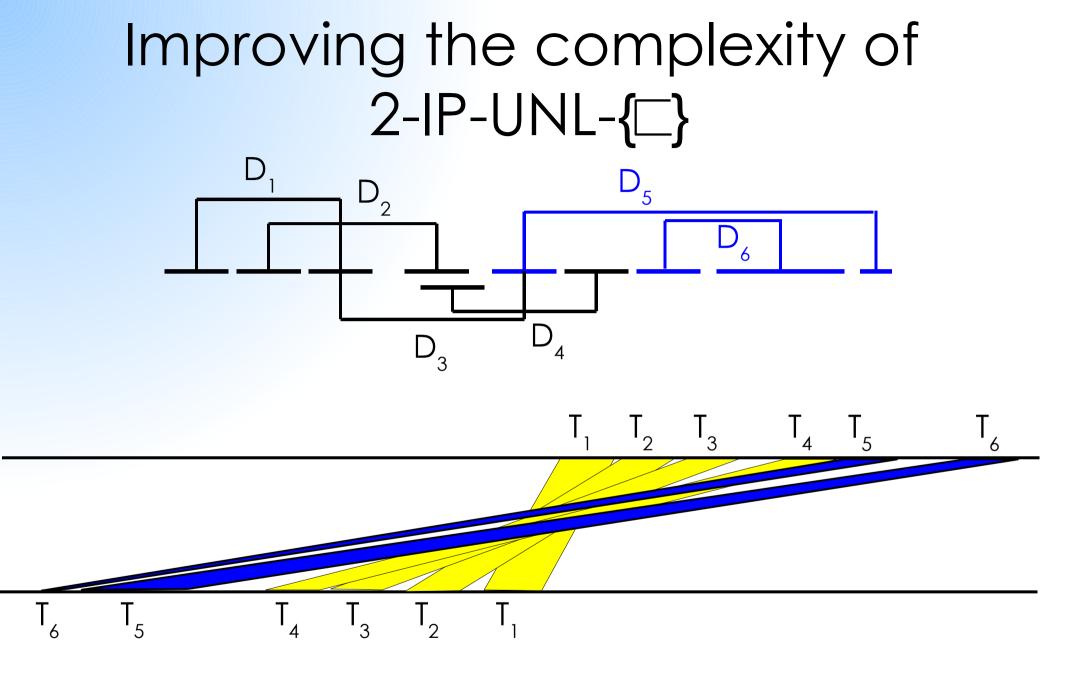
• Algorithm:

- Given
$$D=\{D_1, D_2, ..., D_n\}$$

- For each $D_i = ([x : y], [x' : y']) \in D$ create $T_i = ([x : y], [-y' : -x'])$

- Let
$$T = \{T_1, T_2, ..., T_n\}$$

- T is obtained in O(n) time



 D_k and D_l are { \Box }-comparable iff T_k and T_l are non-intersecting

Improving the complexity of 2-IP-UNL-{_}

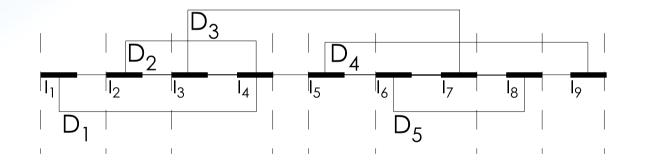
- [Felsner et al 97] have designed a O(n log n) algorithm.
- Complexity analysis:
 - Construction in O(n) time
 - Find a solution in O(n log n) time
 - Global complexity: O(n) + O(n log n) -> **O(n log n)**

Outline

- Preliminaries
- Two polynomial time algorithms
 - 2-IP-UNL-{⊂}
 - 2-IP-UNI-{⊂,≬}
- Np-completeness proof

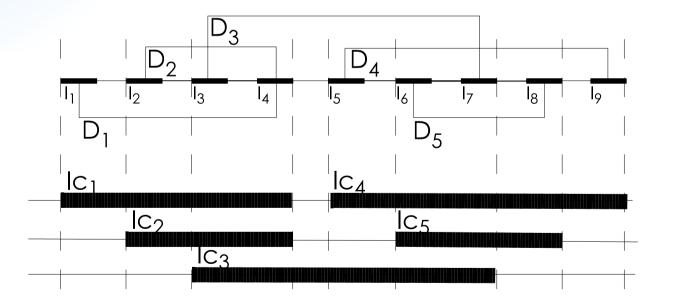
A polynomial time algorithm for 2-IP-DIS- $\{\Box, i\}$

Given a set of 2-intervals **D** on a disjoint support



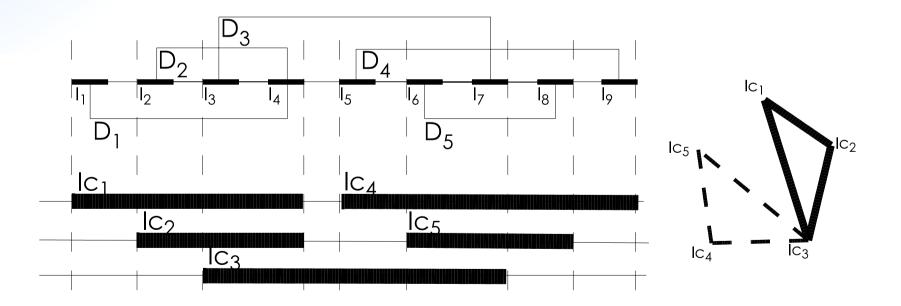
A polynomial time algorithm for 2-IP-DIS- $\{\Box, i\}$

Create the corresponding interval cover set SI



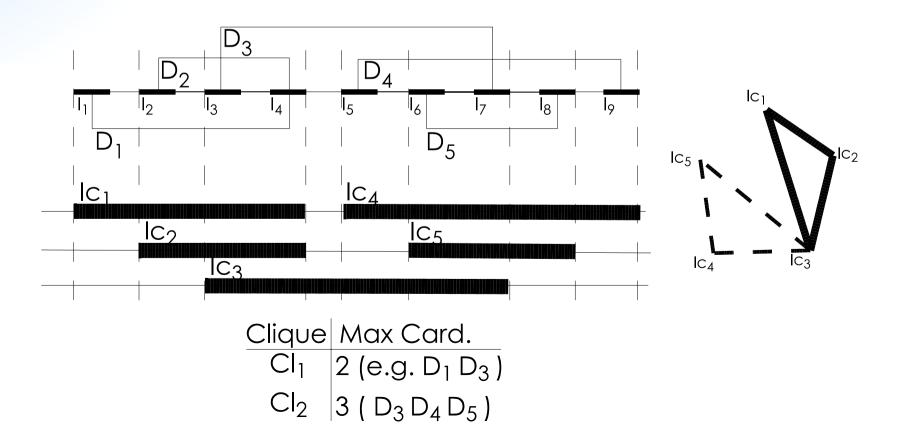
A polynomial time algorithm for 2-IP-DIS-{ \Box , §}

Create the corresponding interval graph $\Omega(SI)$



A polynomial time algorithm for 2-IP-DIS-{ \Box , §}

For each maximal clique C in $\Omega(SI)$ (at most n) [Fulkerson et al 65] Verify the disjonction constraint



A polynomial time algorithm for 2-IP-DIS- $\{\Box, \emptyset\}$

- Complexity analysis:
 - Construction of the interval cover set in O(n) time
 - Construction of the interval graph in **O(n²)** time
 - Finding all the maximal clique (at most n) in
 O(m+n) time
 - Verify the disjonction constraint in $\textbf{O(n} \lor \textbf{n)}$
 - Global complexity of : $O(n)+O(n^2)+O(m+n) + n.O(n \lor n) \rightarrow O(n^2 \lor n)$

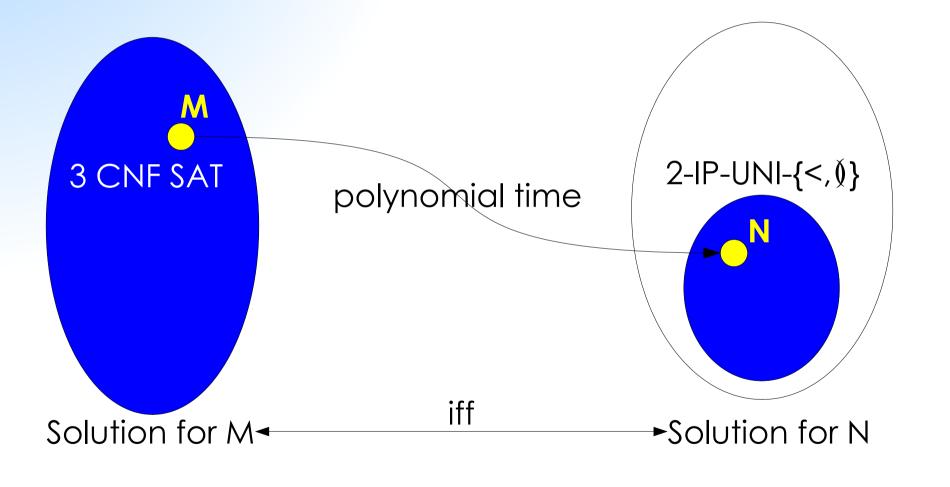
Outline

- Preliminaries
- Two polynomial time algorithms
- Np-completeness proof
 - 2-IP-UNI- $\{<, \emptyset\}$ is NP-complete
 - 2-IP-UNI-{<, \emptyset } is fixed-parameter tractable

2-IP-UNI- $\{<, \emptyset\}$ is NP-complete

- Rather technical proof using a reduction from the Exact 3-CNF SAT problem. (coming soon in the full version)
- Instance :
 - Conjunction of disjunction of boolean variables BF=($\overline{x1} \times x2 \times x3$) \land (x1 $\vee \overline{x2} \times x4$) \land (x1 $\vee x2 \vee \overline{x3}$)
- Question:
 - Is there an assignment of the variables that sastifies BF ?

2-IP-UNI- $\{<, \emptyset\}$ is NP-complete



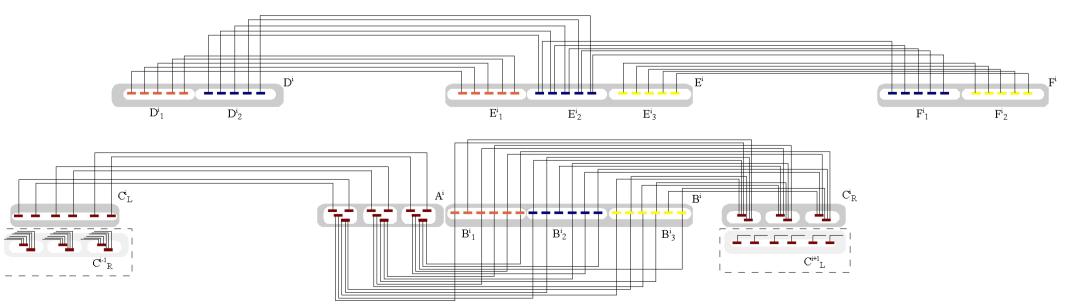
Known to be a *Difficult problem* It is at least as difficult

2-IP-UNI- $\{<, \emptyset\}$ is NP-complete

• Exact 3-CNF SAT problem.

- BF=C1
$$\wedge$$
 C2 \wedge C3 ... Cq

 $Ci=(\overline{x1} \vee x2 \vee x3)$



Outline

- Preliminaries
- Two polynomial time algorithms
- Np-completeness proof
 - 2-IP-UNI- $\{<, \emptyset\}$ is NP-complete
 - 2-IP-UNI- $\{<, \emptyset\}$ is fixed-parameter tractable

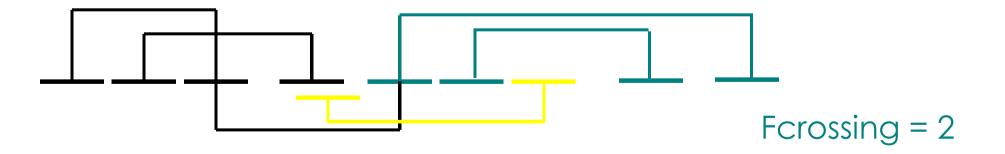
A fixed-parameter algorithm for $2-IP-UNI-\{<,\emptyset\}$

- An exact algorithm with strong emphasis on the crossing structure
- Solved for any support by means of dynamic programming in a complexity exponential only in a fixed parameter

A fixed-parameter algorithm for $2-IP-UNI-\{<,\emptyset\}$

• Forward Crossing Number of D:

$$FCrossing(D) = max_{D, \in D} | D_j : D_i \emptyset D_j |$$



A fixed-parameter algorithm for 2-IP-UNI-{<,∮}

- The problem can be solved by means of dynamic programming in O(n².FCrossing(D).2^{FCrossing(D)}(log(n)+FCrossing(D)))
- We expect Fcrossing(D) to be small compared to |D|

Conclusion



Is it fixed-parameter tractable with respect to parameter lower than FCrossing(D)?

Depth(D)=max {|D'|:D' is a { \emptyset }-comparable subset of D}

? Questions on **?** *New results for the 2-interval pattern problem*

Ś

Guillaume Blin¹, Guillaume Fertin¹ and Stéphane Vialette² **2**

¹LINA, FRE CNRS 2729 Université de Nantes, 2 rue de la houssinière BP 92208 44322 Nantes Cedex 3 FRANCE {blin,fertin}@lina.univ-nantes

S

Ś

²LRI, UMR CNRS 8623 Université Paris-Sud Faculté des Sciences d'Orsay, Bât 490, 91405 Orsay Cedex FRANCE vialette@lri.fr

Ś

